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Abstract: We present a study of tunable thermal transport characteristics of nanocomposites by
employing a combination of a full-scale semi-ab inito approach and a generalised and extended
modification of the effective medium theory. Investigations are made for planar superlattices (PSLs)
and nanodot superlattices (NDSLs) constructed from isotropic conductivity covalent materials Si
and Ge, and NDSLs constructed from anisotropic conductivity covalent-van der Waals materials
MoS2 and WS2. It is found that difference in the conductivities of individual materials, period size,
volume fraction of insertion, and atomic-level interface quality are the four main parameters to
control phonon transport in nanocomposite structures. It is argued that the relative importance of
these parameters is system dependent. The equal-layer thickness Si/Ge PSL shows a minimum in
the room temperature conductivity for the period size of around 4 nm, and with a moderate amount
of interface mass smudging this value lies below the conductivity of SiGe alloy.

Keywords: thermal transport; phonons; nanocomposites; DFT; Boltzmann equation; effective
medium theory

1. Introduction

Thermal conductivity is a property of bulk solids spanning over four orders of magnitude,
covering the range 10−1–103 W m−1 K−1 [1] at room temperature. This range can be further
increased by including solids of nanoscale size [1] and even more so through also considering
nanocomposites. Both high and low thermal conductivity materials have technological applications.
Materials with high thermal conductivities can be used as sinks for managing heat in electronic
devices [2]. Materials with ultra-low thermal conductivities are suitable for thermal barrier coatings
for aircraft and gas-turbine engines [3] and for achieving high thermoelectric figure of merit [4,5].
Theoretical work by Hicks and Dresselhaus [6,7] provided proof of the concept that nanostructing,
resulting in lowering of thermal conductivity, greatly enhances the thermoelectric figure of merit. In a
review article Dresselhaus et al. [8] presented the status of experimental and theoretical works in the
emerging field of low-dimensional thermoelectricity, and discussed the outlook for future research
directions for nanocomposite thermoelectric materials. However, in their theoretical works, Hicks and
Dresselhaus did not present any numerical calculations of phonon conductivities for the nanostructures
they had studied. Hence, the identification of key physical parameters of nanostructures, particularly
nanocomposites, for tuning phonon transport remains an important topic of both fundamental and
practical importance.

A systematic theoretical study of thermal conduction across interfaces in composite materials
ranging from short (nanometers) to large (micrometers or beyond) periodicities is quite challenging.
Indeed, no such study as far as we are aware has yet been performed. A few first-principles-based
attempts have been made, but due to heavy computational demands are restricted to period sizes
in the low nanometer (nm) range [9–11]. In this work we employ a combination of the electronic
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density functional theory (DFT) and the phonon Boltzmann transport equation based semi-ab initio
approach and a generalised and extended modification of effective medium approach (GemEMA) to
study tunable thermal transport characteristics of composites of periodicities ranging from 1 nm to
100 µm, with particular emphasis on nanocomposites of periodicities in the range 1–100 nm.

2. Theoretical Framework

At the start we present in Table 1 a list of the important quantities and acronyms used in this work.
Thermal transport calculations based on phonon relaxation times assume the validity of the

Landau-Peierls-Ziman condition [12]: sample size (L) must be larger than the phonon mean free
path (Λ), which in turn must be larger than the phonon wavelength (λ), i.e., L > Λ > λ. Figure 1
illustrates a planar superlattice (PSL) structure of sample size L and repeat period size D containing
layers of materials A and B. Also shown in that figure is a nanodot superlattice (NDSL) structure with
dot A inserted in matrix B. The most straightforward solution of the Boltzmann transport equation
gives an expression for the phonon conductivity containing a simple form of phonon relaxation
time, called the single-mode relaxation time (SMRT) [13]. Callaway [14] developed the concept of
an effective relaxation time by incorporating the momentum conservation condition of anharmonic
Normal scattering processes. However, the original Callaway conductivity expression, which has
been applied extensively in early [15–17] as well as recent [18] works, employs grossly simplified and
parameterized forms of anharmonic relaxation times, is valid for isotropic materials and is based on
the continuum approximation to the phonon dispersion relation ω(qs) = cac(s)q, where cac, s and
q are acoustic speed, polarization and wavevector, respectively. We have recently presented [19]
derivation of a generalised version of Callaway’s formalism (i) accounting for the tensorial form
of thermal conductivity and (ii) utilizing realistic phonon dispersion relations ω = ω(qs) for all
polarization branches.

