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Abstract: Recently, composites of MXenes and two-dimensional transition metal dichalcogenides
have emerged as promising materials for energy storage applications. In this study, W2C/WS2 alloy
nanoflowers (NFs) were prepared by a facile hydrothermal method. The alloy NFs showed a particle
size of 200 nm–1 µm, which could be controlled. The electrochemical performance of the as-prepared
alloy NFs was investigated to evaluate their potential for application as lithium-ion battery (LIB)
anodes. The incorporation of W2C in the WS2 NFs improved their electronic properties. Among them,
the W2C/WS2_4h NF electrode showed the best electrochemical performance with an initial discharge
capacity of 1040 mAh g−1 and excellent cyclability corresponding to a reversible capacity of 500 mAh
g−1 after 100 cycles compared to that of the pure WS2 NF electrode. Therefore, the incorporation of
W2C is a promising approach to improve the performance of LIB anode materials.
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1. Introduction

Two-dimensional (2D) materials such as graphene and transition metal chalcogenides show
great potential for energy storage and conversion applications owing to their large surface area,
high conductivity, and good physical and chemical stability [1–12]. Among these 2D materials,
MXenes, which have been discovered recently, have been extensively investigated for energy storage
applications. It should be noted that MXenes are the transition metal carbides/nitride, which have
graphene-like structure, possessing many advantages of 2D materials such as high conductivity,
flexibility, easy processing, and so on [13]. Mashtalir et al. synthesized intercalated Ti3C2 flakes with
high stability and the charging rate for application as an anode material for lithium-ion batteries
(LIBs) [14]. Naguib et al. prepared niobium and vanadium carbide LIB anodes with high rate
capacity [15]. The MXene anodes exhibited excellent electrochemical performance at high currents
because of their low diffusion barrier [16]. In addition, Fe3O4@Ti2C3 LIB anodes exhibited an ultrahigh
capacity of approximately 747 mAh g−1 at 1 C for 1000 cycles. Moreover, these materials exhibited a
capacity of approximately 278 mAh g−1 at the high rate of 5 C [17]. Zhang et al. have demonstrated
the use of MXenes as conductive binders for viscous aqueous inks of silicon materials, which were
used as high-capacity anode materials for LIBs [18]. In these materials, MXenes not only acted as a
conductive network for Si particles, but also improved the mechanical stability of the material.

Tungsten metal compounds such as oxides, chalcogenides, and carbides are used in a wide range
of applications such as catalysis, energy conversion, and energy storage [19–27]. Feng et al. prepared
WS2 nanoflakes with a high reversible capacity of 680 mAh g−1 for 20 cycles as anode materials for
LIBs [27]. Srinivaas et al. have prepared highly rich 1T WS2 phase in few layered nanoflowers (NFs)
with stable electrochemical performance and a high initial capacity of approximately 890 mAh g−1 as
anode materials for LIBs [28]. W2C is a good catalyst. When grown on carbon nanotubes, it exhibits
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high photo/electrocatalytic performance for the hydrogen evolution reaction [26,29]. Simulation results
have shown that W2C can exhibit an ultra-fast loading of lithium ions owing to its low diffusion barrier
of about 0.045–0.13 eV [30]. Thus, the combination of WS2 and W2C is expected to yield a promising
LIB anode material.

In this study, we prepared a W2C/WS2 NF composite via a facile hydrothermal process.
By controlling the reaction time, alloy NFs with different sizes could be prepared. The structures,
chemical compositions, and binding states of the as-prepared NFs were investigated. Finally,
the potential of the W2C/WS2 NFs for LIB anode applications was investigated. The NFs showed
promising electrochemical performance and excellent Li storage.

2. Materials and Methods

2.1. Chemical Materials

Tungsten (VI) chloride (WCl6, 99.9% trace metals basis, Sigma-Aldrich Inc., St. Louis, MO,
USA), thioacetamide (C2H5NS, 99%, Sigma-Aldrich, Sigma-Aldrich Inc., St. Louis, MO, USA),
amorphous carbon black Super-P (C, approximately 40 nm 99.99%, Alfa Aesar Inc., MA, USA), absolute
ethanol (C2H5OH, Alpha Aesar Inc., MA, USA), and polyvinylidene fluoride (PVDF, 534,000 MW,
Sigma-Aldrich, Sigma-Aldrich Inc., St. Louis, MO, USA) were used as received without any treatment.

