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Abstract: The fabrication and development of nanomaterials for the treatment of prostate cancer have
gained significant appraisal in recent years. Advancements in synthesis of organic and inorganic
nanomaterials with charge, particle size, specified geometry, ligand attachment etc have resulted
in greater biocompatibility and active targeting at cancer site. Despite all of the advances made
over the years in discovering drugs, methods, and new biomarkers for cancer of the prostate (PCa),
PCa remains one of the most troubling cancers among people. Early on, effective diagnosis is an
essential part of treating prostate cancer. Prostate-specific antigen (PSA) or serum prostate-specific
antigen is the best serum marker widely accessible for diagnosis of PCa. Numerous efforts have been
made over the past decade to design new biosensor-based strategies for biomolecules detection and
PSA miniaturization biomarkers. The growing nanotechnology is expected to have a significant effect
in the immediate future on scientific research and healthcare. Nanotechnology is thus predicted to
find a way to solve one of the most and long-standing problem, “early cancer detection”. For early
diagnosis of PCa biomarkers, different nanoparticles with different approaches have been used.
In this review, we provide a brief description of the latest achievements and advances in the use of
nanoparticles for PCa biomarker diagnosis.
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1. Introduction

Prostate cancer is one of the major causes of morbidity and mortality in developing and
under-developed countries [1]. The most frequent non-skin cancer causing second largest number
of deaths in men as compared to other cancers [2]. Prostate cancer can be localized and advanced
depending upon its severity [3]. Prostate cancer can metastasize via the lymphatic system and invade
into bones [4]. Various factors like age, genetics, environmental toxins, chemical hazards and radiations
seem to be involved in the pathogenesis of prostate cancer but the exact mechanism is still unknown [5].
Androgens are involved in the normal developmental phase of prostate and their functions, but, in that
phase, they can still steep towards carcinogenesis [6]. Similarly, hyperinsulinaemia accompanying
insulin resistance and obesity can directly surge the prostate cancer risk [7]. Various treatment protocols
are being practiced to reduce the above-mentioned risk of prostate cancer, and no treatment is required
for benign stage cancer [8]. Moreover, in the case of metastatic invasion, surgery can be opted to
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remove prostate glands and associated tissues and lymph nodes [9]. Radiation therapy is also common
in the treatment of prostate cancer [10]. Prostate cancer radiation therapy can be carried in two
ways, i.e., external beam radiations and internal radiations (brachytherapy) [11]. Radiations inside
the body involve the placement of small radioactive seeds to deliver a very low optimized dose of
radiation for relatively long duration via ultrasound imaging guided needle to be supervised by a
physician [12,13]. The third most important treatment protocol towards prostate cancer is hormone
replacement therapy [14]. Hormone therapy is practiced to hamper the production of male sex hormone
(testosterone) [15]. Diminished testosterone level supply is associated with the slow progression of
cancer cells [16]. Therefore, luteinizing hormone releasing agonists (leuprolide, goserelin, triptorelin)
are preferred to antagonize testosterone levels via preventing the testicles from synthesizing it [17].
Some anti-androgenic medications (bicalutamide, flutamide) are required to prevent the testosterone
from reaching cancerous cells [18]. In severe cases, orchiectomy can be performed for removing
testicles and diminishing testosterone levels [19]. Freezing of prostate tissues is also being practiced
for killing cancer cells [20]. In case of non-responding effects of hormone replacement therapy,
chemotherapy can be preferred via using chemotherapeutic agents, i.e., docetaxel and paclitaxel to
kill devastating and highly invasive cancer cells [21]. Unfortunately, all these treatment protocols
are envisioned with erectile dysfunction, libido, obesity, and bone mass loss [22]. Several diagnosis
techniques for prostate cancer have been developed i.e., physical examination, magnetic resonance
imaging (MRI), prostate-specific antigen (PSA) testing, biopsy, and staging [23]. Diagnosis of prostate
cancer is challenging owing to the vast existence of gaps accompanying over-testing, over-diagnosis,
over-treatment, and the non-specificity and heterogenous nature of prostate cancer [24].

