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Abstract: Film-forming techniques and the control of heat release in micro-energetic chips or
devices create challenges and bottlenecks for the utilization of energy. In this study, promising
nano-Al/MoO3 metastable intermolecular composite (MIC) chips with an uniform distribution
of particles were firstly designed via a convenient and high-efficiency electrophoretic deposition
(EPD) technique at room temperature and under ambient pressure conditions. The mixture of
isopropanol, polyethyleneimine, and benzoic acid proved to be an optimized dispersing agent for
EPD. The kinetics of EPD for oxidants (Al) and reductants (MoO3) were systematically investigated,
which contributed to adjusting the equivalence ratio of targeted energetic chips after changing the
EPD dynamic behaviors of Al and MoO3 in suspension. In addition, the obtained nano-Al/MoO3 MIC
energetic chips showed excellent heat-release performance with a high heat release of ca. 3340 J/g,
and were successfully ignited with a dazzling flame recorded by a high-speed camera. Moreover,
the fabrication method here is fully compatible with a micro-electromechanical system (MEMS),
which suggests promising potential in designing and developing other MIC energetic chips or devices
for micro-ignition/propulsion applications.

Keywords: nano-Al/MoO3 MIC; stable suspension; electrophoretic deposition; kinetics; micro initiator

1. Introduction

In recent decades, increasing attention has been paid to energetic fuels with high energy density
(e.g., metastable intermixed composites (MICs) or nanothermites). They can generate superior
combustion performance, so they are widely used in high-efficiency propellants [1], welding auxiliary
devices [2], pyrotechnics [3], and specialized igniters or energetic chips [4] for a variety of military
purposes and civilian applications. Generally, MICs are regarded as excellent fuels, which generally
consist of metal-fuel (e.g., Al, Mg) and oxidizers that include metal oxides (e.g., MoO3 [5], Fe2O3 [6],
polyvinylidene fluoride [7], NiO [8], CuO [9], and iodates [10]). Compared to traditional micro-MICs,
nano-structured MICs have been gradually verified as a promising candidate for highly reactive
energetic materials or composites due to their higher heat-release properties, greater contact area
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between fuels and oxidizers, and faster detonation velocity [11–13]. Therefore, there is an emerging
research area of interest in designing novel nano-structured MICs via facile techniques.

The Al/MoO3 MIC, as a desirable energetic system, has continuously aroused great interest,
owing to its high heat of reaction (4698 J/g) and adiabatic flame temperature (3547 ◦C, higher than
that of Al/Fe2O3, Al/CuO, etc.). Recently, different fabrication methods have been explored to
prepare Al/MoO3 MICs or nanothermites for developing their exothermic performances, including
the thermal co-evaporation method [14], magnetron sputtering [15,16], sonic wave-assisted physical
mixing [17], and arrested reactive milling laser irradiation [18]. For example, M.R. Zachariah et al.
designed Al/MoO3 MICs with different multilayer internal structures via the magnetron sputtering
method on a semiconductor bridge as a promising micro-energy storage device, and analyzed the
condensed state reaction process in the obtained nano-multilayered films [19]. E.L. Dreizin et al.
reported low-temperature exothermic reactions in fully-dense Al/MoO3 nanocomposite powders
fabricated by the arrested reactive milling technique [20]. In addition, Al/MoO3 MICs fabricated by
the traditional mechanical mixing technique were shown to fuel a dramatic combustion exothermic
process with a high burning rate of 100 ± 4 m/s and a high pressurization rate of 35 kPa/µs [21].
Nevertheless, it is relatively difficult to simultaneously meet the requirements of being low cost and
easy to operate, with high-film-forming efficiency, using most reported methods. It is worth noting
that using a portable electrophoresis, electrophoretic deposition (EPD) has technically demonstrated
advantages in controllability of the composition and deposition efficiency for the target products
from the charged micro/nanoparticles [22,23], or polymer molecules [24,25] in a stable suspension.
The fabrication of Al/CuO and Al/NiO energetic films with uniform distribution was demonstrated
by the K. T. Sullivan group [26] and the D. X. Zhang group [27], respectively. In our previous
research work, the EPD technique was successfully used to prepare an Al/Bi2O3 MIC system [28].
Moreover, for practical application, it is essential to combine MICs with micro-electromechanical
system (MEMS) technology [29] (i.e., so-called “nanoenergetics-on-a-chip” technology), constructing
miniature energy-demanding devices with wide applications. However, there are few reports of the
controlled design of MIC (e.g., Al/MoO3) chips via the EPD technique.

