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Abstract: We study the quantum interference (QI) effects in three-terminal Andreev interferometers
based on polyaromatic hydrocarbons (PAHs) under non-equilibrium conditions. The Andreev
interferometer consists of a PAH coupled to two superconducting and one normal conducting
terminals. We calculate the current measured in the normal lead as well as the current between the
superconducting terminals under non-equilibrium conditions. We show that both the QI arising in the
PAH cores and the bias voltage applied to a normal contact have a fundamental effect on the charge
distribution associated with the Andreev Bound States (ABSs). QI can lead to a peculiar dependence
of the normal current on the superconducting phase difference that was not observed in earlier
studies of mesoscopic Andreev interferometers. We explain our results by an induced asymmetry
in the spatial distribution of the electron- and hole-like quasiparticles. The non-equilibrium charge
occupation induced in the central PAH core can result in a π transition in the current-phase relation
of the supercurrent for large enough applied bias voltage on the normal lead. The asymmetry in the
spatial distribution of the electron- and hole-like quasiparticles might be used to split Cooper pairs
and hence to produce entangled electrons in four terminal setups.

Keywords: superconductivity; molecular electronics; quantum interference; Cooper pair splitting

1. Introduction

Quantum interference (QI) is ubiquitous in nature. Constructive quantum interference (CQI)
leads to the formation of energy levels in atoms or molecules and energy bands in crystals, whereas
destructive quantum interference (DQI) leads to energy gaps in molecules and band gaps in solids.
The energy scale for these QI phenomena can be up to a few eV and therefore these quantum effects
control the properties of molecules and solids at room temperature, for which kBT ≈ 25 meV� 1 eV.
In addition to these high temperature manifestations of QI, many low-temperature interference
phenomena are well known, such as superfluidity and superconductivity, which occur on energy scale
of order a few meV or less.

Investigations of QI in condensed systems are often driven by the desire to harness QI and
deliver useful function. For example, when a molecule is placed into the nanogap between two
metallic electrodes, it is known that electron transport from the source to the drain electrode is
phase coherent at room temperature, provided the length of the molecule is less than approximately
3 nm. Consequently, if the interference pattern created by electronic de Broglie waves passing
through the molecule can be controlled, then useful room-temperature devices such as molecular-scale
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switches, transistors and sensors could be realised. Single-molecule electronics is the sub-field of
nanoelectronics [1–7], which aims to deliver such structures and in pursuing this goal, many groups
have demonstrated that electrons can be injected into (and collected from) the core of a molecule with
atomic accuracy [8–11]. Furthermore, it has been demonstrated that an ability to vary the atomic-scale
connectivity to molecular cores is an effective way of controlling room-temperature QI [12,13]. On the
other hand, at lower temperatures, quantum engineers strive to utilise QI in superconducting structures
such as superconductor quantum interference devices (SQUIDs) and Andreev interferometers,
which rely on controlling the interplay between a superconducting condensate and charge-carrying
quasi-particles [14–22]. In such devices, QI is controlled by the phase of the superconducting order
parameter, which describes a macroscopic collective degree of freedom, which has no counterpart at
room temperature.

In this article, we examine the interplay between the high-energy-scale QI found in molecules and
the low-temperature QI present in superconductors. Our aim is to determine how an ability to control
the connectivity to molecular cores with atomic accuracy can be used to engineer the properties of
Andreev interferometers and SQUIDS.

From the viewpoint of connectivity, a fundamental manifestation of QI is illustrated in Figure 1
top and middle panels, which shows an anthanthrene molecular core (consisting of 6 six-membered
rings) connected by triple bonds to external electrodes. The connectivity of the triple bonds to the core
is fixed by chemical synthesis. Figure 1 shows two examples of molecules with different connectivities.
Following the numbering scheme of the lattice shown at the bottom of Figure 1, molecule 1 has triple
bonds connected to atoms 12 and 3, whereas molecule 2 has triple bonds connected to atoms 9 and 22.
The triple bonds are connected to terminal aryl rings, which in turn are connected to thioacetate anchor
groups, which bind the molecules to source and drain electrodes. Since the triple bonds form weak
links to the central core, it is conceptually convenient to consider the combination of an aryl ring,
anchor group and external electrode as a single “compound electrode”, (coloured blue in Figure 1)
which injects or collects electrons to or from the central core, via the triple bonds. Remarkably, when the
external electrodes are normal (i.e., not superconducting), the room-temperature electrical conductance
of setup 1 is both measured and predicted [23] to be approximately 81 times larger than that of setup 2.
As explained in Reference [23], this conductance ratio is a clear manifestation of room-temperature QI.
From the viewpoint of superconductivity, our aim is to replace one or more of the normal electrodes
by superconducting electrodes and examine how electron transport though such molecular cores is
controlled by a combination of connectivity and by the phase of the superconducting order parameter.

In ballistic normal-superconductor (N-S) hybrid systems the fundamental transport process is
Andreev reflection, whereby an incoming electron is reflected back as a hole at the N-S interface.
A rich set of physical phenomena that follow from this scattering process was realized in Andreev
interferometers, which are devices with two (or more) superconducting and one (or more) normal
leads attached to a central region [14,15]. For example, due to the extraordinary sensitivity of the
Andreev current to the superconducting phase difference, Andreev interferometers may provide a
faster and more precise alternative to superconductor quantum interference devices (SQUIDs) [16] to
measure properties of quantum systems or even detecting Majorana bound states [17]. Importantly, the
presence of a normal lead allows one to change the equilibrium occupation of Andreev bound states
formed in multi-terminal N-S systems. It was suggested that such a non-equilibrium effect can be used
to engineer π-Josephson junctions [18,19], where the fundamental relation Is = Ic sin(δΦ) between
the phase difference δΦ of the order parameters of two superconductors and the supercurrent Is can
be changed to Is = Ic sin(δΦ + π) (Ic is the critical current). This effect has indeed been measured in
diffusive meso-scopic multi-terminal N-S systems [20–22].
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Figure 1. The top and middle panels show molecules 1 and 2, with connectivities 12, 3 and 9, 22 to
the anthanthrene molecular core. The lower panel shows an Andreev interferometer consisting of an
anthanthrene molecule, two superconducting leads and one normal lead. The “sites” of the associated
tight-binding model represent pz orbitals of the anthanthrene molecule and are labelled according
to the figure. The coupling of the molecule to the normal (superconducting) lead is denoted by WN

(WS), for details see the text. The superconducting leads are characterized by a superconducting order
parameter ∆eiφ1 and ∆eiφ2 . The transport processes responsible for the conventional interference effect
are indicated by solid lines for the electron-like (blue) and hole-like (red) propagation.