Nanomedicine has revolutionized the field of medicine and diagnosis to bypass conventional
treatment protocols in the treatment of notorious cancers and various intracellular diseases [25,26].
Enhanced transmembrane penetration, enhanced permeability retention, increased solubility, and
targeted drug delivery can be also achieved with the application of nanotechnology to medicine [27–29].
Nanoparticles can accumulate in the tumor tissues via active and passive targeting [30]. Active tumor
targeting involves the selection of specified ligand receptor which is over expressed in tumor cells.
Specified ligand can be anchored with the nanocarriers and they can bind to the over-expressed site of
cancer cells for targeted drug delivery [31]. Some common examples of ligands for tumors are folate,
transferrin, and galactosamine [32]. Passive targeting can be achieved via the permeation of drug
loaded nanocarrier into the leaky vasculature of the tumor [33–36]. Nanotechnology in prostate cancer
also leads to the advanced stealthing [37]. Stealthing results in the increased reaching capability of
nanoformulation into tumor site with enhanced circulation time in the blood stream via coating of
hydrophilic polymers which results in the induction of strong stealth effects [38]. The mechanistic
approach beside stealthing is the evading the path of nanoparticles from mononuclear phagocytic
system trap and preventing the early elimination [39]. In reference to prostate cancer, poly(ethylene
glycol) (PEG) coated pegylated nanoparticles were accompanied with immense accumulation of
nanoparticles at tumor site as compared to un-modified non-stealth nanoparticles [40]. Moreover,
other hydrophilic polymers such as dextrans, heparins, and polyvinylpyrrolidone can also be used
to induce stealthing effect [41]. Therefore, various types of nanomedicines including liposomes,
niosomes, lipid hybrid nanoparticles, polymer–drug conjugates, polymeric nanospheres, nanomicelles,
metallic nanoparticles, and immune-conjugates have been successfully synthesized and elevated the
quality of life of prostate cancer patients [42,43]. Until now, numerous works have been published
investigating the use of nanomaterials to environmental applications [44–49]. In contrast, the most
pressing challenge is application of nanotechnology to design of multifunctional, structured materials
able to target specific diseases and protection of therapeutic moieties [50–59]. Functionalities to allow
transport across biological barriers and to realize the desired clinical benefits rapidly via understanding
of toxicological implications of nanomedicines relate to the specific nanoscale properties [60–69].
The potential environmental impact and a safety assessment of all manufacturing processes require a
case-by-case approach to clinical and regulatory evaluation of each nanopharmaceutical.
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Nanotechnology has been immensely involved in the detection of prostate cancer biomarkers
with marked sensitivity as compared to the conventional enzyme-linked immunosorbent assay
(ELISA) method [70]. Higher sensitivity of the nanoparticle anchored detectors is associated
with cost-effectiveness because only traces of biomarkers are required for the detection of prostate
cancer [71]. Moreover, higher sensitivity also facilitates the screening of prostate cancer via urine
instead of blood sample [71]. Blood serum sampling requires high professionalism and is linked with
patient non-compliance [72]. Specified nanotechnology-based detectors can efficiently minimize the
overdiagnosis and underdiagnosis of cancer due to their excellent specificity and sensitivity, respectively,
and could monitor the disease for people at risk of recurrence after recovery [73]. The conventional
method needs to be carried out by a professional, and thus, it cannot be a point-of-care for the
general population to use [74]. Therefore, magnetic nanoparticles (MNPs) served as the precursor
contrast agents for most novel MRI and CT diagnostic technologies for prostate cancer. MNPs can be
either used in the form of superparamagnetic iron oxides (SPIOS) and ultra-small SPIOs (USPIOS).
Various successful clinical trials have been made with resulting enhanced biocompatibility and reduced
toxicity. Iron-oxide based MNPs have been approved as MRI contrast agents by US FDA. Moreover,
cationic lipid nanoparticles were also experimented to be attached with SPIOs to overcome low
efficacy [74]. Novel photoacoustic imaging (PAI) is an emerging non-invasive imaging technology
for prostate cancer which usually combines the laser light and ultrasound effects. Some metallic
nanoparticles, i.e., gold nanoparticles can be a wonder source of PAI, based on the mechanistic approach
of surface plasmon resonance to enhance the absorption. Similarly, the detection of prostate cancer via
nanotechnology at a molecular level can be accompanied through prostate-specific antigen (PSA) as
they are potential nanoparticle targets [75].

2. Nanomaterials: Applications in Treatment of Prostate Cancer

Nanomaterials have been in use for a number of applications, especially for treatment and
targeting diseases in the last decade. A carrier system must be biocompatible, inert and can carry
a high concentration of drug efficiently. According to present knowledge, most of carrier systems
are not able to deliver drug at high concentrations due to their increase cytotoxicity at targeting site.
Therefore, many present treatment strategies cannot be used for treatment of cancers specifically breast
tumor in females and prostate cancer in males [76]. Prostate cancer (PCa) is one of the most common
diseases and its targeting needs greater concentration of active to the organ and tissues affected
by malignancy. Both organic (nanoemulsions, liposomes, niosomes, and polymeric nanocapsule)
and inorganic (carbon nanotubes, gold nanoparticles, magnetic nanoparticles, silica mesoporous
nanoparticles, quantum dots, selenium nanoparticles) are types of nanocarrier that have shown greater
efficacy as drug delivery systems for greater number of active pharmaceutical agent (API) for targeting
prostate tumor as shown in Figure 1 [77]. The following nanomaterials are capable of increasing active
(receptor mediated endocytosis and decorating of nanoparticles with different ligands helps to achieve
active targeting) targeting and passive targeting (enhanced permeability and retention effect EPR) [78].