2.2. Synthesis of W2C/WS2 NFs

The W2C/WS2 alloy NFs were prepared according to a previously reported procedure [31]. Briefly,
0.6 g of WCl6 was dispersed as the W source in a 20 mL tube with 4 mL of absolute ethanol. For the
sulfur and carbon source, 1.2 g of thioacetamide was dispersed in 4 mL of absolute ethanol under
stirring. Then, the WCl6 solution was quickly added to the thioacetamide solution, and the resulting
solution was stirred for 5 min. Then, 30 mL of deionized (DI) water was added, and the solution
was stirred for 1 h. Then, the reaction mixture was transferred to a 50 mL polypropylene-lined
autoclave and heated in an oven at 250 ◦C for 2, 4, and 12 h to obtain the W2C/WS2_2h, W2C/WS2_4h,
and W2C/WS2_12h precipitates, respectively. These precipitates were washed four times with ethanol
and DI water and were then dried in an oven at 60 ◦C to obtain the W2C/WS2 powders.

2.3. Characterization

X-ray diffraction (XRD) (D/MAX-2200 Rigaku, Tokyo, Japan) was used to analyze the structure
of the samples. The XRD patterns of the samples were recorded over the 2θ range of 5–70◦.
The morphologies, structures, and sizes of the samples were investigated by scanning electron
microscopy (SEM) (Hitachi S4700, Tokyo, Japan) and transmission electron microscopy (TEM)
(TECNAI G2F30, FEI corp., OR, USA). The Raman spectra of the samples were acquired using
a Raman spectrometer (Lab RAM HR, Horiba JobinYvon, Horiba Ltd., Kyoto, Japan, 532 nm laser
excitation). X-ray photoelectron spectroscopy (XPS) (Axis Ultra DLD, Kratos Analytical Ltd, Kyoto,
Japan) under a high vacuum of 1.6 × 10−10 mbar with a monochromatic Al Kα line was used to
investigate the chemical compositions and atomic binding of the samples.

2.4. Electrochemical Measurements

The LIBs were assembled using coin-type cells (CR 2032, Rotech Inc., Gwangju, Korea).
The working electrode was prepared by casting a slurry of 70% active material (W2C/WS2 alloy
NFs), 15% conductive carbon black (Super-P), and 15% PVDF in N-methyl-2-pyrrolidinone on a
copper foil by doctor blading. After drying in a vacuum oven at 70 ◦C for 12 h, the electrodes were
punched into circular discs with a diameter of 12 mm. The battery half-cell structures were assembled
under an Ar2 atmosphere in a glovebox. A lithium foil, polyethylene, and 1M LiPF6 in ethylene
carbonate/diethylene carbonate (1:1 in volume) were employed as the reference electrode, separator,
and electrolyte, respectively. Galvanostatic electrochemical charge–discharge measurements were
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carried out using a battery cycle tester (WBCS3000, WonAtech, Seocho-gu, Seoul) over the voltage
range of 0.1–3.0 V versus Li/Li+. Cyclic voltammetry (CV) tests were carried out using ZIVE MP1
(WonAtech, Seocho-gu, Seoul) over the voltage range of 0.1–3.0 V at a scanning rate of 0.1 mV s−1.
Electrochemical impedance spectroscopic (EIS) measurements were carried out using a ZIVE MP1
(WonAtech, Seocho-gu, Seoul) over the frequency range of 100 kHz–0.1 Hz.

3. Results

For the synthesis of the W2C/WS2 NFs, the WCl6 precursor was pre-mixed with absolute ethanol
(WCl6 + xC2H5OH → WCl6-x(OC2H5)x + xHCl) before mixing with thioacetamide to prevent its
unexpected reaction with moisture (WCl6 + xH2O→WCl6-x(OH)x + xHCl) [31,32]. The hydrolysis
of thioacetamide produced hydrosulfide, acetic acid, and ammonia (2C3H5NS + 6H2O → 2H2S +

3CH3COOH + 2NH3). The introduction of hydrosulfide, acetic acid, and ethanol, respectively, acted as
the sulfur and carbon sources for the formation of the W2C/WS2 alloys. Figure 1a–c show the SEM
images of the W2C/WS2_2h, W2C/WS2_4h, and W2C/WS2_12h NFs, respectively. The particle sizes of the
W2C/WS2_2h, W2C/WS2_4h, and W2C/WS2_12h NFs were 200, 400, and 1000 nm, respectively. The NFs
showed a highly uniform structure, indicating that the synthesis procedure was highly reproducible.
Each NF consisted of several leaves of W2C nanosheets and WS2 nanocrystals. Meanwhile, the WS2

NFs synthesized without ethanol showed a complex structure because of the non-uniform dispersion
of W (Figure 1d).
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Figure 1. SEM images of the (a) W2C/WS2_2h, (b) W2C/WS2_4h, (c) W2C/WS2_12h, and (d) WS2 NFs.