Recently, the superconducting properties of molecular-scale junctions have also started to
attract experimental [24–27] as well as theoretical [28–30] interest. In Reference [30] we discussed
the equilibrium properties of various multiterminal N-S systems where, in particular, QI effects
in the core of the molecule play an important role. Here we show how such QI effects and
non-equilibrium charge injection can lead to interesting effects in molecular Andreev interferometers.
Namely, the non-equilibrium occupation of the Andreev bound states (ABSs) which are formed in
superconductor-molecule-superconductor (S-M-S′) Josephson junctions can be driven via the third,
normal lead attached to the Josephson junction, thus realizing a non-equilibrium N-M-SS′ system.
As already mentioned, one of the key ingredients in our work is QI which arises in the molecular
core of N-M-SS′ systems that are based on polyaromatic hydrocarbons (PAHs) [12,13,23]. We find that
in these systems one may observe effects that were not attainable is previously studied mesoscopic
Andreev interferometers. Based on the “magic number theory of connectivity in References [12,23,30]
we show that conductive channels through the molecular core can give rise to interfering paths
contributing to the total ABS wave function with the same or with an opposite sign for electron and
hole-like degrees of freedom. This rich set of interfering paths is provided by the conductive channels
opened by the insertion of a substituent heteroatom into the molecular core [13]. Under specific
circumstances the interplay of the interfering amplitudes may even lead to the total suppression of the
electron-like (or hole-like) degrees of freedom on certain molecular sites and, at the same time, to a
constructive interference for the hole-like (or electron-like) charge carriers. Since the charge current
through the normal lead is closely tied to the Andreev reflection process, its magnitude is highly
influenced by the density of both the electron- and hole-like particles in the vicinity of the normal
contact. Thus, by measuring the charge current through the normal lead one can also probe the
electron-hole separation in the molecular junction.

In what follows, we first describe the main characteristics of interference effects in Andreev
interferometers based on PAHs [12,13,23] in equilibrium conditions. Our choice is justified by the
peculiar mid-gap transport properties of these molecules accompanied by inner quantum interference
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effects within the core of the molecule [12,13,30–42]. We outline an illustrative connectivity-based
theory that can be used to understand the current-phase relations at non-equilibrium conditions as
well. Then we present our numerical results obtained for the normal and for the supercurrent at
finite bias applied on the normal lead. We interpret our results in terms of connectivity arguments.
We examine how the electrical properties of the Andreev interferometers would be influenced by
tuning the inner QI effects of the molecular core. We demonstrate how QI can lead to a suppression of
the normal current which is a clear evidence of the spatial separation of the electron- and hole-like
particles. Finally, we present a summary of our most important results and give a brief outlook.

2. Results

From a conceptual viewpoint the key ingredients of our theoretical model are based on weak
coupling, connectivity-driven, mid-gap transport and phase coherence. A detailed explanation of these
assumptions is given in References [12,23,30]. Here we only mention that the term “weak coupling”
means that the central aromatic molecule is weakly coupled to the contacts resulting in a small level
broadening and self energy correction to the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) levels compared to the HOMO-LUMO gap. Thus, provided the
Fermi level lies within the gap (resulting in near mid-gap transport), the quantum interference effects in
the phase coherent transport processes are characterized by the properties of the molecular core alone.
(The Coulomb interactions can be included at the level of a self-consistent mean field description such
as Hartree, or Hartree-Fock.) Taken together, these conditions ensure that when computing the Green’s
function of the core, the contribution of the electrodes can be ignored. Consequently, the probability of
the propagation of the charged particles between sites k and l of the molecule is described by the “magic
number” matrix element [12,23,30] Mkl ∼ gkl , where g(EF) = (EF − Hmol)

−1 is the Green’s function
of the isolated molecule described by Hamiltonian Hmol. In particular, the electrical conductance
corresponding to connectivity k, l is proportional to |Mkl |2. In the simplest theoretical description an
integer valued connectivity matrix Hmol captures the complexity of the inner CQI and DQI effects
within the core of the molecule and when EF coincides with the middle of the HOMO-LUMO gap,
the resulting magic number matrix Mkl is simply a table of integers. In particular, for the bipartite
lattice of Figure 1, when EF coincides with the middle of the HOMO-LUMO gap, destructive quantum
interference arises between sites k and l that have the same parity (i.e., both are odd or both are even)
and therefore the matrix element Mkl is zero. In contrast, when the sites k and l have different parity,
Mkl may be finite giving a non-zero propagation amplitude of the charged particles between sites k
and l. For the anthanthrene core of Figure 1, M3,12 = 9 and M9,22 = 1. Hence their conductance ratio is
predicted to be |M3,12|2/|M9,22|2 = 81, which is close to the measured value of the conductance ratio,
both for single molecules and for self-assembled monolayers [12,23,43].

2.1. Theoretical Background: Equilibrium Molecular Andreev Interferometers

In order to understand the unconventional non-equilibrium Andreev interference effect described
in the next sections, following Reference [30] we first give a brief overview of the considerations that
explain the interference pattern in the current IN flowing through the normal lead as a function of
the superconducting phase difference δΦ = φ1 − φ2 between the S1 and S2 leads (see Figure 1) in
equilibrium. Under equilibrium conditions, the limit eV → 0 is understood, where V is the applied bias
on lead N with respect to the chemical potential of the superconductors. Note that the imposition of a
phase difference δΦ also generates a Josephson current Is flowing between the superconducting leads.
Experimentally, as shown in References [44,45], δΦ can be controlled, thus allowing the measurement
of the current-phase relation (CPR) of the supercurrent Is and the phase dependence of IN .

Let us investigate IN in a device consisting of an anthanthrene central molecular core, as shown
in Figure 1. The δΦ dependence of IN can be understood as a result of an interference effect between
the possible transport paths of electrons and holes.
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The arms of the interferometer are formed by the trajectories N → mol→ S1→ mol→ N and
N → mol→ S2→ mol→ N. Let us consider the setup in which the normal lead N is attached to site
labeled by 22, and the superconducting leads S1 and S2 are attached to sites 9 and 15, respectively
and examine the transmission amplitude t9,22 related to the process N → mol→ S1→ mol→ N.
Since the normal reflection on the superconductors does not give a contribution to the charge
current, only Andreev reflection [46] can cause a net charge current. During Andreev reflection,
an incoming electron-like quasiparticle is converted into a hole-like quasiparticle and vice versa at the
normal-superconductor interface. Due to the Andreev reflection, an extra e−iφ1 phase factor multiplies
the transmission amplitude (φ1 is the phase of the superconductor S1). Then, the reflected hole-like
state propagates back to the normal lead, a process which can be described by −M9,22 according to the
Bogolioubov-de Gennes equation [30]. Based on these considerations, the transmission amplitude can
be written in the following form

t9,22 ∼ −M2
9,22e−iφ1 . (1)

Similar considerations can be made for the transmission amplitude t15,22. Since there are two
interfering arms in the interferometer, one needs to sum up both transmission amplitudes associated
with the two propagation paths to calculate the total transmission amplitude:

ttot ∼ t9,22 + t15,22 = −M2
9,22e−iφ1 −M2

15,22e−iφ2 , (2)

From this expression the Andreev current IN at small bias voltage (eV � ∆) can be
approximated as:

IN ∼ |ttot|2 = M4
9,22 + M4

15,22 + 2 ·M2
9,22 ·M2

15,22 · cos(φ1 − φ2). (3)

As one can see, the Andreev current IN is indeed expected to show a simple dependence on the
superconducting phase difference δΦ = φ1 − φ2 with a minimum at π. Regarding the supercurrent Is

flowing between S1 and S2, in first approximation, this can be understood as a consequence of Andreev
bound states (ABS), although a continuum of unbound states can also add a finite contribution [47].