(a) (b)

Figure 1. Schematic illustration of: (a) a A/B planar superlattice (PSL) structure and (b) a nanodot
superlattice (NDSL) structure. L represents sample length and D represents size of a unit cell.
We consider A as insert of size LI and conductivity κI , and B as matrix of size LM and conductivity κM.

We can establish the range of validity of relaxation-time based full-scale and effective medium
theories of thermal transport across interfaces in a composite system by comparing the phonon
mean free path (Λ) with the repeat period size (D) of the system under study. Three regions can be
considered: D << Λ, D ∼ Λ and D >> Λ, as illustrated in Figure 2. For the case D << Λ the
system is characterised by a unique set of phonon dispersion relations ω(qs) throughout the relevant
Brillouin zone. In such cases full phonon eigensolutions must be obtained and a full-scale conductivity
calculation carried out. Such calculations for systems with D ∼ Λ may be too computationally
demanding to be viable, and so the application of approximate methods, such as an appropriate
effective medium approach, becomes necessary. In applying such an approach the necessary inputs are
the phonon conductivities of constituent bulk materials and the thermal interface (boundary) resistance
RTB. For D >> Λ the effect of boundary in a composite structure becomes less important and the
thermal resistivity of the system can be obtained from a suitable linear combination of the resistivities
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of constituent bulk materials. For a two-component composite A/B with with repeat period D the
thermal conductivity κ for the three cases can thus be viewed as follows:

Region R1 (D << Λ) : κ = κ(system considered as a new material), (1)

Region R2 (D ∼ Λ) : κ = κ(a suitable effective medium expression), (2)

Region R3 (D >> Λ) : κ = a suitable combination of component bulk conductivities. (3)

Table 1. Table of important quantities and acronyms.

Symbol Quantity/Acronym

κI Phonon conductivity of insert
κM Phonon conductivity of matrix

κEMA Effective Medium Approach phonon conductivity
κmEMA Modified Effective Medium Approach phonon conductivity
κemEMA Extended modified Effective Medium Approach phonon conductivity

κGemEMA Generalised and extended modified Effective Medium Approach phonon conductivity
L Sample size
LI Insert length
LM Matrix length
LB Generic effective boundary length
LB,i Effective boundary length of PSL segment i

LB,M Effective boundary length of NDSL matrix
LB,I Effective boundary length of NDSL insert

f Concentration of inserts
Σ Interface density

RTB Thermal boundary resistance
WIMS Thermal resistivity due to IMS

D Repeat period size
Λ Phonon mean free path
ζ Parameter determining the amount exp(−j2ζ) of mass swap in the jth interface layer

TMD Transition metal dichalcogenide
PSL Planar superlattice

NDSL Nanodot superlattice
TBR Thermal boundary resistance
IMS Interface mass smudging
DFT Density Functional Theory

SMRT Single-mode relaxation time
EMA effective medium approach

mEMA modified effective medium approach
emEMA extended modified effective medium approach

GemEMA generalised and extended modified effective medium approach

For ultra short period nanocomposites, we calculate κ(D << Λ) using our semi-ab initio approach
for the DFT-Boltzmann based conductivity tensor [11,20] and a generalised version of Callaway’s
anharmonic phonon relaxation time expression [19] using phonon eigensolutions generated using
Density Funtional Peturbation Theory [21]. A recap of the essential features is presented in Appendix A.
For composites with repeat period sizes in large nm and µm ranges, we calculate κ(D ≥ Λ)

(particularly for D ∼ Λ)) by applying the effective medium approach at three levels. (a) In Nan’s
approach [22] κ = κ(L, f , RTB) is calculated by assuming sharp interfaces and inputting κA(L) and
κB(L) for the composite sample size L and volume fraction f of A in B. (b) In the Minnich-Chen
approach [23] κ = κ(LI, LM, f , Σ, RTB) is calculated by inputting κI(LI) and κM(LM; LIS), where LI is
effective length of insertion A, LM is effective length of matrix B, and LIS is the effective scattering
length arising from the density of interfaces Σ. (c) Our recent extension [24] of the Minnich-Chen
theory in (b) includes the effects of anisotropy within the composite matrix and the anisotropy of the
thermal boundary resistance RTB. (d) Another extension of Chen’s theory incorporates non-uniformity
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of interfaces in evaluating RTB [25,26]. (e) In this work we extend the theory further by accounting
for the effect of unavoidable presence of atomic defects at interfaces (such as mass smudging), viz.
by making a realistic estimate for WIMS. This we do by considering a small percentage of mass swap
in each constituent material that mimics the effects of swapping masses within the layers on either
side of an interface, as discussed in more detail below. We will label conductivity expressions within
Nan’s approach as κEMA, within Chen’s approach as κmEMA, incorporating considerations (b–d) as
κemEMA, and incorporating considerations (b–e) as κGemEMA. The constituent components κI and κM
are computed using our semi-ab initio approach from DFPT generated eigensolutions.