To further examine the structure of the W2C/WS2 NFs, powder XRD measurements were carried
out over the 2θ range of 5–70◦ (Figure 2a). The XRD peaks of all the samples could be indexed to
the hexagonal structure of W2C and WS2 [32–35]. It should be noted that the W2C/WS2_2h sample
showed weak WS2 peaks. Moreover, this sample showed broad W2C peaks, indicating the small
crystallite size of W2C. The W2C/WS2_4h and W2C/WS2_12h samples showed clear W2C and WS2

peaks, indicating the co-existence of these hexagonal-structured materials. For comparison, a WS2
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sample was prepared using the same procedure as that used for preparing the W2C/WS2 NFs but
without the addition of ethanol. This sample showed peaks corresponding to WS2 only. Therefore,
the addition of ethanol during the synthesis not only prevented the oxidation of WCl6 but also
contributed to the formation of carbide from the thioacetamide source. The structures of W2C and
WS2 in the alloy NFs were examined by Raman spectroscopy (Figure 2b). The samples for Raman
spectroscopy measurements were prepared on SiO2/Si substrates, and a 532-nm wavelength laser
source was used. The samples showed two peaks at 351.5 and 415.2 cm−1 corresponding to the in-plane
mode vibration E1

2g and out-plane mode vibration A1g of WS2, respectively [2,36]. Moreover, the peaks
detected at 700 and 805 cm−1 can be attributed to the stretching modes of W−C [26,37]. The D- and
G-bands corresponding to the sp3 and sp2 carbon atoms in W2C were observed at 1200–1700 cm−1.
These results indicate the co-existence of W2C and WS2 in the alloy NFs.
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Figure 2. (a) X-ray diffraction (XRD) patterns and (b) Raman spectra of the W2C/WS2 alloy nanoflowers
(NFs) synthesized by heating at 250 ◦C for 2, 4, and 12 h.

The structure of the W2C/WS2 alloy NFs was further examined using TEM. As can be observed
from Figure 3a, the samples showed a uniform NF structure with many leaves. Some Moiré patterns
with a size of about 0.9–1.0 nm could be observed in the TEM images of the samples (Figure 3b).
This can be attributed to the formation of the W2C/WS2 interlayer spacing [31]. The lattice spacings of
W2C and WS2 in the samples were also measured from their high-resolution TEM (HRTEM) image
shown in Figure 3c. The distance spacings of the WS2 (100) and W2C (101) planes were measured
to be 0.27 and 0.23 nm, respectively. These spacings are characteristic of these materials. Moreover,
the selected-area electron diffraction (SAED) pattern shown in Figure 3d indicates that W2C/WS2 alloy
NFs with a highly crystalline hexagonal structure were successfully fabricated.