Thus, for these reasons, a novel nano-Al/MoO3 MIC chip combined with Al/MoO3 nanolaminates
and a typical micro-semiconductor bridge was firstly designed via the facile EPD method using
isopropanol, polyethyleneimine, and benzoic acid as an optimized dispersion system. As a type of
binary energetic chip, the composition of the nano-Al/MoO3 MIC can be affected mainly by the EPD
dynamic behaviors of the fuel (Al) and oxidizer (MoO3). Thus, further exploration of this aspect was
analyzed and verified theoretically. Finally, the heat-release properties and ignition test of the product
were investigated.

2. Experimental Section

2.1. Reagents and Materials

Polyethyleneimine, PEG-2000, benzoic acid, and nano-Al powders (99.9%) were purchased from
Aladdin Inc. Corporation. (Shanghai, China). Isopropyl alcohol was purchased from Kelong Industrial
Inc., (Chengdu, China). The other reagents (including hydrogen peroxide and ethanol) from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China) were used as analytical grade purity without further
purification. Deionized water (18.2 Ω) was used in all experiments.

2.2. Controllable Design of Nano-Al/MoO3 MIC

In the fabrication of the nano-Al/MoO3 MIC, the EPD technique was exploited, and the
corresponding detailed schematic diagram is displayed in Figure 1. Firstly, a classic one-step method
was developed to prepare flake-like MoO3 powders. To be specific, 0.25 M Mo powders were added
into 200 mL deionized water with trace PEG2000 marked as mixture A, then H2O2 (30 wt%) was
dripped into mixture A slowly, until the yellow molybdenum peroxide sol appeared. After ultrasonic
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treatment for 0.25 h, the obtained sol was moved into a hydrothermal reactor at 110 ± 2 ◦C for 4 h,
and the MoO3 powders were fabricated after repeated centrifugal cleaning at a rotation speed of
10,000 r/min and vacuum drying.
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Figure 1. Schematic diagram of the facile fabrication of the nano-Al/MoO3 metastable intermolecular
composite (MIC) chip.

Then, the nano-Al and MoO3 powders with different mass ratios were added into the optimized
dispersant of isopropanol, polyethyleneimine, and benzoic acid with a volume ratio of 50:1:1 to obtain
a stable suspension after ultrasonic treatment for 20 min at 25 ◦C. During EPD, a micro-ignition bridge
was the working electrode, and the copper sheet with the same area was used as the counter electrode;
the detailed size of electrodes is shown in Figure S1 (Supporting Information). The distance of the two
electrodes ranged from 0.4 to 2.4 cm. In addition, the EPD process was conducted under different field
strengths. The EPD time ranged from 0 to 16 min. After EPD, the working electrode was removed
from the suspension, and dried in an oven at 80 ◦C for 1.5 h. The nano-Al/MoO3 MIC chip was finally
obtained after cooling to room temperature for the subsequent ignition experiments. The deposited
efficiency (deposit weight per area (mg cm−2)) of the deposits was calculated by dividing the increased
weight of the working electrode after EPD by the deposition area. Each experiment was repeated five
times, and the average value of five parallel experiments was used as the final valid result.

2.3. Material Characterization

The morphology, element distribution, and crystalline structures of the nano-Al/MoO3 MIC were
measured with a field emission scanning electron microscope (FESEM, JSM-7800F, Tokyo, Japan)
equipped with energy dispersive X-ray spectroscopy (EDX), and X-ray diffractometer (XRD-6000,
Shimadzu, Tokyo, Japan) with a scanning rate of 5◦/min, respectively. Atomic absorption spectroscopy
(AAS, 180-80, Exter Analytical, Tokyo, Japan) was used to determine the mass or mole ratio of Al and
MoO3 in deposited energetic film. The heat-release (Q) of the energetic chip was analyzed by differential
scanning calorimetry (DSC, STA449F3, NETZSCH, Berlin, Germany) measured in a temperature range
from 25 to 1000 ◦C at a low heating rate of 10 K/min under a 99.999% argon flow. Ignition of the
product was studied using home-made capacitor charge/discharge initiating equipment, and video
recordings of the deflagration were recorded by a high-speed camera (Phantom v7.3, Vision Research,
Inc., Wayne, NJ, USA) at an imaging speed of 104 f/s.