(a) (b) (c)

Figure 2. Schematic illustration of relative sizes of repeat period D and phonon mean free path (MFP)
Λ for a A/B planar superlattice: (a) D >> Λ, (b) D ∼ Λ, and (c) D << Λ.

Within the GemEMA scheme the cross-plane conductivity expressions for planar superlattices
(PSLs) and nanodot superlattices (NDSLs), relevant for Region R2 (D ∼ Λ), are:

Region R2 (D ∼ Λ) : κ =

κM κI

κI− f [κI(1−α)−κM]
, PSL

κM κI(1+2α)+2κM+2 f [κI(1−α)−κM]
κI(1+2α)+2κM− f [κI(1−α)−κM]

. NDSL
(4)

Here the superscript M represents the segment B as matrix of conductivity κM, the superscript
I represents the segment A as insert with (a small) volume fraction f and conductivity κI, and the
dimensionless parameter α is the ratio α = κMRTB/LB,I with RTB as the thermal boundary resistance
(TBR) and LB,I as an effective insert boundary length. The parameter α is evaluated by incorporating
in RTB a momentum dependent inhomogeneity of the interface region [27]. With α = 0 the interface is
perfect and there is no thermal boundary resistance. Sihovola’s approach [28] for anisotropic matrix and
insert has been extented to the interface region for calculating anisotropic RTB [24]. We consider phonon
scattering from sample boundary to be purely diffusive. But in order to account for a realistic nature
of interfaces phonon boundary scattering is expressed as wave-vector dependent [25], following the
phenomenological scheme proposed by Koh et al. [27]. This approach provides an improvement over
the approach by Behrang et al. [29] for including both specular and diffuse contributions to insert and
matrix boundary scattering rates as well as the thermal boundary resistance. The fraction of phonon
modes of momentum q that undergo diffuse scattering from interfaces/boundaries is expressed as [27]
sq = 1− eη2|q|2 with η = ε/a0, where ε is the average height of surface inhomogeneity in units of the
lattice spacing a0. A physically meaningful value of η lies somewhere between 0 (the specular limit for
a smooth surface) and ∞ (the diffuse limit for an infinitely rough surface). We have considered η = 2 a
resonable value in the present work. The effective boundary length LB is then expressed as

PSLs : L−1
B,i = sqL−1

i + (1− sq)L−1 for ithsegment, i = I, M (5)

NDSLs : L−1
B =

{
L−1

B,I = sqL−1
I + (1− sq)L−1 for inserts

L−1
B,M = L−1 + sqL−1

IS for the matrix,
, (6)

where L is the sample boundary length, and LI is the insert boundary length (nanodot diameter d
for NDSLs), Li = (dA, dB) for PSL segment (A,B) of periodic size D = dA + dB, and LIS = 4/Σ is the
effective scattering length arising from the density of interfaces. For PSLs Σ = 2/D and for NDSLs Σ =
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6 f /LI = 6 f /d. The TBR is then considered as the sum of weighted diffuse and specular constributions:
RTB = RDiff

TB + RSpec
TB . Finally, the effect of including interface mass smudging (IMS) is to essentially

generate an additional contribution to TBR: in the case of PSLs we can express Reff
TB = RTB + D WIMS.

(The presence of form factors in NDSLs results in a more complicated relationship.) It is reasonable to
assume a small amount of mass swap emulating the effects of smudging involving just one or two
atomic layers to compute the corresponding thermal resistivity WIMS. It is useful to mention that there
is no restriction on the validity of the effective medium theories for PSLs, and that the methods are
valid in NDSLs for small IF densities (typically for f ≤ 0.25).

The GemEMA expressions in Equation (4) become the mEMA expressions of Ref. [23] for isotropic
systems (viz. when κI , κM and RTB are non-tensorial) and when there is no cross-interface mass
swapping and transmission across the interface is purely diffuse (viz. when η = ∞ and WIMS = 0).
And the mEMA expressions reduce to Nan’s EMA expressions when LB,I = LB,M = L (sample size).