Nanomaterials 2020, 10, 1696 4 of 24

Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 25 

 

 
Figure 1. Applications of inorganic and organic nanomaterials in treatment of prostate cancer. 
Reproduced from [79] with permission from DeGruyter, 2017. 
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Figure 1. Applications of inorganic and organic nanomaterials in treatment of prostate cancer.
Reproduced from [79] with permission from DeGruyter, 2017.

2.1. Mesoporous Silica Nanoparticles

MSNs (mesoporous silica nanoparticles) have been used broadly for many research purposes as it is
comprised of cationic quaternary ammonium surfactants. MSNs possess properties, including uniform
structures, large surface area, modified pore size and have been used in adsorption, immobilization
of enzymes. These particles also have property to be used as sensing materials for electrochemical
sensors. Surface ligated Ga-Au encapsulated mesoporous silica are one of the important nanomaterial
for treatment and diagnosis of prostate cancer [80]. Chuanlam Gu and coworkers used Ga-Au loaded
mesoporous silica nanoparticles for the photothermal treatment of the prostate cell lines. The evaluation
of these nanoparticles was performed on cancer cell lines (LNCap and DU145). In vitro evaluation
data established that Ga-Au@mSiO2 efficiently showed the photothermal treatment can abolished the
prostate cancer cells [81]. And it was interesting to note that GaAu@mSiO2 + NIR photothermal therapy
destroys the prostate cancer cells. The present data, showed that surface ligand Ga-Au encapsulated
mesoporous silica nanoparticles inhibit the growth of prostate cancer cells and show significant
anti-tumor effect in vitro cell line study. Therefore the following study suggests that Ga-Au@mSiO2 +

NIR particles can be used as promising approach to target the cancer therapy [82].
Huan wang and coworkers used mesoporous silica nanoparticles due to high selectivity, sensitivity

and as electrochemical immunosensors to detect and assist treatment of tumor. PSA (prostate-specific
antigen) is the most validated tool for prostate malignancy. These researcher developed label free
electrochemical immunosensor for prostate specific antigen based on silver hybridized mesoporous
silica nanoparticles for targeting prostate tumor [83].

Badr et al. prepared silica nanoparticles loaded with venom obtained from Walterinnesia aegyptia (WEV).
The following study measured and compared the impact of WEV on apoptosis, proliferation, invasion,
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and migration of prostate tumor cells either alone or with silica nanoparticles. The nanoparticles
decreased the viability of all cell tested (PC3, PCa, LNCaP, isolated from samples of patients) as
measured by MTT assay. The IC50 values were determined to be 10 and 5 µg/mL for WEV alone and
WEV + NP, respectively. WEV + NP decreased the surface expression of the chemokine receptors (CKRs)
CXCR3, CXCR4, CXCR5 and CXCR6 to a greater extent than WEV alone and subsequently reduced
migration and the invasion response of the cells to the cognate ligands of the CKRs (CXCL10, CXCL12,
CXCL13 and CXCL16, respectively). It is also proved that silica nanoparticles modified the cell cycle
of PCa and enhanced the apoptosis of the cell. Silica NPs also modified the charge of membrane in
mitochondria in the PCa cells and it is also evaluated that sustained delivery of nanoparticles carrying
WEV venom is an efficient treatment for prostate tumor [84].

2.2. Selenium, Magnetic and Gold Nanoparticles

Bioderived silver (Ag) and gold (Au) nanoparticles have been offering new ways for the treatment
of prostate tumor. AuNPs and AgNPs have significantly increased the functionalization that make
them candidate agents for conventional chemotherapeutic. Biosynthesized AuNPs and AgNPs
showed evidence of having anticancer effects against prostate tumor cell lines, but further studies can
help to evaluate the biocompatibility and safety profile of the following NPs in other body tissues.
The in vivo models NPs do not show any information that is relevant to toxicity of these NPs, although
these researches are required to support biogenic AuNPs or AgNPs retention, clearance, uptake,
pharmacodynamics, and pharmacokinetics.

Hu and coworkers developed nanoparticles with surface attached glucose for specific uptake
into rapidly dividing cells. In following study researcher developed an array of functionalized gold
nanoparticles and modified their attributes for different applications. The modification in functional
property of biomolecule on the GNPs can change the biological activities in cancer cells. Glucose-coated
GNPs (Glu-GNPs) are produced based on cancer cell metabolism, and can be selectively taken up
by malignant cells and directed in the cell cytoplasm. The study also evaluate that how glucose can
increase the cellular uptake of GNPs and how GNPs can alter the radiation cytotoxicity in prostate
cancer [85,86].

Zhang and coworkers developed and evaluated thio glucose coated/capped GNP (gold
nanoparticles) to inhibit growth and to enhance radiation sensitivity in prostate cancer cells. Human
prostatic cell carcinoma cell line DU-145 was screened and irradiation was measured using a standard
colorimetric MTT assay. Results of Glu-GNPs nanoparticles showed enhanced radiation and toxicity
in prostate cancer cells [87].