3. Results and Discussion

3.1. EPD Dynamic Studies

A successful EPD generally largely depends on various dispersing agents, and a large number of
experimental studies have been carried out to compare the dispersion systems for EPD of specific sorts
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of particles [24,30,31]. After a large number of comparison attempts, the optimal dispersing agent of
mixture of isopropanol, polyethyleneimine, and benzoic acid was used to fabricate the nano-Al/MoO3

MIC by EPD at normal tempearture and pressure. For verifying the EPD controllability, dynamic
behaviours of particles in optimized suspension were studied in detail. Shown in Figure 2a is the
deposited efficiency (mg/cm2) as a function of deposited time under applied electric field strengths
ranging from 6 to 12 V/mm during EPD of Al/MoO3 MIC films. It was obviously observed that the
deposition efficiency increased with the EPD time when the field strength was fixed at 6 V/mm, and a
similar trend was also seen in a higher field strength of 9 or 12 V/mm. The higher field strength
provides a higher EPD efficiency at a certain deposited time (e.g., 10 min). Moreover, the deposited
efficiency increased linearly with deposited time increasing from 0 to Tc (the critical time between linear
and non-linear EPD dynamic in the critical region (black circle)) in Figure 2a,b, which is consistent
with the research of the Zhang group [32]. In addition, Tc decreased with an increase of applied field
strength; that is, Tc for 6 V/mm was larger than Tc for 9 and 12 V/mm, which was primarily due to
the more severe precipitation and collision of particles under higher field strengths. Thus, the EPD
process of Al/MoO3 MIC can be more precisely controlled in the linear control region (t < Tc) in this
study, which is due to the relatively complex relationship of deposited efficiency and EPD time in the
nonlinear variation region for all field strengths. Furthermore, the effect of the distance of electrodes
on the deposited efficiency of the nano-Al/MoO3 MIC is analyzed in Figure 2c. When the solid loading
concentration, EPD time, and applied field strength were set at 0.5 g/L, 8 min, and 12 V (blue line),
respectively, the deposited efficiency increased gradually with the distance of electrodes rising to 1.2
from 0.4 cm. It then decreased slowly, as the distance of electrodes continued to increase. This result is
perhaps caused by the more violent disturbance of particles under a smaller distance of electrodes,
and the higher degree of the settlement of particles under a longer distance of electrodes that leads to a
lower EPD efficiency. Similar change trends were observed at higher field strengths (Figure 2c), which
provides a valuable reference for realizing controllable EPD of different particles.

In addition, the exothermicity of MICs is a key indicator that largely depends on the mass or mole
ratio of fuel (e.g., Al) and oxidizer (e.g., MoO3). Generally, in MIC energetic reactions, the equivalence
ratio (Φ) is defined as the actual ratio of fuel to oxidizer divided by the stoichiometric ratio of fuel to
oxidizer in an energetic reaction, that is Φ = (F/O)actual/(F/O)stoich [26]. For the codeposition process of
the Al and MoO3 particles, the equivalence ratio in the starting suspension (Φs) was adjusted accurately
in weighed samples, and the equivalence ratio in the deposited product (Φd) was determined by EDX
and AAS techniques. Figure 2d displays the Φd of Al and MoO3 particles in the Al/MoO3 MIC chip as a
function of Φs of nano-Al and MoO3 particles in the starting suspension. Clearly, it can be seen that Φd

increased linearly with Φs by EDX and AAS analysis, and the fitted equations were similar (Y = 1.97X
− 1.04, R2 = 992 for EDX analysis, and Y = 2.02X − 0.96, R2 = 998 for AAS analysis). Thus, Φd in the
nano-Al/MoO3 MIC could be adjusted by changing Φs in suspension, which contributes to optimizing
the proportion of components in product, and further developing the exothermic performance of
the product.
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3.2. Characteristics of Nano-Al/MoO3 MIC