In Region R3 (D >> Λ), when the parameter α becomes negligibly small, and LB,I = LB,M = L,
the expressions in Equation (4) can be reduced to

Region R3 (D >> Λ) :
1
κ
=

{ f
κI +

1− f
κM , PSL

2+ f
ν

1
κI +

1− f
ν

1
κM , NDSL

(7)

where ν = (1+ 2 f ) + 2(1− f )κM/κI. This equation helps explain easily that, for a given insert fraction
f , the larger the difference between the matrix and insert conductivities, the larger the change in
conductivity of the composite compared to that of matrix: i.e., a larger value of (κM/κI − 1) results in
a smaller value of κ/κM.

3. Methodology

3.1. Generation of Phonon Eigensolutions

Phonon eigensolutions required for the thermal conductivity calculations were generated
using the Quantum Espresso package [21] with parameters defined in previous studies [11,20,30];
some quantitative corrections from previously reported thermal conductivity results are due to this
study’s work using the correct eigenvalue input as per recent work [26].

3.2. Computation of Mass Defect and Anharmonic Scatterings

Phonon scattering rates from isotopic mass defects and crystal anharmonicity in bulk materials
and for ultra short period nanocomposites were calculated using the procedure described in our previous
publications [11,20].

3.3. Computation of IMS Scattering

The phonon relaxation rate due to interface mass smudging (IMS) in ultra short period
nanocomposites is computed by employing the perturbative scheme of treating mass defects as
explained in a previous work [11]. Specifically, we considered IF mass swapping using the Gaussian
distribution of the type exp(−j2ζ) where ζ is a parameter determining the amount j2ζ of mass swap
in the jth interface layer. We have presented numerical results by considering mass swap between
only one atomic layer across the interface. This is illustrated in Figure 3. For 5% and 10% mass swapp
on the first layer (j = 1) across an interface, we set ζ = 3.5 and ζ = 2.3, respectively. Extending the
consideration to the second IF layer increases the relaxation rate by less than 1%. For composites
with large repeat periods it is not possible to include the effect of IMS directly as discussed above for
ultra short period nanocomposites. Instead, we have adopted an alternative, more simple scheme.
Considering a unit cell of suitable shape and size for one of the bulk constituent materials we replace
the relevant atom with the desired fraction of the atom swapped from the other constituent bulk
material. The phonon relaxation rate is computed employing the same method as used for isotopic
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impurites in bulk materials [11,13,20]. Using this as input, thermal resistivity WIMS is computed within
the SMRT scheme. The overall conductivity for the constituent is then calculated by summing its
conductivity with this resistivity via Mathiesen’s rule.

Figure 3. Atomic structure of the Si(D/2)/Ge(D/2)[001] planar superlatiice, with unit cell size D =

4.4 nm containing 8 bilayers of Si and 8 bilayers of Ge. Mass smudging has been considered between
only the fist interface atomic layers, i.e., in the regions encircled in red.

4. Results

4.1. Predicted Results for Modelled Periodic Nanocomposite Structures

Figure 4 shows the variation of the room-temperature cross-plane κ with the repeat period
D in Si/Ge PSLs and NDSLs, of sample boundary length 1 mm. Also presented are the in-plane
and cross-plane κ results for MoS2/WS2 NDSLs. These results have been obtained by including
isotopic mass defects, but otherwise with a homogeneous interface between the constituent layers.
Regions R1, R2 and R3, corresponding to D << Λ, D ∼ Λ and D >> Λ, respectively, have been
indicated. Full-scale calculations for D < 10 nm have been made by treating the nanocomposite
systems as new materials. For D > 10 nm results of calculations have been presented using the last
expression in Equation (3) as well using Nan’s EMA [cf. Equation (2)]. It is obvious that Region R3
starts when D becomes larger than 10 microns. Region R2 may safely be considered for the range
10 nm < D < 1 micron. The boundary between the regions R1 and R2 at around D ∼ 10 nm has
been chosen following the suggestion [1] that typical minimum for phonon mean free path is 10 nm.
This can also be judged from our numerical results for Λ in Figure 5 discussed below. The cross-plane
conductivity component κzz for the Si/Ge PSL system decreases as D increases from an ultralow
nm value, takes a minimum in the range 3–12 nm, and then continues to increase until 10 µm,
before saturating to the bulk weighted result obtained from Equation (3).
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Figure 4. Period size dependence of cross-plane room-temperature thermal conductivity for:
(a) Si(D/2)Ge(D/2) PSL; (b) NDSL (Ge insert of volume fraction f = 0.125 in Si matrix); and (c)
TMD NDSL ( f = 0.125 of WS2 inserted in MoS2). Sample size L is 1 mm the Si/Ge composites in
(a,b), and 100 mm for the MoS2/WS2 composite in (c). Regions R1, R2 and R3 correspond to D << Λ,
D ∼ Λ and D >> Λ, respectively, where D is repeat period and Λ represents phonon mean free path.
Results in panel (a) for the Si/Ge PSL are obtained from full-scale DFT-Boltzmann calculation in Region
R1, and from the EMA method in Regions R2 and R3. Results in panels (b,c) are obtained from the
EMA method.