Rastinehad et al. used nanoparticles made from Au-silica for ultrafocal photothermal ablation of
prostate cancer. Au-silica NPs could absorb near-infrared light at high tissue transparency wavelengths
and provide a highly localized light-based strategy for the treatment of prostate cancer with low side
effects [88].

Ravi Shukla et al., worked on prostate tumor specific epigallocatechin-gallate (radioactive
gold nanoparticles). These researcher work on hypothesis that radioactive nanoparticles when
delivered intratumorally will circumvent the transport pathway, that will result in therapeutic delivery.
The developed gold nanoparticles have AU-198 isotope, the range of 198Au up to 1100 cell diameters or
11mm in tissues is longer to provide radiation dose to cells in prostate glands and shorter to lessen the
radiation dose to tissues close to the periphery. The following biocompatible formulation of 198AuNPs
as modified gold salt into gold nanoparticles and selectively bind with excellent affinity to Laminin67R
receptors that are overexpressed in PCa. Therapeutic and pharmacokinetic studies showed more then
80% reduction of tumor volume showing prominent inhibition of tumor development as compared
to control group. The following study showed novel 198AuNP-EGCg therapeutics may provide
prominent progress in treatment of prostate tumor [89].

Nanoscale selenium (Se) has a broad spectrum of biomedical applications. SeNPs have prominent
effect in reduction of oxidative stress; these nanoparticles have remarkable effect as an anticancer
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agent. The advantage of SeNPs is the zero oxidation state which represents significant increasing
bioavailability and quite low toxicity compared to other oxidations states [90]. Anti-prostatic effects of
SeNPs are govern by its ability to inhibit the growth of highly proliferating cells via induction of cell
cycle arrest at cell division [91]. The targeting of cancer through SeNPs will modified the biomechanical
properties of malignant cells and reduce the adhesion force. Besides the direct and potential anticancer
effects of SeNPs the small size of these nanoparticles permit more efficient and selective cellular uptake
by cell types and specific drug accumulation at target sites as shown in Figure 2 [92,93].
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Another, more commonly, used nanomaterial against PCa treatment is magnetic nanoparticles
that efficiently produce the heat upon electromagnetic stimulation after preferred accumulation into
PCa sites. Besides these, Yu et al. thermally cross-linked superparamagnetic iron oxide nanoparticles
to treat prostate cancer. These agents are used as theranostics and are capable of prostate cancer
diagnosis via MRI (magnetic resonance imaging) and specific delivery of therapeutics at cancer site [94].
They developed PSMAs (prostate specific membrane antigens) that are capable of binding towards
prostate cancer cells in all in vivo and in vitro studies when analyzed via MRI. The results of study
showed that the PSMA doxorubicin conjugate has potential for use in novel prostate cancer specific
nanotheranostics [95].

2.3. Quantum Dots

Quantum dots (QD) are applied to targeted delivery in PCa. Their size is in the range of 2–100 nm
with modified optical properties. QD have crystalline metalloid structure and quantum limiting effect
at very small size. In vivo studies suggested that QD probes can be delivered to malignant cells by
both active and passive targeting (via enhanced permeability and retention effect). For active target
delivery, antibody ligated QDs used to target PSMA. PSMA was selected as one of the key-target
for both therapeutic and diagnostic purpose in PCa treatment. The retention and accumulation of
antibody PSMA at the site of malignant cells is the basis of targeting and scanning for PCa [96,97].

2.4. Carbon Nanotube

Carbon nanotubes (CNTs) are used as new site-oriented compound for targeting prostate
cancer (targeted drug delivery). CNTs represent chemical, mechanical and physical attributes
which make them efficiently biocompatible carrier to deliver anti-neoplastic agents to target prostate
tumor. The hexagonal configuration of carbon atoms demonstrates the potential of CNTs for the
site-specific delivery of active agents, including proteins, nucleic acid, and other low molecular
weight compounds. The principle molecule that is linked to PCa (prostate cancer) is prostate cancer
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antigen type 3 (PCA3). The following prostate cancer specific antigen overexpressed in all types of
cancers. Li et al. studied human PCa cell line with respect to carbon nanotubes [98]. The developed
novel system includes SiRNa delivery by using CNTs which was bound and functionalized with
amine 1,2-distearoyl-sn-glyceo-3-phosphoethanomaine-N-(amino (polyethylene glycol) DSPE-PEG
2000 maleimide and poly(ethylenimine) for targeting and further conjugating with NGR (Asn-Gly-Arg)
peptide [99]. The following system more significantly crosses the human PCa-3 membrane in vitro and
enhances suppression of dividing cells along with severe apoptosis. Another combinatorial therapy of
RNAi along with near infrared photothermal enhanced the anti-tumor activity without producing any
other toxic effects [100].