2.2. Non-Equilibrium Numerical Calculations

To avoid time-dependent order parameter phases varying at the Josephson frequency, we assume
that the superconductors S1 and S2 share a common condensate chemical potential µ. A finite bias
voltage V (with respect to µ) can be then applied to the normal lead. This bias voltage will affect both
the normal current IN and, by changing the equilibrium occupation of the ABSs, the supercurrent Is

as well.
In order to describe the transport properties at finite bias voltage one has to use a theoretical

framework capable of describing non-equilibrium transport processes. We calculate the currents IN
and Is = (IS1 − IS2)/2 by using a tight binding approach and the Keldysh non-equilibrium Green’s
function techniques [48–50]:

IN(Si)
= −2e

h
Re
[∫

dE Tr
(

τ3ΓN(Si)
G<(E)

)]
, (4)

with ΓN(Si)
being the coupling from the molecule to the normal (superconducting) lead labeled by

N (Si) including the electron-hole degrees of freedom and τ3 is the third Pauli matrix acting on the
electron-hole space. The current IN(Si)

describes the current flowing through lead N (Si) into the central
molecule. In the steady state limit the currents flowing through the individual leads satisfy the charge
conservation rule IN + IS1 + IS2 = 0 leading to two independent currents IN and Is characterizing
the electrical properties of the junction. Finally, the lesser Green’s function G< in Equation (4) can be
calculated within the Keldysh non-equilibrium framework using the Keldysh equation (see details in
the Appandix B). The calculations were performed using the tight-binding framework implemented
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in the EQuUs [51] package. The relevant electronic states in the molecular core were described by
a single orbital tight-binding model where the nearest neighbor sites are connected by a hopping
amplitude γ0. As shown in Figure 1, the hopping amplitude between the molecule and the normal
N (superconducting S1, S2) lead is given by WN (WS1, WS2). In our calculations, unless indicated
otherwise, we used WN = 0.1γ0 and WS = 0.3γ0. The normal and superconducting contacts were
modeled by a one-dimensional tight-binding chain. The magnitude of the superconducting order
parameter in the leads S1 and S2 was ∆ = 3× 10−3γ0. The results that we are going to discuss do
not depend on the actual value of γ0 and ∆. This simple model is justified by previous studies of
connectivity driven transport processes through PAH molecules [12,23,30]. Following these works,
our aim is to highlight the role of connectivity in the transport properties of these molecular cores
leading to new interference phenomena. We give the remaining details of the tight binding-model
used in our calculations in Appendix A.

2.3. Non-Equilibrium Molecular Andreev Interferometers

As a first example of non-equilibrium effects in Andreev-interferometers it is instructive to
consider the system shown in Figure 2. With respect to Figure 1, we changed the connecting sites of the
leads in order to “disarm” one of the interfering arms. This can be achieved by choosing connecting
sites such that the magic number matrix elements between the sites connected to the normal lead and
to one of the superconducting leads becomes zero, as shown in Figure 2. Therefore one may expect
IN to be independent of the superconducting phase. Note, however, that the magic number M6,9

between the superconducting leads is finite. Therefore, as we will show later, an ABSs is formed in this
system and it has an important effect on IN . The results for δΦ and eV dependence of IN can be seen in
Figure 3a. The current IN remains very small for applied voltages eV � ∆ on the normal lead. As eV
is increased, a finite IN starts to flow, but in contrast to the ∼cos δΦ dependence given in Equation (3),
IN exhibits a maximum at superconducting phase difference δΦ = π.

These results can be explained by the effect of an ABS. As pointed out in earlier studies on
multiterminal normal-superconductor mesoscopic systems [18,19], the voltage eV sets the effective
electrochemical potential for the ABSs and those with energy En,ABS(δΦ) ≤ eV are filled. The ABS
energy En,ABS(δΦ) depends on the phase difference δΦ. A change in the occupation of the ABSs directly
affects IS1 and IS2 and therefore the current distribution in the Andreev-interferometer junction will
depend on both the voltage eV and on the phase difference δΦ. To illustrate these effects we show
the supercurrent Is = (IS1 − IS2)/2 in Figure 3b. As eV is increased, a deviation from the simple
Is = Ic sin(δΦ) relation can be clearly seen and for eV > ∆ a π-transition takes place in Is, similarly to
what was obtained in References [18,19].

Figure 2. Anthanthrene molecule attached to two superconductive and one normal lead.
The connectivity matrix element between the sites 6 and 22 is zero, while the connectivity between
sites 9 and 22 and between sites 9 and 6 is finite. Solid lines indicate the propagation of the electron-like
(blue) and hole-like (red) quasiparticles.



Nanomaterials 2020, 10, 1033 7 of 24

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 -3

0 0.5 1 1.5 2
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Figure 3. The currents IN (a) and Is (b) as a function of the phase difference δΦ between the
superconducting leads for the system depicted in Figure 2 for several bias voltage eV. (a) a robust
peak in IN appears around the phase the difference π when the bias voltage is comparable to the
superconducting gap ∆. (b) the supercurrent shows a π transition for eV > ∆.

One can give a heuristic argument of why the presence of ABSs can affect IN . This argument
draws on analogies with the discussion given for the equilibrium case, that is, it is based on interfering
quasiparticle trajectories. Although in the system depicted in Figure 2 the connectivity between the
normal lead and the superconducting lead S2 is zero, the charge carriers can still probe the phase of
lead S2 when they propagate along a path that also includes an Andreev reflection from the lead S1.
Namely, as illustrated in Figure 2, both M22,9 and M6,9 are finite. We denote the amplitude of such
propagation by t(9)6,22, where the upper index (9) indicates that the propagation between the sites 6 and

22 takes place via site the 9. To approximate the amplitude t(9)6,22 one can make similar considerations as
in the previous section. Thus,

t(9)6,22 ∼ (−M22,9) · e−iφ1 ·M9,6 · eiφ2 · (−M6,9) · e−iφ1 ·M9,22. (5)

This amplitude describes a (a) propagation from the normal lead to the superconducting electrode
S1 (M9,22), (b) Andreev reflection from electrode S1 (e−iφ1), (c) propagation of the hole-like state
from contact S1 to S2 (−M6,9), (d) Andreev reflection of the hole-like particle on the contact S2 (eiφ2),
(e) electron-like propagation between the superconducting electrodes S1 and S2 (M9,6), (f) a third
Andreev reflection on the superconducting electrode S1 (e−iφ1), (g) and a hole-like propagation from
the contact S1 to the normal lead (−M22,9). Finally, we also take into account in our minimal model the
amplitude t9,22 describing the direct propagation between the normal lead and the lead S1 according
to Equation (1). The observed interference effect can be explained as the interplay between these
two amplitudes:

IN ∼ |t9,22 + t(9)6,22|
2 = M4

9,22 ·
(

1 + M4
9,6 − 2 ·M2

9,6 · cos(φ1 − φ2)
)

. (6)

The normal current IN in Equation (6) has a maximum at phase difference φ1−φ2 = π. The minus
sign appearing in front of the cos(φ1 − φ2) term in Equation (6) is due to the peculiar properties of
the Bogolioubov-de Gennes quasiparticles. Namely, the amplitude t(9)6,22 contains one more hole-like
propagation compared to the amplitude t9,22, which brings in an extra minus sign needed for the
formation of the unconventional interference effect. Note, that this argument does not explain why the
increase in IN appears only above a certain bias voltage. Moreover, the transport process associated
to the amplitude t(9)6,22 contains four more tunnelings between the superconducting leads and the
molecular core compared to the amplitude t9,22. Thus, the amplitude t9,22 might be expected to be
much larger than the amplitude t(9)6,22 which would suppress the interference effect between these two
interfering paths.