The chemical compositions and atomic binding energies of the W2C/WS2 alloys were analyzed
by XPS (Figure 4a–d). The survey scan XPS profiles of the alloys showed clear and sharp peaks
corresponding to W, S, O, C, and Si (from substrate) (Figure 4a). No impurity peak was detected,
indicating the high purity of the W2C/WS2 alloys. The high-resolution W 4f, S 2p, and C 1s spectra of the
alloys are shown in Figure 4b–d, respectively. The W 4f peak consisted of doublet peaks corresponding
to the W−C, W−S, and W−O bonds. The contribution of W−O bonding can be attributed to the slight
oxidation on the surface of the alloys, which always occurs during the preparation or natural oxidation
of a material in air [29]. The W 4f7/2 and W 4f5/2 peaks of the W−C doublet were observed at 31.9 and
34.1 eV, respectively, while those of the W−S doublet were observed at 32.4 and 34.6 eV, respectively.
The W 4f7/2 and W 4f5/2 peaks of the W−O doublet were observed at 36.0 and 38.2 eV, respectively.
The S 2p peak of the samples could be deconvoluted into the S 2p3/2 and S 2p1/2 peaks, which were
observed at 161.4 and 162.6 eV, respectively. Furthermore, the slight oxidation of the surface of the
alloys during the preparation resulted in the appearance of the S−O bond peak at about 169 eV. Finally,
the C 1s peak of the samples could be deconvoluted into those corresponding to C−W bonding at
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284.7 eV, C−O bonding at 286.2 eV, and C−OH bonding at 288.5 eV. This is consistent with the binding
energy of C in carbide compounds [38].Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 11 
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To evaluate the electrochemical performance of the alloys for application as LIB anode materials,
their CV tests were carried out for three cycles over the voltage range of 0.1–3.0 V (Figure 5a–d).
In the first cycle, the as-prepared WS2NFs showed lithiation at 0.5, 1.2, and 1.4 V attributing to the
reduction of WS2 to Li2S through multiple steps, including the formation of LixWS2 and Li2S [28].
The peak observed at 0.5 V corresponds to the conversion reaction (4Li+ + WS2 + 4e−→ 2Li2S + W) as
well as the decomposition of the non-aqueous electrolyte to form the solid electrolyte interface (SEI)
layer [28,39]. In the second cycle, the peak at 0.5 V disappeared because of the formation of the SEI and
gel-like polymeric layers by the dissolution of Li2S into the electrolyte, leading to its degradation [40].
The peaks at 1.2 and 1.4 V shifted to 1.27 V. An additional peak was observed at 1.9 V, indicating the
insertion of Li into LixWS2 [28]. Figure 5b–d show the cyclic voltammograms of the W2C/WS2_2h,
W2C/WS2_4h, and W2C/WS2_12h samples, respectively. In the first cycle, the W2C/WS2_2h sample
showed a small peak at about 1.1 V. In the second and third cycles, the sample showed reduction peaks
at 1.25 and 1.9 V attributing to the multi-step lithiation of WS2. Interestingly, the W2C/WS2_4h and
W2C/WS2_12h samples with large NFs showed only a broad peak at 1.3–1.5 V in the first discharge
cycle. This phenomenon can be attributed to the change in the work function of WS2 by the addition of
W2C [31]. The changes in the work function of the alloys corresponded to the changes in their reduction
potentials. The work function of the W2C/WS2 NFs increased from 4.31 to 4.7 eV with an increase in
the reaction time from 2 to 12 h. The work function of the pure WS2 sample was 4.95 eV. The bare
WS2 electrode showed lithiation peaks at 1.4 and 1.9 V. On the other hand, the W2C/WS2_2h and
W2C/WS2_4h electrodes showed lithiation peaks at lower potentials at around 1.2–1.5 V. These samples
did not show any lithiation peak at 1.9 V. Hence, it can be stated that the decrease in the work function
resulted in a decrease in the lithiation potential of the samples. As shown by the XRD patterns, the
W2C/WS2_2h sample showed broader W2C peaks than the other samples, indicating that the W2C
crystallite size of this sample was smaller than those of the other samples. Therefore, the change in
the second lithiation potential of the W2C/WS2_2h electrode was comparable to the initial potential
of the WS2 electrode because of the instability of its smaller W2C crystals. The W2C/WS2_4h and
W2C/WS2_12h electrodes only showed reduction peaks at about 1.2–1.5 V. This indicates that with an
increase in the reaction time, the bonding between W2C and WS2 became stronger. The W2C/WS2

and WS2 NFs showed similar oxidation peaks because of the restoration of the WS2 structure at about
1.7–1.9 V and the oxidation of Li2S (Li2S→ 2Li+S) at about 2.3–2.5 V [39]. The W2C/WS2 NFs showed
an oxidation peak at approximately 1.2 V, which was attributed to the delithiation of W2C.

The initial discharge and charge voltage profiles of the W2C/WS2 and WS2 NFs were obtained over
the voltage range of 0.1–3.0 V at a scan rate of 100 mA g−1, as shown in Figure 6a. The WS2 NFs showed
the charge and discharge capacities of 504.0 and 656.6 mAh g−1, respectively. The W2C/WS2_2h,
W2C/WS2_4h, and W2C/WS2_12h NFs showed the charge and discharge capacities of 595.2 and 935.2
mAh g−1, 751.8 and 1040.5 mAh g−1, 717.7 and 953.5 mAh g−1, respectively. It has been reported
that carbide materials are promising candidates for energy storage applications [41]. In this study,
the addition of W2C to the WS2 NF sample improved its storage capacity. The cyclic performances of
the W2C/WS2 and WS2 NFs were evaluated over 100 cycles, as shown in Figure 6b. The alloys NF
electrodes exhibited different electrochemical properties depending on the reaction time. For instance,
after 10 cycles, the capacities of the W2C/WS2_2h and W2C/WS2_12h electrodes decayed rapidly by
about 55%. After 30–40 cycles, the samples showed low stable capacities of 100–200 mAh g−1 with a
high Coulombic efficiency of approximately 95–99%. On the other hand, the W2C/WS2_4h electrode
showed excellent cyclic stability with a high capacity of 500 mAh g−1 after 100 cycles as compared to
the other electrodes. The reasons why the W2C/WS2_4h electrode demonstrated the best performance
are the stable binding of W2C to WS2 and the lowering of reduction potential in addition to the low
resistance (discussed later). This sample showed a Coulombic efficiency of 97–98%. Meanwhile,
the WS2 NFs showed a Coulombic efficiency of 93–94% and a continuous decrease in the cyclic capacity
to approximately 145 mAh g−1 during the 100th cycle.
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Figure 6. (a) Initial voltage profiles and (b) cyclic performance of the as-prepared WS2 NF, W2C/WS2_2h
NF, W2C/WS2_4h NF, and W2C/WS2_12h NF electrodes over 100 cycles.