2.5. Polymeric Nanoparticles with Block Copolymers

Sanna et al. developed and evaluated the block copolymers (PLGAPCL (poly (lactide-co-
caprolactone-co-glcolide) and PLA-PCL (poly (lactide-co-caprolactone)) that are biodegradable and
loaded with docetaxel. The cell line study on PCs cells showed higher antiproliferative activity
of PLGA-PCL-Dtx NPs compared to free drug. Sawicki et al. investigated the use of polymeric
nanoparticles to target a DT-A (diphtheria toxin gene) derived from prostate specific promoter to cells.
The injection of DT-A gene investigation has led to prominent decrease in the size of prostate tumor and
gland, where direct injection produced zero or less effect. Langer and Farokhzad developed the drug
delivery carrier for biocompatible polymeric nanoparticles and aptamers to target PSMA [76,101–103].
The potential of these biocompatible polymeric nanoparticles was investigated with in vitro and in vivo
studies for uptake and targeted delivery of Dtx by PCa cells. More complicated and complex NPs
systems are required to target the PCa as well as many cancer diseases that combine both therapeutic
and diagnostic agents as shown in Figure 3 [104].
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Dhar et al. developed and used a different strategy to deliver cisplatin to prostate cancer
by developing Pt (IV) encapsulated with PSMA (prostate-specific membrane antigen) of PLGA
ploy(ethylene glycol)(PEG)-poly(d,l-lactic-co-glycolic acid) functionalized controlled polymers.
By using PLGA-b-PEG nanoparticles with PSMA targeting aptamers (apt) on the surface as a carrier
for the platinum compound, a significantly lethal dose of cisplatin was targeted particularly to PCa
cells. The results showed that the efficacy of PSMA targeted Pt-NP-Apt nanoparticles for the PSMA is
approximately greater than that of free cisplatin [105].
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2.6. Liposomes

Thangapazhem et al. synthesized novel nanoparticles for targeting PCa to deliver curcumin,
via loading these molecules into liposomes coated with PSMA specific antibodies. The treatment
of human PCa cell lines with curcumin liposomes demonstrated dramatic inhibition of cell division
without having any effect on cell viability as shown in Figure 4 [106,107].
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Narayanan et al. used resveratrol along with curcumin against PCa treatment and as preventive
agent. In this study, liposomes encapsulated with resveratrol and curcumin in male B6C3F1 and
PTEN mice. In vitro assays used PEN-CAP8 cancer cells were performed to evaluate the combined
effects of curcumin with resveratrol on activated p-Akt cyclin D1, cell growth, cell cycle and apoptosis
and androgen receptor proteins involved in tumor proliferation. Analysis with HPLC and prostate
tissues showed a prominent increase in curcumin concentration, when liposome was loaded with
curcumin co-encapsulated with resveratrol that decreased the prostatic adenocarcinoma. Both these
phytochemicals efficiently inhibited the cell growth and produced apoptosis. The observations
of following study provide the information that phytochemicals in combination to increase the
chemo-preventive effect in prostate tumor [108]. This study suggested reduction of prostate tumor due
to loss of tumor suppressor gene PTEN.

Banerjee et al. developed liposomes loaded with doxorubicin; these can deliver the active
compound to PCa cells that overexpressed sigma receptors. PEG (polyethylene glycol) phospholipids
was attached to surface of DOX-loaded liposomes. Transgenic mice or (DU-145) injected with DOX
liposomes has led to inhibition of growth with reduce toxicity. The efficacy of free DOX was associated
with significant cytotoxicity. This study confirmed the efficient targeting of liposomes to sigma
receptors expressing PCa in both in vitro and in vivo cell study [106].

2.7. Nanoemulsion

A new approach for co-encapsulating paclitaxel and herceptin to develop a treatment for advanced
PCa has been fabricated by different groups [109–111]. The HER2 receptors are overexpressed in some
PCa cells, the herceptin has been considered as PCa cells targeting agent. A study showed that oil
droplets in nanoemulsion, with herceptin molecules attached to surface, are able to target the HER2
overexpressing cells [112]. The formulation with trastuzumab-along with emulsion containing the
active paclitaxel palmitate was checked on PCa cells and on transgenic mice (with induced PCa) [113].
There was no allergic reaction observed during the study and the results were better than other reported
drug treatments in inhibiting the PCa cell proliferation [114].
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2.8. Niosomes

Niosome is a bilayer non-ionic surfactant and cholesterol-based system. Akbarzadeh et al. used
anti-cancer drugs on prostate cancers cells and formulated doxycycline loaded niosomes as a carrier
system. The in vitro and in vivo study against PCa cells (PC3) showed enhanced chemotherapy effects
but increasing biocompatibility for normal cell lines [115]. The increasing anticancer effect was related
to the genes in cell cycle of PC3 cells after treating with niosomal formulation [116]. These carriers could
be served as efficient delivery system for targeting prostate cancer. Anti-cancer effect of niosomes on
PC3 (prostate cancer cell lines) was measured via MTT assay, gene expression, and flow cytometry [116].