The role of the ABSs can be shown explicitly by using Green’s function theory to calculate
the differential conductance dIN

deV . The details of this calculation are presented in the Appendix B.
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For simplicity, let us assume that there is only one ABS in the system. (The general case of more than
one ABS is also discussed in the Appendix B). Then the differential conductance can be approximated
as [52]

dIN
deV

≈ 16e
h

Γe
ABSΓh

ABS
(eV − EABS)2 + Γ2

ABS
, (7)

where ΓABS = Γe
ABS + Γh

ABS is the level broadening of the ABS due to the presence of the normal lead,
Γe

ABS = 〈ABS, e|W†
N Im(ge

N)WN |ABS, e〉 with WN being the coupling between the normal lead and
the central molecule, W†

N is the Hermitian conjugate of WN , ge
N stands for the electron-like block of

the surface Green’s function of the normal contact evaluated at energy EABS, Im(. . . ) denotes the
imaginary part of a function, and |ABS, e〉 represents the electron-like components of the wave function
of the ABS. The definition of Γh

ABS is analogous to Γe
ABS involving the hole-like degrees of freedom

instead of the electron-like components. According to Equation (7), the ABS leads to a resonant peak
of Lorentzian lineshape in the differential conductance for eV ≈ EABS(δΦ). The half-width of the
resonance is determined by the finite lifetime of the ABS which is due to the coupling to the normal
lead given by Γe

ABS and Γh
ABS. We note that a similar result can be obtained for a system hosting

multiple ABSs. The total differential conductance in this case would be a sum of resonances centered
on the energies of the individual ABSs’. However, the “cross-talk” between the ABSs has an additional
influence on the shape of the resonances, that is, they start to deviate from the regular Lorentzian
shape. (For details see the Appendix B.)

Looking back to Equation (6), one may now say that the interfering amplitude t(9)6,22 can be increased
due to the Fabry-Perot-like resonant oscillations of the charged particles between the superconducting
contacts. These oscillations lead to the formation of ABSs of finite lifetime, which, in turn, affect the
current IN at finite eV, as indicated by Equation (7).

The ABSs can be visualized by calculating the density of states of the junction (see Appendix C for
details). The results of such calculations for the system in Figure 2 are shown in Figure 4. In Figure 4a,b
we show the density of states for two different coupling WN . The large values of the density of states
(bright region) indicate the ABS. In this particular case, for eV = 0 and zero temperature there is only
one occupied ABS (at energy −E, not shown) and one unoccupied ABS [at energy E, Figure 4a,b].
By applying a finite eV > 0 the occupation of these ABSs can be changed, leading to the peculiar
dependence of both IN and Is on δΦ in Figure 3 that we noted earlier. Because of the normal lead,
the ABSs have a finite lifetime, which is determined by the escape rate of the particles through the
normal lead. Therefore, the ABS lifetime (and consequently the width of the resonant peaks in the
differential conductance) is expected to be sensitive to the coupling between the normal lead and the
central molecule. This can be clearly seen in Figure 4c,d, where the peak of the differential conductance
calculated for WN = 0.1γ0 is considerably narrower than the peak calculated for WN = 0.3γ0. Notice,
that for higher values of WN the resonant peak starts to deviate from the Lorentzian shape. This is
because by increasing the coupling between the contacts and the central molecule one can no longer
neglect the energy dependence of the Green’s function of the normal contact in the calculation of Γe

ABS
and Γh

ABS, see Appendix B for details. Since the ABSs energy EABS depends on the phase difference
δΦ, the peaks in dIN

deV are also sensitive to the superconducting phase difference. This is also shown in
Figure 4c,d. Therefore, by measuring dIN

deV as a function of δΦ one may obtain spectroscopic information
about the ABSs [18].

The role of ABSs and QI in the molecular core can be further illustrated by studying the finite bias
properties of the system shown already in Figure 1, bottom panel. For this configuration of the leads
the magic number vanishes between the two sites where the superconducting electrodes are attached.
One may therefore expect that there is no ABS present in the system. According to our calculations this
is not exactly the case: one can find an ABS whose energy is very close to the value of the pair potential
∆ in the leads, but it is nearly independent of δΦ and therefore it can carry only a small supercurrent.
This explains that for a finite bias eV the δΦ dependence of IN remains qualitatively the same as in
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the zero bias case discussed in Equation (1)–(3) and shows a minimum at δΦ = π for all bias voltages
(Figure 5a).
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Figure 4. (a,b) Density of states of the molecular junction shown in Figure 2 for two different coupling
WN of the normal lead to the molecule. The bright areas indicate the dispersion of the Andreev Bound
State (ABS) as a function of δΦ. The ABS energy level is broadened by increasing WN . (c) A resonance
occurs in the differential conductance when the bias voltage eV is close to the energy En(δΦ) of the
ABS in (a). (d) As the ABS is broadened, the width of the resonance broadens as well.
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Figure 5. The currents IN (a) and Is (b) as a function of the phase difference δΦ between the
superconducting leads for the system depicted in Figure 1 for several bias voltage eV. (a) the Andreev
current IN shows a minimum at δΦ = π. (b) The current-phase dependence of supercurrent is
Is ∝ sin δΦ.

The supercurrent Is shows the conventional ∝ sin δΦ dependence for eV < ∆ [Figure 5b].
By comparing Figure 5a,b, one can see that although a small Is can flow for finite eV, the critical
current Ic is smaller than IN . This is the opposite of what we found in the previous case [Figure 3].
Overall, one may also notice that both IN and Ic are much smaller than previously, c.f. Figures 3 and 5.

These results underpin the importance of ABSs in Andreev interferometers and are also a
consequence of mid-gap transport. Namely, the propagation amplitude described by the Green’s
function elements decay with the energy difference between the chemical potential and the energy of
the eigenstates. Since the energy levels of the molecule are much further from the chemical potential
than the ABS levels, their contribution to the Green’s function elements will be also much smaller
than the contribution of the ABSs. Thus, in the mid-gap energy regime, the transport processes would
indeed be dominated by the interference effects related to the ABSs.

We now discuss the most general situation, where ABSs can be found in the system and, in contrast
with the case in Figure 1, the connectivity from the normal lead to both superconducting terminal is
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finite. In what follows we shall examine the unconventional interference effects as the connectivity in
the interferometer is changed. We consider a setup similar to the one shown in Figure 1 and tune the
asymmetry of the molecular interferometer by inserting a substitutional heteroatom into the molecular
core [13], that is, a carbon atom is replaced by a substituent heteroatom, as indicated schematically in
Figure 6a. Due to the presence of the heteroatom, new conductive channels open up in the molecular
core that were originally closed via destructive QI effects. In our theoretical model we account for the
presence of a substitutional heteroatom by a modified on-site energy on a specific site in the molecule.
By changing for example, the on-site energy ε3 in the tight-binding Hamiltonian of the molecular
core [see Figure 6a], the normal conductance between sites labeled by even numbers also becomes
finite [13]. Assuming that instead of S1 and S2 we have normal conducting leads N1 and N2 as in
Figure 6a, the evolution of the ratio of the zero-bias normal conductances σN,N1 and σN,N2 as a function
of the on-site energy ε3 is demonstrated in Figure 6b. As one can see, by varying ε3 one can gradually
open a conductive channel between leads N and N2.