XRD analysis was used to investigate the crystal structures of the nano-Al/MoO3 MIC in Figure 3.
It can be clearly seen that two groups of distinct diffraction peaks are marked in good agreement with
that of the standard spectra for pure Al (JCPDS card No. 04-0787; Fm-3m (225)) and MoO3 (JCPDS card
No. 35-0609; Pb nm (62)) on the product, demonstrating the successful co-EPD of the Al and MoO3

particles. In addition, the fact that there are no other clear peaks of Al2O3 and Mo in Figure 3 indicates
the high purity of the product, and that no thermite reactions took place during the EPD process.

The as-obtained nano-Al/MoO3 MIC films via EPD are displayed in Figure 4. Regions of large-scale
local sags, crests, and separations are not seen optically in the target product surface (Figure 4a), which
exhibits significant coating characteristics and uniformity. Clearly, in the FESEM image of product
in Figure 4b, the nano-Al/MoO3 MIC appears to be uniformly distributed, without rare unmixed
zones. The higher-resolution images in Figure 4c indicate that the nano-Al particles were scattered
or distributed randomly in flake-like MoO3, which significantly helps to enlarge the contact areas
of Al and MoO3, and shorten the mass transportation length (MSL) during the thermite exothermic
reaction of nano-Al/MoO3 MIC. Moreover, there were numerous gaps among the particles (Figure 4b,c),
contributing to providing a large number of heat-release channels or multiple spatial streams, and further
improving the exothermic performance of the product [27]. Moreover, the elemental compositions in
the nano-Al/MoO3 MIC were analyzed by the EDX technique, as shown in Figure 4d, where the EDX
spectrum indicates that all expected elements of Al, Mo, and O existed in the energetic film surface,
consistent with the results of the XRD analysis. It is worth noting that the mole ratio of Al, Mo, and O
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was close to 2:1:3 (0.336:0.16:0.50) (seen in Figure 4d and Table S1 in Supporting Information), and the
corresponding reaction mole ratio of Al and MoO3 was close to 2:1, which contributed to realizing a
sufficient aluminothermic reaction (2Al + MoO3→ Al2O3 + Mo + HHeat−release, ∆H = 4698 J/g) [17,33].
In addition, we conducted a comparative study of FESEM mapping and the corresponding results are
similar in three random regions (Table S1), where the mole ratio of aluminum to nickel is close to 1:1,
which indicates the uniform distribution of the product. Moreover, the percentage errors of the mole
ratio of elements are approximate 5% in six random regions, according to both EDX and AAS analysis,
further demonstrating the homogeneously mixed nano-Al/MoO3 MIC obtained by EPD.Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 11 
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Figure 4. (a) Optical and (b,c) typical field emission scanning electron microscope (FESEM) images of
the nano-Al/MoO3 MIC films prepared using electrophoretic deposition (EPD); (d) energy dispersive
X-ray spectroscopy (EDX) spectrum of the product with an inserted table showing the mole content (%)
of all elements.

3.3. Thermal Studies

Exploration of exothermic performance is essential to energetic materials, including MICs [34–37],
and is shown in Figure 5 in detail. Figure 5a displays the DSC data measured from the nano-Al/MoO3

MIC with the Φd of ~1.0 and a low heating rate of 10 K/min. In addition to an unobservable exothermic
peak at ~400 ◦C, probably due to the reaction between Al nano-particles with much smaller-sized
MoO3 particles, there are several observable exothermic peaks in Figure 5a, where the exothermic
peak (green rectangle area and yellow rectangle area) is mainly because of the reaction between Al
particles with smaller-sized MoO3 particles [38], and the latter two exothermic peaks at 703.4 ◦C and
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735.9 ◦C (blue rectangle area) are from the reaction of Al and bigger-sized MoO3 particles, which is
consistent with the results from the Zhu group [15]. In addition, there was also an endothermic peak
(Figure 5a, primrose yellow rectangle area) at ca. 660 ◦C, caused by the melt of metal-Al. After a fitting
calculation, the value of the heat-release of the nano-Al/MoO3 MIC was as high as ~3340 J/g, which
was >70% of the theoretical value, indicating the relatively sufficient thermite reaction. Furthermore,
the effect of the deposited time on the heat-release of the product is analyzed in Figure 5b. There was a
similar trend for different field strengths from 6 to 12 V/mm, that is, the output of heat was almost
stable as the deposited time increased, showing the great controllability of EPD dynamic behaviors of
Al or MoO3 particles in suspension. The heat-release values as functions of Φd and Φs of Al and MoO3