3. Nanomaterials towards Diagnosis and Biosensing of Prostate Cancer

Prostate cancer is fifth cause of cancer death in the world and the second abundant cancer among
men [117–119]. Currently, imaging techniques, MRI, ultrasonography, digital rectal examination (DRE),
computed tomography (CT), and cancer protein assay are various clinical diagnostic strategies for
PCa detection [120,121]. While all of these methods are powerful and highly successful in detecting of
PCa, most of these approaches still complain about lack of precision, sensitivity and specificity for
clinical purposes [120,122]. Evidence strongly indicate that the tracking of PCa at the first development
stage can help maximize the effectiveness for medical approaches and improve cancer survival
from 10% to 90% [120]. Nano-medicine can represent new interventions for the early detection of
cancer based on PCa biomarkers, and resultantly, many attempts have been undertaken to develop
novel nanotechnology-based diagnostics for early detection of cancers [71,123–125]. In biochemistry,
a biomarker is considered to be an agent that helps to detect and isolate a specific bio-molecule
indicating a specific condition of the a disease [126]. For instance, a larger than a normal level of
PSA in the blood serum can be a symptom of prostate cancer [127]. In recent years various PCa
biomarkers have been identified. Prostate-specific antigen, also known as human kallikerin 3 (hk3),
human kallikerin 2 (hk2), prostate cancer gene 3 (PCA3), prostate stem cell antigen (PSCA), and so
on, are the biomarkers that can be used for diagnostic testing and PCa progression tracking [128–130].
Such biomarkers may be contained inside the human body’s blood or plasma, urine, semen, and tissues.
The most frequently used biomarker for the detection of prostate cancer (PCa) is the PSA or prostate
specific antigen. Excessive concentrations of this biomarker (upwards of 4 ng/mL) in blood serum
can be a sign of cancer. PSA is being used as the national currency for the initial diagnosis of the PCa
since confirmation by the FDA 25 years ago [71,131–133]. A graphical representation of the various
biomarkers and nano-methodologies for the early detection of PCa is shown in Figure 5.
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3.1. Nanomaterials for Prostate Cancer Diagnosis and Biosensing

Nanotechnology research brings last-generation strategies for the detection of prostate cancer
biomarkers that can fundamentally change the precise management of prostate cancer [135]. The key
reason for using structures or materials of nanometer size is to exploit the particular physical properties
(including magnetic, optical, structural and electronic properties) that are plainly obvious in within
nanometric size [136]. Nanobiosensors only require the interaction of a few bio-target molecules of
similar size to create a quick input signals [137]. Due mainly to their extremely sensitive analytical
detection features, clinical relevance and accessibility, the development of nanotechnology-based
strategies for prostate cancer screening is highly encouraging. Nanotechnology approaches that
basically act as general nucleic acid, protein or metabolite biomarker sensors offer remarkable
diagnosis performance without any advanced specimen processing methods [138]. Nowadays,
many nanoplatforms (such as magnetic nanoparticles, quantum dots, graphene, integrated diagnostics,
wearable and implants) have been constructed as a PCa nanosensors (Table 1) [71].

Table 1. Nano-methodology approaches used in the biosensing of prostate cancer biomarkers.

Nanomethodology Biomarker Detection Medium Feature Ref.

Magnetic nanoparticle PSA Human plasma Appropriate linear range between 0.001 and 1 µg/L
(via SWV method) with a 0.001 µg/L LLOQ. [139]

Gold nanoparticles PSA Serums of healthy and
prostate patients

Linear range 0~0.8 ng/mL for PSA measurement with a
detection maximum of 0.02 ng/mL. [140]

Silicon nanowires miRNA 183 and 484 Plasma Target nucleic acid molecules can be detected with a
high sensitivity of 3.3 × 10−16 M. [141]

Quantum dots f-PSA and cPSA Two human serum At the same time, detect f-PSA and c-PSA with detection
limits of 0.009 ng/mL, in a quick assay time of 60 min. [142]

Carbon nanotubes miR-21 Human serum
Strong linear relation with miR-21 target concentration

(0.01 fmol/L to 1 µmol/L) and low experimental
detection limit of 0.01 fmol/L.

[143]

Graphene PSA Blood The detection limit for total and free PSA antigen was
about 0.2 and 0.07 ng/mL, respectively. [144]

Surface-enhanced
Raman scattering

(SERS) nanoparticles
PSA Blood serum

Technique can substantially distinguish between
low-risk and high-risk PCa with 92.3% accuracy, 89.5%

sensitivity and 95% specificity.
[145]

Micro-cantilever or
Piezoelectric material PSA HP and HSA

Offer a strong platform for DNA-protein, protein-protein
binding, and DNA hybridization interactions with

high-throughput label-free analyzes.
[146]

Lab-on-a-chip systems PSA, PSMA and PF-4 Serum Detection limits for the 3 proteins in undiluted calf
serum was 300–500 fg/mL. [147]

Cancer Prostate (PCa), Free and complexed prostate-specific antigen (f-PSA and c-PSA), MicroRNAs (miRNAs),
human serum albumin (HSA), human plasminogen (HP), prostate specific antigen (PSA), prostate specific membrane
antigen (PSMA) and platelet factor-4 (PF-4).