Figure 6. (a) Schematics of Anthanthrene molecule with a heteroatom denoted by green. (b) Ratio
of the normal conductance between contacts N − N2 and N − N1 as a function of the on-site energy
ε3 in Figure 6. At ε3 = 0 the conductance σN,N1 between contacts N and N1 is much larger than the
conductance σN,N2 between contacts N and N2, in agreement with References [12,23]. For finite ε3

the conductance σN,N2 increases and can be comparable to σN,N1. (c) Andreev interferometer setup
obtained by replacing the normal leads N1 and N2 in (a) by superconducting ones S1 and S2.

We now consider the finite bias properties of the Andreev interferometer shown in Figure 6c,
which can be obtained be replacing the normal leads N1 and N2 by superconducting ones S1 and
S2 in Figure 6a. First, we calculate IN for several values of ε3 and fixed eV = 0.95∆. Remarkably,
as shown in Figure 7a, IN takes on a hat-like shape with two maxima around the phase difference π for
such values of ε3, where σN,N1 and σN,N2 are comparable. This is clearly different from the results in
Figure 3a and we are not aware of similar results in mesoscopic NS systems. Regarding Is [Figure 7b],
for smaller values of ε3 where σN,N1 � σN,N2, it is qualitatively similar to the results shown in
Figure 3b. On the other hand, the current-phase relation of Is becomes similar to the conventional Is =

Ic sin δΦ as the conductive channel gradually opens between N and S2 and consequently σN,N1 ≈ σN,N2
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[see for example, the case ε3 = −0.50γ0 in Figure 7b]. Note that in this case the Is(δΦ) dependence for
δΦ ≈ π is different from the corresponding eV = 0.94∆ result shown in Figure 3b.
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Figure 7. The currents (a) IN and (b) Is (b) as a function of the phase difference δΦ between the
superconducting leads for the system depicted in Figure 6a for several values of the on-site energy
ε3 and fixed bias eV = 0.95∆. IN starts to show a double peak structure as a function of δΦ for
ε3 ≈ −0.20γ0. (c) IN and (d) Is as a function of the bias voltage eV for ε3 = −0.50γ0.

In Figure 7c,d we show IN and Is, respectively, as a function of δΦ for several biases eV. Here we
fixed ε3 = −0.50γ0, that is, σN,N1 ≈ σN,N2. As one can see, for small eV, when the occupation of the
ABS is not yet modified, IN shows qualitatively the same behavior as in Figure 5a, that is, when there
was no current-carrying ABS in the system. For larger eV, however, there is a clear difference with
respect to both Figures 3a and 5a, since IN adopts a hat-like dependence on δΦ. The non-equilibrium
population of the ABSs also affects Is [see Figure 7d] which starts to deviate from the ∝ sin δΦ
dependence for eV > 0.95∆.

According to our calculations the presence of a heteroatom does not modify the ABS spectrum
significantly [Figure 8a]. As shown in Figure 8b, when IN nearly vanishes for ε3 = −0.50γ0, δΦ = π

[Figure 7a], the differential conductance dIN
deV vanishes, too. According to Equation (7), the vanishing of

dIN
deV can be explained only if the coupling between the normal lead and the ABS vanishes.

Therefore we turn our attention to the electron- and hole-like broadening terms Γe
n and Γh

n in the
numerator of Equation (7). In Figure 8c,d we show the local density of states (LDOS) on the molecular
site connected to the normal contact separately for the electron- and hole-like degrees of freedom.
Note that Γe

n and Γh
n are proportional to the corresponding LDOS. As one can see, the electron-like

component of the LDOS becomes highly suppressed at phase difference δΦ = π, while the hole-like
components has a maximum there. In turn, we found that on other sites of the molecule the hole-like
component of the LDOS can be suppressed and the electron-like LDOS enhanced (an example is shown
in Appendix D).
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Figure 8. (a) The density of states of the ABS for the case shown in Figure 6c. (b) The differential
conductance corresponding to (a). The local density of states for electron (c) and hole (d) quasiparticles
as a function of δΦ. In these calculations we used ε3 = −0.50γ0.

The surprising result in Figure 8c,d can be understood as a peculiar interference effect that
acts in a different way on the electron- and the hole-like particles. (Note, that due to electron-hole
symmetry, the same feature can be observed for negative energies with a constructive interference
in the electron-like part of the LDOS and with a destructive interference in the hole-like part of the
LDOS.) One can give the following simple argument in terms of new quasiparticle paths. In Figure 9
we show two quasiparticle trajectories. The first trajectory, shown in Figure 9a, describes the process
N → S2→ S1→ N and the last segment S1→ N is made possible by the fact that the substitutional
heteroatom opened a new conductive channel. Using a similar argument as in the case of Equation (5),
one can argue that the amplitude of the path contributing to the electron-like part of the wave function
can be expressed as

te
odd ∼ MN,S1 · eiφ1 · (−MS1,S2) · e−iφ2 ·MS2,N

∼ −MN,S1 ·MS1,S2 ·MS2,Nei(φ1−φ2). (8)

Since te
odd contains an odd number of propagations through the molecule, and the sign of the

propagation depends on whether one considers electron- or hole-like particles, the amplitude th
odd

contributing to the hole-like component of the wave function would differ by a minus sign compared to
te
odd. Now consider the process N → S2→ S1→ S2⇒ N depicted in Figure 9b. The last propagation

indicated by S2 ⇒ N describes a normal reflection (without electron-hole conversion) at the site
connected to S2 and a forthcoming propagation to the normal contact. (Since we are working in the
weak coupling limit, the normal reflection at sites connected to the contacts has a finite probability.)
The amplitude corresponding to this path can be expressed as follows:

te
even ∼ MN,S2 ·MS2,S1 · eiφ1 · (−MS1,S2) · e−iφ2 ·MS2,N

∼ −M2
N,S2 ·M2

S1,S2 · ei(φ1−φ2). (9)

Since te
even depends on the square of the connectivity matrix elements, the corresponding hole-like

amplitude th
even would have the same sign as te

even. One can see that because of the sign difference,
there is a destructive interference in total amplitude te = te

even + te
odd and a constructive one in

th = th
even + th

odd. This example shows how differences can appear in the processes that determine
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the electron-like and the hole-like LDOS. Note that, strictly speaking, in the calculation of te and th

one would need to take into account all possible scattering paths and not only those discussed above.
We expect, however, that the described interference effect would not be affected significantly.

Figure 9. (a) An example for interfering paths having an amplitude of opposite sign for the electron- and
hole-like particles. These kinds of paths have an odd number of propagation through the molecular
core. (b) A representative of trajectories consisting of even number of propagations through the
molecular core. The amplitude of these kinds of trajectories have the same sign for the electron- and
hole-like quasiparticles.