The typical cross-plane conductivity shape in Figure 4a for the repeat period range 1–12 nm
(sample size 1 mm) can be explained by considering two physical properties [9,31]: cross-plane
phonon group velocity cz and interface density Σ. As seen in Figure 5, both |cz| and Σ decrease as D
increases up to about 4 nm. For D > 4 nm, while Σ continues to decrease linearly with D, the decrease
in |cz| is much reduced. Decrease in |cz| and Σ have opposite effects: the former reduces and the latter
increases the cross-plane conductivity (κzz). The combined effects of changes in |cz| and Σ, together
with increase in specific heat Cv, result in an increase in κzz for D ≥ 8 nm. Consistent with this
consideration is the variation of the Bose occupation n̄(qs) weighted ’cross-plane mean free path’ Λz =

|cz|τ = ∑qs |cz(qs)|τ(qs)n̄(qs)/ ∑qs n̄(qs), which shows a minimum at 4.4 nm in Figure 5. Notice that
in contrast to Λz the occupation weighted mean free path Λ = |c|τ = ∑qs |c(qs)|τ(qs)n̄(qs)/ ∑qs n̄(qs)
does not show any dip as D increases.
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Figure 5. Variation with period size D, for Si(D/2)Ge(D/2) PSL at room temperature, of phonon
specific heat (Cv), cross-plane velocity component (|cz|), occupation weighted mean free path (Λ),
occupation weighted cross-plane mean free path (Λz) with sharp interfaces, cross-plane mean free
path (Λz) with 10% atomic mixing across interface (ζ = 2.3), and interface density Σ. Sample size is
L = 1 mm.

For technological applications of nanocomposites, relevant considerations are the sample size in
100s of nm and the repeat period in the range 1–50 nm. There are four fabrication-related parameters
whose role in limiting cross-plane phonon transport must be examined systemtically. These are:
the material identity of the insert and matrix components, repeat period size, volume fraction of the
insert component in a period (relating to interface density), and the quality of fabricated nanocomposite
relating to interface homogeneity and the inevitable presence of defects (point defects such as mass
smudging, and more complicated varieties such as dislocations and grain boundaries). In this work
we have considered the role of interface mass smudging (IMS) using our semi-ab initio method as
applied to bulk materials, and have restricted ourselves to the consideration of inhomogeneity in a
phenomenological manner as mentioned earlier. Before examing the role of these fabrication-related
parameters, we clarify that phonon conductivity of any material, be it pure bulk or composite,
varies with sample length. From our theoretical calculations we estimate that for a sample size
of 500 nm the room-temperature conductivity results for bulk Si and Ge are 81.62 and (37.07, 52.17)
(natural, enriched) W/m/K, respectively. For the same sample size (500 nm) the (in-plane, cross-plane)
room-temperature conductivity results for 2H bulk MoS2 and WS2 are (84.28,2.58) and (108.20,1.75)
W/m/K, respectively.

The results in Figure 6a suggest that for Si/Ge PSL of sample size 1 mm κmEMA becomes almost
the same as κEMA when the period size grows up to several tens of micron. Clearly, mEMA is more
appropriate for composites with period size ranging between nanometers and a few microns. Figure 6b
shows a comparison of the results from the emEMA method with those from the mEMA and EMA
methods for a Si/Ge PSL of sample size 500 nm. Using a reasonable choice of η = 2 for interface
inhomogeneity, κemEMA lies in between κEMA and κmEMA. From the results presented in panel (c) three
points can be made. Increasing the insert volume fraction of Ge in a Si matrix lowers the conductivity
of the nanocomposite. For a given insert fraction, the decrease in the conductivity is more pronounced
even for lower amounts of interface mass smudging. Finally, even a small amount of IMS can alter
κ more strongly than adding a larger volume of insert. For example, it is clear that 10% of mass
smudging (ζ = 2.3 for j = 1, see Methodology section) across the first atomic layers of Si and Ge
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lowers the conductivity more than what does doubling of the Ge insert volume fraction. Consideration
of an additional 0.01% mass smudging across the second interface atomic layers (ζ = 2.3 for j = 2)
reduces the conductivity by another 0.06% (not shown in the figure).