3.2. Magnetic Nanoparticles

Magnetic nanoparticles (MNPs) were widely utilized due to their unique properties such as
magnetic susceptibility, physical characteristics, stability, biocompatibility, ease of mechanism and many
more important outcomes [148,149]. MNPs are used to isolate and purify some molecular compounds,
like proteins or nucleic acids, before diagnosis [150,151]. This development was indicated for the
detection of various biomarkers of prostate cancer proteins in the urine and bloodstream [135,152].
Yamkamon et al. developed Fe3O4 magnetic nanoparticles-combined with streptavidin-horseradish
peroxidase based on PCR method for detecting of urinary PCA3 (a gene specific to prostate cancer).
This technique was able to detect PCA3 at femto-gram concentration which was around 1000-fold more
effective than traditional RT-PCR. In real sample analysis, PCa patients’ PCA3 expression measured by
the prepared nano-platform was greatly higher than that of patients with benign prostatic hyperplasia
(BPH) and healthy controls (Figure 6) [94].
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There are also multiplex diagnostics to measure the various protein and autoantibody
biomarkers from human serum for detection of prostate cancer (PCa). Xu et al. used a
four-panel magneto-nano-sensor (MNS) for detection of free PSA/total PSA ratio from human serum.
This nano-sensor with array architecture has shown promising potential to separate patients without
cancer from those have prostate cancer with high specificity and sensitivity [153].

3.3. Gold Nanoparticles

Gold nanoparticles (AuNPs) exhibited excellent flexibility in medical application, including
diagnostic imaging, drug delivery, radiation and photo-therapy [154,155]. Innovations in
nano-chemistry and surface chemistry have promoted the creation of AuNPs as nano-biosensors [156].
AuNPs coated with certain hydrophilic polymers exhibit excellent in vivo circulation and high tumor
aggregation through the improved permeability and retention effect (EPR) [157]. Lue et al. conjugated
PSMA-1 (PCa targeting antigen) to AuNPs for X-ray radiotherapy improvement and observed that the
targeting ligand improved gold absorption by PSMA-expressing PC3 pip cells compared to PC3flu
cells that lack PSMA receptors (Figure 7) [158].
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3.4. Quantum Dots

Quantum dots (QDs) are semiconducting structures of a nanometer scale with better fluorescence
emissions than traditional organic fluorophores due to the quantum confining effect of electron energy
bands [159,160]. QDs have ultra-high porous structure, wide surface area, lower electrochemical
behavior (higher analytical signal), flexible structure, high electrical and chemical function,
etc. [161,162]. The design of developed electrochemical biosensors can be using QDs with such
special characteristics [163,164]. Ehzari et al. documented an enzyme-free sandwich immuno-sensor
(magnetic structure Fe3O4@TMU-10 and nickel-cadmium quantum dots) for the PSA biomarker
detection. The second antibody, as an electro-active non-enzymatic probe, is cross-linked to a
nickel-cadmium quantum dot. The designed immuno-sensor showed a consistent range between
1 pg/mL and 100,000 pg/mL and the 0.45 pg/mL detection limit with appropriate repeatability, specificity,
and reliability (Figure 8) [165].
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3.5. Carbon Nanotubes

Carbon nanotubes (CNTs) are cylindrical, hollow molecules composed of a hexagonal structure of
linked carbons, single or multiple walls and a nanometer diameter [166]. CNTs have proved itself as
a new styles of superconductors nanoparticles and were used in serum samples and human tissue
for electrochemical detection of PSA biomarkers [167,168]. The prostate cancer antigen 3 (PCA3) was
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found to be much more accurate as a potential biomarker for prostate cancer. Soares et al. reported
the first impedance and electrochemically-based nanosensors which are able to detect PCA3 as low
as 0.128 nmol/L. The nanosensors were made with a PCA3-complementary single-stranded DNA
(ssDNA) probe, immobilized on chitosan (CHT) and carbon nanotubes (MWCNT) layer-by-layer (LbL)
film (Figure 9) [169].
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3.6. Graphene