We also mention that according to our numerical results the interference effect can be swapped
between the electron- and hole-like components by changing the sign of the on-site energy ε3 of the
heteroatom. According Equation (8) of Reference [13] the connectivity matrix element MN,S1 can
change a sign for sufficiently large heteroatom on-site energy. Consequently, te

odd would also change
sign resulting in a constructive interference for the electron-like and destructive interference for the
hole-like components in the LDOS.

Opening of new conductance channels can affect the properties of the molecular Andreev
interferometer not only in the case discussed in Figures 6 and 7, where the conductance between
the leads N and S1 was tuned. As noted earlier for the system in Figure 1, for this configuration of
the leads the connectivity matrix element is zero between the two sites where the superconducting
electrodes are attached. However, this connectivity matrix element can also be made finite by adding a
heteroatom as indicated in Figure 10a. This means changing the onsite energy ε12 in the tight-binding
Hamiltonian of the molecular core. We found that the dependence of the supercurrent on ε12 and eV
is qualitatively similar to the behavior in Figure 7b,c. Therefore we only show the calculations for
IN in Figure 10b. As the connectivity grows for larger values of ε12, the δΦ dependence of IN also
undergoes a drastic change and, interestingly, adopts a qualitatively similar behavior to the one shown
in Figure 7a, that is, there are two maxima in the current around δΦ = π.
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Figure 10. (a) Anthanthrene molecule with a heteroatom (denoted by green) and the same configuration
of leads as in Figure 1. (b) The normal current IN as a function of the phase difference δΦ between the
superconducting leads for the setup in (a).

3. Conclusions

In this article, we have investigated the interplay between two quantum interference phenomena
that take place on hugely different energy scales; QI within molecules, which takes place on the scale of
electron volts and QI associated with superconductivity, which takes place on the scale of milli-electron
volts. We studied the interplay between connectivity-driven QI in molecular cores and non-equilibrium
charge distribution in three-terminal Andreev interferometers based on PAH molecules. We showed
that QI determines certain fundamental properties of the ABS in the system, while their energies
can be tuned by the phase difference between the superconducting probes. Consequently, QI and
the non-equilibrium ABS occupation in the molecular core, which can be modified by a bias voltage
applied to the normal lead, affects both the normal current and the supercurrent in the system. We gave
a simplified explanation of some of the complicated interference effects in terms of electron and hole
trajectories and point out when such explanation breaks down under non-equilibrium conditions.
We found that the dependence of the normal current on the superconducting phase difference can
exhibit a double-peak structure, while the supercurrent can show a π transition when the bias eV on
the normal lead is larger than the superconducting gap. We also showed that adding a heteroatom to
the PAH core can significantly change the QI and can induce an asymmetry in the spatial distribution
of the electron- and hole-like particles, which has a direct impact on the phase dependence of the
normal current. This indicates that the properties of molecular Andreev interferometers can be tuned
by engineering QI in the molecular core.

For the future one may envisage a system similar to the one shown in Figure 6 but with two
normal leads (N1 and N2) attached to different sites of the molecular core. Assume now that lead N1
would be coupled to a site where, for example, the electron LDOS is enhanced and the hole suppressed,
whereas lead N2 to a site where the opposite is true, that is, the electron LDOS is suppressed and
the hole LDOS is enhanced. Then the so-called non-local Andreev reflection (N1 → N2), where an
incoming electron from lead N1 is Andreev reflected into lead N2, would be enhanced with respect to
local Andreev reflection (N1→ N1) and normal electron transmission (N1→ N2). Therefore, in such
four-terminal device the asymmetry between the electron- and hole-like degrees of freedom on certain
sites of the molecular core could be translated into a spatial separation of electron pairs originating
from the superconducting condensate. This process is called Cooper pair splitting and it provides
entangled electron pairs that may play an important role in quantum information processing. Most of
the proposed Cooper pair splitters to-date relied on Coulomb blockade transport through quantum
dots [53–56], or on peculiar properties of novel low-dimensional materials [57–59]. Our results indicate
that Cooper pair splitting may also be achieved in multi-terminal molecular systems where the spatial
separation of the Cooper pairs would rely on the inner QI effects of the molecule. The detailed study
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of such four-terminal molecular Cooper pair splitters is an interesting problem which we leave to a
future work.
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Abbreviations

The following abbreviations are used in this manuscript:

ABS Andreev Bound States
CQI Constructive Quantum interference
DQI Destructive Quantum interference
LDOS Local density of states
PAH polyaromatic hydrocarbons
QI Quantum interference
SQUID Superconducting quantum interference device

Appendix A. The Tight-Binding Model of the Molecular Junctions

To describe the electrical transport processes in the studied molecular junctions we use a nearest
neighbor tight binding model catching the dynamics of the pz electrons of the molecular core.

The tight binding parameters describing the molecular core are chosen following the philosophy
in References [12,23], where the aim is to highlight the role of connectivity in determining the transport
properties of these molecular cores. For this reason, the hopping integrals γii′ = γ0 are set to unity and
the on-site energies εi are set to zero, see Figure A1. In other words, the unit of energy is the hopping
integral and the site energy is the energy origin. This means that the Hamiltonian of the molecule is
simply a connectivity matrix and therefore all predicted effects are results of the connectivity alone.
Remarkably, as demonstrated in References [12,23], this approach yields the experimentally-measured
conductance ratios of a range of PAHs. The normal and superconducting contacts are modeled
by a one-dimensional tight-binding chain. The transport properties of the junction have a weak
dependence on the actual physical parameters of the leads as far as the leads remains metallic in the
studied energy regime. Thus, we chose the physical parameters of the leads to increase the density
of states in the leads and have the bandwidth of the conductive channel larger than the studied
energy regime. In particular, we set the hopping amplitude in the contacts to 0.05γ0 and the on-site
energy parameter to 0. The superconducting contacts are modeled by an s-type superconducting pair
potential ∆ = 3× 10−3γ0 and the the pair potential is zero everywhere else in the system.
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Figure A1. The tight binding model of the Anthanthrene molecule attached to two superconductive
and one normal lead. The sites in the molecular core represent pz orbitals of the anthanthrene molecule
and are labelled according to the figure. The hopping amplitude between the sites of the molecular
core is denoted by γ0. The normal (in grey) and superconducting (in yellow) contacts are modeled by
one-dimensional conductive channels. The hopping amplitude between the normal (superconducting)
lead and the molecular core is given by WN (WS).

As we explained in the main text, we tuned the transport properties of the molecular core by
inserting a substitutional heteroatom into the molecular core. According to Reference [13], the presence
of the heteroatom have a strong influence on the inner quantum interference effects in the molecular
core, including the possibility that new conductive channels open up in the molecular core. In our
theoretical model we account for the presence of a substitutional heteroatom by a modified on-site
energy on a specific site in the molecule, see also Figure A1.

Appendix B. Theoretical Background to Calculate the Differential Conductance

In this section we give the technical details to calculate and analyze the differential conductance
on the normal lead connected to an Andreev interferometer. The aim of this section is twofold.
Firstly we obtain a closed formula which can be evaluated numerically. Secondly, we answer the
questions raised in the discussion of the results in Figure 3 of the main text. Namely, the reported
unconventional interference effect is manifested only above a certain bias voltage applied on the
normal lead. Secondly, the amplitude of the interfering path N → mol → S2 → mol → S1 →
mol → S2 → mol → N depicted in Figure 3 of the main text is expected to be much smaller than
the amplitude of the interfering path N → mol → S2 → mol → N, yet the resulting interference
pattern in the Andreev current seem to be quite robust (see Figure 3 in the main text). (The interfering
path N → mol → S2 → mol → S1 → mol → S2 → mol → N depicted in Figure 3 of the main text
involves four extra tunnelings between the leads and the central molecule compared to the interfering
path N → mol→ S2→ mol→ N.)