Figure 6. Panels (a,b): Comparison of period size dependence of room-temperature cross-plane
conductivity for Si(D/2)/Ge(D/2) PSL using the EMA, mEMA and emEMA methods. Panel (c):
Period and volume fraction dependence of κ for Ge ND inserts in Si matrix. Sample size is 1 mm for
panel (a) and 500 nm for panels (b,c).

Figure 7 presents the main results of our investigation for room-temperature cross-interface
conductivity with sample boundary length fixed at 500 nm. Our numerical results
for the thermal boundary resistance are: RTB = 2.392 × 10−9 m2 K W−1 for Si/Ge,
and Rin−plane

TB = 3.211× 10−9 m2 K W−1 and Rcross−plane
TB = 5.717× 10−8 m2 K W−1 for MoS2/WS2.

In presenting results in panel (a) for Si(D/2)/Ge(D/2) PSLs we have combined the numerical data
obtained from the full-scale calculations for period sizes 1.1–9.9 nm and from GemEMA (with ζ = 2.3)
for larger period sizes. In panel (b) we have shown results for the Si/Ge NDSLs with Ge insertion
volume fraction 0.125 in Si matrix using the full-scale calculation for D = 1.1 nm and GemEMA
(ζ = 2.3) for larger D values. Looking at panels (a), (b) and (c) it is evident that as the period size
increases beyond 10 or 15 nm so does the cross-interface conductivity of a nanocomposite, be it a PSL
of a NDSL. The results in panel (a) reveal that the conductivity of the Si/Ge PSL can be expected
to acquire a minimum value when the period size lies in the range D = 3–12 nm, before starting
to increase for lower values of D. The effect of including WIMS to account for mass smuding across
interfaces (IMS) is to lower the value of the conductivity. The extent to which IMS reduces conductivity
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depends on the atomic masses involved at the interface layer(s). For Si/Ge(001) and Si/Ge(111) systems
there is a single atomic layer of each species across an interface. For Si/Ge(110) there would be two
atoms of each species across each interface. For composites made of transition metal dichalogenides
such as MoS2/WS2(0001), with each layer containing one transition metal element and two atoms of a
chalcogen element, only a maximum of 1/3 atomic site can be swapped across the first interface layer.
Consistent with this, and that interlayer separation in these van der Waals materials is quite large,
our results in panel (c) suggest that even with a 10% atomic swap between Mo and W for MoS2/WS2

NDSLs there is only a minimal decrease in the conductivity. Another variable structural parameter is
the volume fraction of insertion. In general, if there is a large difference in the conductivities of insert
and matrix bulk materials, there will be a bigger difference in the conductivity of a nanocomposite
when the volume fraction of the insert increases. This was found to be the case for both Si/Ge and
MoS2/WS2 systems. As shown in panel (c) we find that the conductivity of MoS2/WS2 NDSL decreases
roughly by a factor of 1.5 when the volume fraction of the insert WS2 doubles from 0.125 to 0.25.

From an inspection of the results obtained for the Si/Ge and MoS2/WS2 nanocomposites, it is
clear that both the rate of increase in conductivity with period size D and decrease in the conductivity
with insert volume fraction f can be affected by the amount of IMS present. However, this is dependent
on the chemical and structural makes of the insert and matrix. While the effect of IMS is stronger in
Si/Ge NDSLs and PSLs, it is minimal in MoS2/WS2 NDSLs. With the consideration of 10% first-layer
IMS for a sample of length 500 nm, we predict the minimum conductivity value of around 2 Wm−1K−1

for the Si(4.4 nm)/Ge(4.4 nm) PSL and around 3.4 Wm−1K−1 for a NDSL with Ge nanodot of 0.56 nm
diameter and period size 1.1 nm.