are clearly shown in the 3D histogram (Figure 5c). The heat-release values increased first and then
gradually decreased with Φd of Al and MoO3, and were highly associated with Φs of Al and MoO3 in
the starting suspension. The peak value of the heat release of the nano-Al/MoO3 MIC can be obtained
when Φd of Al and MoO3 was close to 1.0.
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Figure 5. (a) Differential scanning calorimetry (DSC) curve of the obtained nano-Al/MoO3 MIC; (b) the
relationship of heat release and deposited time under different applied electric field strengths; and (c)
3D histogram of heat release as a function of Φd and Φs of Al and MoO3 particles in the product.

The thermite reaction deflagration processes of an electric explosion for the nano-Al/MoO3

MIC chip were realized a self-regulating capacitor charge/discharge initiating device, and recorded
synchronously by a high-speed camera. The detonation schematic diagram is displayed in Figure 6a.
When the ignition circuit was switched on, the energetic target chip was quickly detonated with a
dazzling blaze. The corresponding flame propagation images of the nano-Al/MoO3 MIC chip are
observed in Figure 6b, where the interval time between adjoining images is 0.1 ms. The flame duration
time of the nano-Al/MoO3 MIC chips was >1 ms, and loud sounds during the ignition test indicated
that the thermite reactions were so intense that energy was released quickly [39–42]. In addition,
the observed intense deflagration was in accordance with the DSC results, which provided a facile
route to nano-MIC energetic chips for MEMS application. In addition, the heat-release performance of
MIC chips can be optimized by building a theoretical bridge between the equivalence ratio of oxidant
and reductant in starting suspension (Φs) and target energetic films or initiators (Φd).
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Figure 6. (a) Schematic of the ignition system for the micro nano-Al/MoO3 MIC chip initiator,
and ignition process recorded by a high-speed camera; (b) series of still images taken from a typical
ignition deflagration study of the nano-Al/MoO3 MIC fabricated by EPD process with Φd = 1.0; the time
interval between images is 0.1 ms (tn − tn−1 = 0.1 ms, n ≥ 2).

4. Conclusions

In this study, a novel Al/MoO3 MIC chip initiator was firstly fabricated by a high-efficiency EPD
technique in an optimized mixture dispersant of isopropanol, polyethyleneimine, and benzoic acid at
normal temperature and pressure. The microstructures and chemical compositions of the product were
demonstrated by FESEM, EDX, and XRD. The deposited energetic films exhibited even mixing between
the oxidizer (Al) and reductant (MoO3), contributing to enhancing their exothermic performance.
The EPD dynamic behaviors of nano-Al and MoO3 particles were studied, which can act as a theoretical
bridge for connecting the Φs in starting suspension and Φd in energetic chips. DSC results showed
the apparent exothermic peaks of nano-Al/MoO3 MIC chips, due to the thermite reaction between Al
and MoO3, and the corresponding total heat-release was as high as ca. 3340 J/g when Φd of Al and
MoO3 was close to 1.0. In addition, the Al/MoO3 MIC chip initiator can be successfully ignited with a
typical capacitor charge/discharge ignition device, exhibiting outstanding detonation performance
with a short burst time and a dazzling flame. In short, the design of the Al/MoO3 MIC chip initiator in
this study will provide a universal approach for fabricating other thermite energetic chips with wide
civilian and military applications, especially in micro-initiation or micro-propulsion systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/5/955/s1,
Figure S1: The size specification of the working and counter electrodes used for EPD dynamic research and
ignition test. All yellow rectangle zones are parts of electrodes without touching the optimized suspension., Table
S1: Molar content results of different elements in products by EDX and AAS analysis in three random regions.
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