The Andreev current can be evaluated using Equation (4) of the main text. In this equation the
lesser Green’s function G< can be calculated within the Keldysh non-equilibrium framework using
the Keldysh equation [48–50,60,61]:

G< = GRΣ<GA, (A1)

where GR(E) [GA(E)] is the retarded [advanced] Green’s function and Σ<(E) = Σ<
S1(E) + Σ<

S2(E) +
Σ<

N(E, V) contains the lesser self energies of the leads.
The differential conductance can be derived from Equation (4) of the main text utilizing the

relation given by Equation (A1):

dIN
deV

= −2e
h

Re
{

d
deV

∫
dE Tr

[
τ3WNGR

(
Σ<

S1 + Σ<
S2 + Σ<

N(eV)

)
GA
]}

(A2)
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This expression can be further simplified by applying the derivation with respect to the bias
voltage V on the integrand. Notice that only the self energy of the normal lead depends on eV. Hence

dIN
deV

= −2e
h

Re
{∫

dE Tr
[

τ3WNGR d
deV

Σ<
N(E, eV)GA

]}
(A3)

Furthermore, the lesser self energy Σ<
N(E, eV) depends on the bias voltage via the thermal

occupation number. In the electron-hole space the lesser self energy can be given as [48]

Σ<
N =

(
fe(ΣA

N,e − ΣR
N,e) 0

0 fh(ΣA
N,h − ΣR

N,h)

)
(A4)

=

 fe

((
gR

N,e

)−1
−
(

gA
N,e

)−1
)

0

0 fh

((
gR

N,h

)−1
−
(

gA
N,h

)−1
)
 , (A5)

where fe = f (E− eV) [ fh = f (E + eV)] is the thermal occupation number for the electrons [holes]
given by the Fermi-distribution function and ΣR

N,e [ΣA
N,e] and ΣR

N,h [ΣA
N,h] are the retarded [advanced]

self energies of the electron-like and hole-like particles in the normal lead, uncoupled from the rest
of the system. Similarly, gR

N,e/h and gA
N,e/h stand for the retarded and advanced Green’s functions

of the electron/hole-like particles in the normal lead. To calculate the retarded and advanced self
energies and Green’s functions we followed the numerical procedure described in Reference [62]. Also,
we assume the uncoupled leads to be in thermal equilibrium.

For simplicity we will consider the zero temperature limit in our calculations. Consequently,
the derivative of the Fermi distribution function is the Dirac delta function and the integral in
Equation (A3) simplifies to

dIN
dV

= −2e
h

Re

Tr

τ3WNGR(eV)

(gR
N,e(eV)

)−1
−
(

gA
N,e(eV)

)−1
0

0 0

GA(eV)


+

2e
h

Re

Tr

τ3WNGR(−eV)

0 0

0
(

gR
N,h(−eV)

)−1
−
(

gA
N,h(−eV)

)−1

GA(−eV)


. (A6)

As we can see from Equation (A6), the key element to calculate the differential conductance is
the retarded and advanced Green’s functions GR and GA. Equation (A6) then can be directly used to
calculate numerically the differential conductance in the studied three-terminal junctions.

To get further insight into the physics of the transport process we follow the logic of Reference [52]
to evaluate these Green’s functions in terms of the Dyson’s equation. Let us denote the retarded
Green’s function of the unified system of the two superconducting contacts and the central molecular
core by gR

mol. Then the retarded Green’s function of the whole Andreev interferometer can be evaluated
in terms of the Dyson’s equation:

GR =

( (
gR

mol
)−1 −W†

N

−WN
(

gR
N
)−1

)−1

, (A7)

where

gR
N =

(
gR

N,e 0
0 gR

N,h

)
(A8)
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is the Green’s function of the normal lead containing both the electron and hole-like components.
Equation (A7) yields for the individual components of the Green’s function:

GR =

(
GR

mol,mol GR
mol,N

GR
N,mol GR

N,N

)

=

(
gR

mol
(
1−W†

N gR
NWN gR

mol
)−1 gR

mol
(
1−W†

N gR
NWN gR

mol
)−1 W†

N gR
N

gR
N
(
1−WN gR

molW
†
N gR

N
)−1 WN gR

mol gR
N
(
1−WN gR

molW
†
N gR

N
)−1

)
.

(A9)

Considering the rules of the matrix multiplication, and that the only non-zero elements of the
lesser self energy of Equation (A5) are the block diagonal parts related to the leads, in order to
evaluate the differential conductance (A6) it is enough to consider the GR

mol,N block of the retarded
Green’s function and the GA

N,N part of the advanced Green’s function. According to the structure of
Equation (A9) one finds:

GR
N,N = gR

N

∞

∑
n=0

(
WN gR

molW
†
N gR

N

)n
= gR

N + gR
NWN gR

mol

∞

∑
n=0

(
WN gR

molW
†
N gR

N

)n
W†

N gR
N

= gR
N + gR

NWN gR
mol

(
1−W†

N gR
NWN gR

mol

)−1
W†

N gR
N = gR

N + gR
NWNGR

mol,molW
†
N gR

N ,

(A10)

and
GR

mol,N = GR
mol,molW

†
N gR

N . (A11)

We now return to the evaluation of the differential conductance given by Equation (A6).
For simplicity we continue our calculations focusing on the first (electron-like) part of Equation (A6).
(Due to the electron-hole symmetry of the Bogoliubov-de Gennes equations, the hole-like part would
give the same result.) Inserting Equations (A10) and (A11) into Equation (A6) yields:

dIe
N

dV
= −2e

h
Re

Tr

τ3WNGR
mol,N

(gR
N,e

)−1
−
(

gA
N,e

)−1
0

0 0

GA
N,N


= −4e

h
Im

{
Tr

[
τ3WNGR

mol,molW
†
N

(
Im
(

gR
N,e

)
0

0 0

)(
1 + WNGA

mol,molW
†
N gA

N

)]}
.