To further investigate the performance of the NFs, their EIS measurements were carried out over
the frequency range of 100 kHz–0.1 Hz at a voltage of 3.0 V. Figure 7 shows the Nyquist plots of the
WS2 and W2C/WS2 NF electrodes with the equivalent circuit as an inset containing the constant phase
elements (CPE1, 2), series resistance (Rs), charge transfer resistance (Rct), solid electrolyte resistance
(RSEI), and diffusion Warburg element (W). The semicircular arc corresponds to their charge transfer
resistances between the interface of electrode and electrolyte [42]. The resistance values are summarized
in Table 1. The WS2 NF anode showed the highest charge transfer resistance among all the anodes
investigated. The charge transfer resistance of the WS2 NFs decreased with the addition of W2C
in the case of the W2C/WS2_2h and W2C/WS2_4h electrodes. However, it increased again for the
W2C/WS2_12h electrode. The difference in the performance of the as-prepared W2C/WS2 electrodes
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could be due to the different amount of W2C in the alloys. As shown by the Raman spectrum in
Figure 2b, the peak intensities of the D- and G-band from the carbon atoms in W2C decreased when the
reaction time increased, illustrating an increase in the amount of WS2. In the case of the W2C/WS2_12h
sample, it could have an excess amount of H2S at 250 ◦C, and the applied high pressure sulfurized the
weak bonding of W−C, leading to the lower amount of C, which was confirmed by Raman spectra
representing the decrease of the D-band and G-band. Moreover, the flower size of the W2C/WS2_12h
sample is about 1 µm, which is even bigger than the random size of WS2 NFs. It should be noted that
the increase in size could lead to the decrease in the conductivity [28]. When the amount and size of
WS2 increase, the resistance of the electrodes increases, as discussed in the EIS results. Specifically,
the W2C/WS2_2h and 4h electrodes showed lower resistances compared to that of the W2C/WS2_12h
electrode. Even though the W2C/WS2_2h electrode showed the lowest resistance value, the cycling
performance was not stable due to the weak binding of the W2C crystal to WS2, leading to the gradual
capacity decay, as discussed earlier. Thus, it can be concluded that the control of reaction time for
the preparation of W2C/WS2 electrodes is crucial to optimize the overall electrochemical properties,
where the W2C/WS24h alloy is the best electrode. Computational calculations have revealed that W2C
materials are promising candidates for Li storage applications [30]. Li ions tend to adsorb on W2C
materials to form a metal cluster. Moreover, MXenes nanosheets materials exhibit high conductivity [43].
In this study, the addition of W2C reduced the charge transfer resistance of the WS2 NFs, and the
resulting W2C/WS2 alloy NFs showed high storage capacity and stability for LIB applications.Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 11 
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Table 1. Comparison of resistance values extracted from equivalent circuit for the electrochemical
impedance spectroscopic (EIS) measurement.

Sample Rs Rct RSEI
WS2 NFs 2.12 627 430

WC/WS2_2h 3.04 381 367
WC/WS2_4h 1.24 312 350

WC/WS2_12h 5.41 620 422

4. Conclusions

W2C/WS2 NFs were successfully fabricated via a facile hydrothermal method at low temperature.
The particle size of the NFs could be controlled (200 nm–1 µm). The obtained NFs exhibited high
purity and well-defined hexagonal structures of W2C and WS2. The NF alloys were employed as anode
materials for LIBs. The W2C/WS2_4h sample showed a high initial discharge capacity of 1040 mAh g−1.
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The alloy electrodes showed a low charge transfer resistance of 200–600 Ω, indicating that the W2C/WS2

alloy electrodes were highly conductive as compared to the WS2 NF electrode. Among all the
electrodes investigated, the W2C/WS2_4h electrode exhibited the highest stable capacity of up to
approximately 500 mAh g−1 over 100 cycles, which could be attributed to the optimized W2C in WS2

NFs, Therefore, the W2C/WS2 alloy NFs prepared in this study showed a potential for energy storage
and conversion applications.
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