Graphene plays a significant role in the field of biosensors with extraordinary electrochemical,
electrical, magnetic and optical properties [170]. Graphene features, such as functionalization,
high flexibility and optical transmittance, have made possible the recent rise of graphene application
in nanosensors [171,172]. Numerous studies indicated the possibility for sensitive detection of PCa
biomarkers with graphene structures [173,174]. For these reasons, the susceptibility of graphene to PSA
biomarkers may lead to earlier diagnosis and hence to a better PCa prognosis. Pothipor et al. developed
a graphene based modified electrode for signal amplification of PSA. Their electrode composed of
core-shell hollowed-porous-gold-silver nanoparticles (PHSGNPs) and graphene-poly (3-aminobenzoic
acid) (GP-P3ABA) (Figure 10). Based on their tests, the sensing efficiency is improved by 120 folds
over AuNP labeling and the detection limit (LOD) in human serum hits 0.13 pg/mL or four orders of
magnitude better than the clinically appropriate level [175].
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Lab-on-a-chip platforms constitute a future generation of PCa biosensors by the development of
novel nanomaterials, and nanotechnology has allowed for the design solution-based lab-in-a-drop or
lab-on-a-chip systems for miniaturized devices [176,177]. These systems reduce and combine various
aspects of the biomarker assessment (such as patient sample collection, target copy amplification
and target tracking) into a unique platform that lead to minimizing patient sample requirements and
sample-to-outcome response times [178]. Lab-in-a-drop systems are alternate solution nanodiagnostic
devices that miniaturize the entire biomarker detection system within a single droplet of fluid [179].
The biggest benefit of lab-in-a-drop systems is the elimination of the need for expensive and skilled
precision engineering for detection [180,181].

Specific integrated biochips have been designed for the entire sample-to-targeted gene analysis
of prostate cancer in urine and serum samples [177]. Gao et al. reported an immunoassay sensor
based on surface-enhanced Raman scattering (SERS) with microfluidic technique to quickly detect
PSA [182]. The immunoassay platform “sandwich,” consisting of SERS nano-tags, magnetic beads
and PSA biomarkers, on a pump-free microfluidic biosensor (Figure 11). Their results revealed strong
linear response in the 0.01–100 ng/mL range. Using this chip, the PSA detection limit is estimated to
be below 0.01 ng/mL. This PSA biomarker detection level in human serum can be achieved in 5 min
without manual incubation or hard dialysis machine [182]. In another study, Feng et al. documented an
integrated PSA immunodetection microfluidic chip using a giant magnetoimpedance (GMI) sensor with
a detection limit as small as 0.1 ng/mL and operates in the concentration range of 0.1–20 ng/mL [183].
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Simultaneous identification of multiple biomarkers plays a significant role in accurate and
consistent cancer diagnosis. In a study, the Gao group also developed microfluidic devices based on
surface-enhanced Raman scattering (SERS) for the simultaneous detection of total PSA (t-PSA) and free
PSA (f-PSA) biomarkers [120]. Their data showed very good linear response from 0.05 to 100 ng/mL
for both PSA markers. The detection limits for both the t-PSA and f-PSA were estimated to be below
0.1 ng/mL [120].

4. Conclusions and Perspectives

The application of nanomaterials in the field of biomedicines has had a great impact on the
delivery of anti-neoplastics. Efficient strategies regarding active targeting are either improved or
under clinical evaluation. Farokhzad and Langer along with other researchers have proposed the
development of carriers synthesized from biocompatible aptamer polymers to target the PSMA. Besides
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this study, many similar studies comprising a translation of bioconjugates into clinical practice have
resulted in targeted polymeric NPs in targeting PCa. A single biomarker is rarely effective to reach
the diagnostic sensitivity and specificity required to allow for accurate stratification of the risk of
prostate cancer. Experimental studies over the next years will likely concentrate on clinical assessment
and integration of different combinations of next-generation prostate cancer biomarkers. Therefore,
the special advantages of nanomaterials could be utilized at a reduced cost for heightened susceptibility,
precision, efficiency, and automation. With the many groundbreaking advances in nano-diagnostic
methods, the cancer nanotechnology’s potential for improving the treatment of prostate cancer is highly
promising. In the near future, researchers must properly evaluate their methodologies in relevant
patient cohorts, establish clinically relevant detection limits, and fully evaluate clinical performance
parameters to translate these nanotechnologies into clinical usage.

Among all the nanosensors discussed in this review, ultrasensitive analyses of prostate biomarkers
can be electrochemical and mass cantilever-based biosensors that present detection limits down
to pg/mL. Micro cantilever arrays might provide some level of multimode assessment but an array
of up to 10 different biomarkers is most likely sufficient for the identification of multiple cancers,
including prostate cancer. Indeed, the most accurate and powerful biosensors for prostate cancer
can be lab on a chip devices. Of course, the biosensor interfaces should be accessible to laboratories
around the world in the pattern of a compact system to become an alternative to the widely used
ELISA method, and their consistency should be measured directly in human serum samples. A high
percentage of biosensing devices is still only used in the laboratories, and for academic purposes,
there is a need for genuinely reliable devices with high accuracy, good storage stability, and high
performance for accurate prostate diagnosis.
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