(A12)

In Equation (A12) we applied the identity gR
N,e − gA

N,e = 2i Im
(

gR
N,e

)
. For simplicity let us

suppose we have only one Andreev bound state (ABS) formed in the superconductor—molecular
core—superconductor (S-mol-S) junction described by the Green’s function gR

mol. In the presence
of the normal lead, the ABSs starts to leak out via the normal lead resulting in the broadening of
the ABS energy levels. Since our main interest are the transport properties close to the mid of the
HOMO-LUMO gap, in the relevant energy regime we do not expect any further bound states in
GR

mol,mol besides the ones corresponding to the ABSs. Thus, we might approximate GR
mol,mol as:

GR
mol,mol(E) ≈ |ABS〉〈ABS|

E− EABS + iΓABS
. (A13)

Here the state |ABS〉 represents the wave function of the ABS in the molecule of energy EABS,
and ΓABS =

〈
ABS

∣∣W†
NIm

(
gR

N
)

WN
∣∣ ABS

〉
is the level broadening originating from the escape rate

of the particles through the normal lead [52]. The mathematical expression for ΓABS calculates the
overlap between the ABS wave function and the self energy of the normal lead. Thus, ΓABS can be
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divided into two distinct terms, one related to the escape rate of the electron-like and the second one
to the escape rate of the hole-like particles. Namely, ΓABS = Γe

ABS + Γh
ABS, where:

Γe
ABS =

〈
ABS

∣∣∣∣∣W†
N

(
Im
(

gR
N,e(EABS)

)
0

0 0

)
WN

∣∣∣∣∣ ABS

〉
, (A14)

and

Γh
ABS =

〈
ABS

∣∣∣∣∣W†
N

(
0 0

0 Im
(

gR
N,h(EABS)

))WN

∣∣∣∣∣ ABS

〉
. (A15)

Using the (A13) expression of GR
mol,mol and the invariance of the Tr(. . . ) function against the cyclic

permutation of its arguments one obtains for the differential conductance:

dIe
N

dV
≈− 4e

h
Im

〈
ABS

∣∣∣∣∣W†
N

(
Im
(

gR
N,e

)
0

0 0

)
WN

∣∣∣∣∣ ABS

〉
eV − EABS + iΓABS

− 4e
h

Im



〈
ABS

∣∣∣∣∣W†
N

(
Im
(

gR
N,e

)
0

0 0

)
WN

∣∣∣∣∣ ABS

〉
eV − EABS + iΓABS

〈
ABS

∣∣W†
N gA

Nτ3WN
∣∣ ABS

〉
eV − EABS − iΓABS


.

(A16)

Now making use of the definition of the broadening parameters Γe
ABS and Γh

ABS we end up with
the following expression for the differential conductance:

dIe
N

dV
≈ 8e

h
Γe

ABSΓh
ABS

(eV − EABS)2 + Γ2
ABS

. (A17)

In the above expression we neglected the energy dependence of the Green’s function of the normal
lead in a ΓABS wide vicinity of the energy EABS. Accounting also for the hole-like part of the differential
conductance (A6) gives an additional factor of two in the final result due to the electron-hole symmetry.
Thus, the total differential conductance would be given by Equation (7) of the main text. In case we
have more than one ABS in the junction, the first term of Equation (A16) would turn into a sum of
Lorentzian resonances, while the second term evolves into a more complex mathematical expression:

−∑
p,q

Im



〈
p

∣∣∣∣∣W†
N

(
Im
(

gR
N,e

)
0

0 0

)
WN

∣∣∣∣∣ q

〉
eV − Ep + iΓpp

〈
q
∣∣W†

N gA
Nτ3WN

∣∣ p
〉

eV − Eq − iΓqq


= Im ∑

p,q

Γpq,e

eV − Ep + iΓpp

Γe
qp − Γh

qp

eV − Eq − iΓqq

(A18)

where |q〉, Eq and Γq represents the wave function, the energy and the broadening of the qth ABS,
and the quantities Γe

qp and Γh
qp are defined similarly to Equations (A14) and (A15), but the scalar

product is taken between wave functions corresponding to different ABSs. Besides regular Lorentzian
resonances [p = q terms of Equation (A18)] we see that the differential conductance is heavily
influenced by the cross-talk of the individual ABSs. Mathematically the product of two fractions on
the right hand side of Equation (A18) can be rewritten to a sum
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Γe
pq

eV − Ep + iΓpp

Γe
qp − Γh

qp

eV − Eq − iΓqq
=

λ

eV − Ep + iΓpp
+

δ

eV − Eq − iΓqq
, (A19)

where λ and δ are in general complex numbers. (Individually both of them have singularity at
eV = (ΓppEq + ΓqqEp)/(Γpp + Γqq), but these singularities cancel each other in the sum of the two
fractions.) Consequently, the imaginary part of these fractions would differ from the regular Lorentzian
function and the total differential conductance in the presence of multiple ABSs would be the sum
of asymmetric Lorentzian resonances centered to the energies of the ABSs. The asymmetry in the
resonances is a signature of the cross-talk between the ABSs.

Resonant Oscillation

As discussed in the main text, we try to explain the unconventional interference pattern by the
interplay of the two paths depicted in Figure 2 of the main text. However the amplitude t9,22 (defined
by Equation (1) of the main text) might be expected to be much larger than the amplitude t(9)6,22 (defined
by Equation (5) of the main text) which would suppress the interference effect between these two
interfering paths.

The physical picture behind the small magnitude of t(9)6,22 relative to t9,22 is associated to the particle
transfer between the two superconducting banks. The four tunneling processes between the molecular
core and the superconducting electrodes significantly decreases the magnitude of the interfering
amplitude t(9)6,22. On the other hand, a resonant oscillation realized by the ABSs overwrites this physical
picture. In this case the charge transport between the superconducting banks becomes resonantly
amplified via the ABS and thus the amplitudes t(9)6,22 and t9,22 becomes comparable. In summary,
for energies close enough to the energy of an ABS the differential conductance shows an interference
effect due to the resonant amplification of the interfering amplitude t(9)6,22, while for other energies the
interference would be suppressed.

Appendix C. Density of States

In this subsection we give the technical details to calculate the density of states of the
three-terminal molecular junction, which can be used to physically interpret the numerical results
obtained by Equation (4) of the main text and by Equation (A6). We calculate the density of states ρ

from the equilibrium Green’s function of the three-terminal molecular junction labeled by GR
mol,mol

in the calculations above. To be precise, GR
mol,mol labels only that block of the whole Green’s function

which contains only the molecular degrees of freedom. Then the density of states can be defined as:

ρ(E) = − 1
π

Tr
[
Im
(

GR
mol,mol(E)

)]
. (A20)

As for the differential conductance, GR
mol,mol can be calculated via the Dyson’s Equation (A7)

which is evaluated using the Eötvös Quantum Utilities (EQuUs) [51] software package.

Appendix D. Comparison of the Local Density of States on Two Molecular Sites

As shown in Figure 8c,d of the the main text, which is reproduced below in Figure A2, the local
density of states (LDOS) is suppressed for electron-like quasiparticles and enhanced for hole-like
quasiparticles on molecular site 22 (for the numbering of the molecular sites, see Figure A1). We have
calculated the LDOS for the other sites of the molecular core as well and found that due to QI the
LDOS of the electron and hole quasiparticles is different on each site. In particular, it can happen
that, in contrast to Figure A2, the electron LDOS is larger than the hole LDOS. An example shown in
Figure A3, where this asymmetry of LDOS can be clearly seen.
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Figure A2. The LDOS for electron (a) and hole (b) quasiparticles as a function of δΦ on molecular
site 22 of the Andreev interferometer shown in Figure 6c of the main text and in Figure A1. In these
calculations ε3 = −0.50γ0.

Figure A3. The LDOS for electron (a) and hole (b) quasiparticles as a function of δΦ on molecular
site 8 of the Andreev interferometer shown in Figure 6c of the main text and in Figure A1. In these
calculations we used ε3 = −0.50γ0.

As mentioned in the “Conclusions and Outlook” section of the main text, by attaching normal
leads N1 and N2 to molecular sites 8 and 22 and may enhance the non-local Andreev reflection
N1→ N2 with respect to the local Andreev reflection N1→ N1.
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