Figure 7. Period size dependence of room-temperature κzz for sample size 500 nm: (a) for
Si(D/2)/Ge(D/2) PSL, with various amounts of interface mass smudging (IMS); (b) Ge/Si NDSL,
with Ge insert fraction of f = 0.125; (c) MoS2/WS2 NDSL, with WS2 insert fraction of f = 0.125.
Boundary and interface scattering rates are calculated with the choice of the inhomogeneity factor
η = 2. In panel (b) the shape of the smallest Ge insert was cubic.
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4.2. Theory-Experiment Comparison

Our predicted values of the room-temperature thermal conductivity for Si/Ge nanocomposites
are in the same range as reported from experimental measurements on similar size PSLs [32–35] and
NDSLs [36–39]. However, it should be clarified that a detailed comparison of our predicted results for
Si/Ge nanocomposite structure with experimental measurements is not possible. This because in our
theoretical studies we have assumed samples to be homogeneous with perfectly periodic structure
at atomic level, except for some degree of mass smudging at interfaces. In contrast, even the best
fabrication techniques result in samples characterised with inhomogeneities and a large number of
point and extended defects. Having said that, it is tempting to make a detailed comparison of our
predicted results for equal-layer short-period Si/Ge PSLs of sample size (L) of around 400 nm and
period size (D) of 4.4 nm with the reported experimental results in the temperature range 50–300 K as
reported in Ref. [33]. Figure 8a shows our theoretical results using the SMRT and Callaway expressions
for the conductivity of the Si(2.2 nm)/Ge(2.2 nm) PSL of sample size 400 nm n-doped with 1026 m−3,
and the IMS factor ζ = 2.3. We used Parrott’s expression [40] for phonon scattering rate from donors.
The results, throughout the temperature range, from the Callaway theory are slightly higher than those
from the SMRT theory. At 300 K, κ(Callaway) is 3% larger than κ(SMRT). The theoretically obtained
room-temperature result in this figure is very close to the experimental result in Ref. [33]. However,
there is huge descrepancy between theoretical and experimental results below room temperature.
As mentioned before, this is due to several known factors related to the quality of the fabricated
sample at chemical and atomic levels. We made calculations by doubling the mass defect factor Γ(md)
and using a slightly smaller effective sample size to examine if this would help our results closer to
experimental results. It is clear from Figure 8b that a simple scaling of mass defect concentration is not
sufficient to explain experimental results. Indeed, the plateau-like feature in the experimental curve
in the range 50–250 K is indicative of gross inhomogeneity or amorphousness. We believe that had
the measurements been made for temperatures above 300 K where anharmonic phonon interactions
play a dominant role, our theoretical curve would have matched with experimental curve. Clearly,
more work is needed both on experimental side (on fabrication and quality assessment at atomic and
chemical levels) and theoretical side to fully establish precise numerical values of the conductivity
at temperatures below 300 K. The same argument stands when comparing our theoretical results
with measurements for unequal-layer Si/Ge PSLs reported in Ref. [34]. It is also pleasing to note
that our computed value of the Si/Ge thermal boundary resistance RTB = 2.392× 10−9 m2 K W−1

lies in the experimentally deduced range [37] (2–4) ×10−9 m2 K W−1. To the best of our knowledge,
there are no reports of thermal conductivity or thermal boundary resistance measurements for TMS
nanocomposites, either in PSL and in NDSL structure.
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Figure 8. Thermal conductivity of Si(2.2 nm)/Ge(2.2 nm) PSL, with smaple size L = 400 nm, n-type
doping concentration n = 1026 m−3, and IMS factor ζ = 2.3. (a) Results are presented using both SMRT
and Callaway theories with L = 400 nm. (b) Comparison between Callaway theory (this study) and
experiment (Ref. [33]), with point mass defect concentration taken as twice of the isotopic mass factor
and L = 300 nm.

5. Summary and Conclusions

In summary, from investigations made for planar superlattices (PSLs) and nanodot superlattices
(NDSLs) constructed from isotropic conductivity covalent materials Si and Ge, and NDSLs constructed
from anisotropic conductivity covalent-van der Waals materials MoS2 and WS2, we have identified four
key parameters that control thermal transport in nanocomposites. For a given insert fraction, a larger
difference between matrix and insert conductivities results in a larger change in the conductivity of
the composite material compared to that of the matrix material. Period size D, volume fraction of
insertion f , and atomic-level quality of interface (leading to IMS) are the three other main parameters
that should be tuned to achieve low phonon transport in a nanocomposite A/B fabricated from
constituent materials A and B. Regardless of sample size L, material chemical composition and
nanocomposite structural pattern (i.e., PSL or NDSL) and insert volume fraction f , the conductivity
decreases as the period size D decreases towards the low nm range. With regards to equal layer
thickness Si(D/2)/Ge(D/2) PSL, the conductivity takes a minimum value when the period size D
lies in the range 3–12 nm, depending of course on sample size L and interface quality. Reported
experimental studies [32,33,35–39] and the present systematic theoretical study point out that with the
right choice of sample size, period size, volume insertion fraction, and short-range interface defects in
a Si/Ge nanocomposite, it is possible to achieve room-temperature conductivity below the alloy and
amorphous limit of around 4 Wm−1K−1. This positively points in the direction of the usefulness of
nanocomposites for applications such as thermoelectricity.
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Appendix A. Phonon Conductivity Expression for Bulk and Ultra-Thin Spuerlattices

The theory of lattice thermal conductivity can be derived at various levels of sophistication [13].
One of the most practiced approaches relies on solving a linearized form of the Boltzmann
transport equation within the concept of phonon relaxation time. The simplest form is the so-called
single-mode relaxation time (SMRT). However, at this level theory ignores the fundamental role of
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momentum-conserving Normal (N) anharmonic phonon interaction processes. Callaway [14] showed
how to incorporate the Normal-drift (N-drift) term over and above the SMRT conductivity expression.
However, Callaway employed the simple isotroipc continuum scheme to do so. A generalized version
of the N-drift was formulated by Srivastava [19]. The resulting thermal conductivity tensor for a
periodic solid can be written as

κij =
h̄2

N0ΩkBT2 <
[
vi

s(q)ω(qs) +ACqiτ−1
qs,N

]
vj

s(q)τqsω(qs) >, (A1)

where

AC =
< qivj

sω(qs)τqsτ−1
qs,N >

< qiqjτ−1
qs,N(1− τqsτ−1

qs,N) >
, (A2)

and
< f >= ∑

qs
f (qs)n̄(qs)(n̄(qs) + 1). (A3)

In the above N0 is the number of unit cells and Ω is the unit cell volume, n̄(qs) is the Bose-Einstein
distribution function, and τqs is the single-mode relaxation time for a phonon of frequency ω(qs) with
wave vector q and polarisation s

τ−1
qs = τ−1

qs (bs) + τ−1
qs (md) + τ−1

qs (IMS) + τ−1
qs,N + τ−1

qs,U , (A4)

with contributions from boundary scattering, isotopic mass defect, interface mass smudging (IMS),
anharmonic Normal (N) processes, and anharmonic Umklapp (U) processes, respectively.

Schemes for computations of the various terms have been described in Section 3 of the manuscript.
The anharmonic three-phonon scattering rate is

τ−1
3ph, qs =

πh̄
$N0Ω

γ̄2(T)
c̄2 ∑

q′s′ , q′′s′′ , G
ωω′ω′′δq+q′+q′′ ,G

×
[ n̄′(n̄′′ + 1)

(n̄ + 1)
δ(ω + ω′ −ω′′) +

1
2

n̄′n̄′′

n̄
δ(ω−ω′ −ω′′),

]
, (A5)

where $ is material density, γ(T) is the temperature-dependent Grüneisen’s constant whose definition
along with those of other symbols are as given in [20]. τ−1

qs,N and τ−1
qs,U correspond to G = 0 and

G > 0, respectively. The expression for mass-smudging scattering rate τ−1
qs (IMS) used for ultra-thin

superlattice structures is

τ−1
qs (IMS) =

π

2N0
ω2

qs ∑
q′s′

δ(ωqs −ωq′s′)∑
b

ΓIMS(b)|e?qs(b) · eq′s′(b)|2, (A6)

with the mass-smudging disorder coefficient for the bth atom expressed as

ΓIMS(b) = ∑
b′ j

exp(−j2ζ)[1−Mj(b′)/M̄(b)]2, (A7)

where M̄(b) is the average mass of the bth atom, Mj(b′) is the mass of the b′th atom in the jth interface
layer swapping with the bth atom, and ζ is a parameter determining the amount j2ζ of atomic mass
swapping in the jth interface layer. The expression for phonon scattering from isotopic mass defects
τ−1

qs (md) (in bulk as well as nanocomposites) is similar to that for τ−1
qs (IMS) with ΓIMS(b) replaced as

Γmd(b) and evaluated considering all isotopic masses.
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