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Abstract: The metasurface spiral focusing (MSF) generator has gained attention in high-speed optical
communications due to its spatial orthogonality. However, previous MSF generators only can generate
a single orbital angular momentum (OAM) mode for one polarized light. Here, a MSF generator
with tunable OAM is proposed and it has the ability to transform linearly polarized light (LPL),
circularly polarized light or Gaussian beams into vortex beams which can carry tunable OAM at
near-infrared wavelength by controlling the phase transition of vanadium dioxide (VO2). Utilizing this
MSF generator, the beams can be focused on several wavelength-sized rings with efficiency as high as
76%, 32% when VO2 are in the insulating phase and in the metallic phase, respectively. Moreover,
we reveal the relationship between the reflective focal length and transmissive focal length, and the
latter is 2.3 times of the former. We further demonstrate the impact of Gaussian beams with different
waist sizes on MSF generators: the increase in waist size produces the enhancement in spiral focusing
efficiency and the decrease in size of focal ring. The MSF generator we proposed will be applicable to
a variety of integrated compact optical systems, such as optical communication systems and optical
trapping systems.

Keywords: vanadium dioxide; phase change material; orbital angular momentum; metasurface

1. Introduction

It is well known that electromagnetic waves can carry angular momentum. Angular momentum
comprises spin angular momentum (SAM) and orbital angular momentum (OAM) [1,2]. Beth [1]
initially observed that circularly polarized light has SAM of ±h per photon (h is reduced Planck’s
constant) and SAM is associated with the polarization of electromagnetic waves. Dissimilar to the SAM,
Allen [2] recognized that OAM is related to the spatial phase distribution of electromagnetic waves,
and vortex beams carrying OAM are characterized by a rotating phase factor of exp(ilθ), where θ refers
to the azimuthal angle and l is topological charge. It’s worth noticing that l is an unbounded integer and
vortex beams with different OAM modes are mutually orthogonal [1]. Therefore, without expanding
the frequency band, OAM modes are used for encoding information in order to realize multiplexing
and improve the channel capacity of communication system [3–8]. Appearing in the last decades,
vortex beams with OAM have been extended to countless applications, such as biosciences [9],
data storage [10,11], quantum information processing [12] and so on.
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The devices for generating vortex beams have been extensively investigated, including spiral phase
plates [13–15], antenna arrays [16–18], spatial light modulators [19,20], geometric mode converters [21],
etc. These traditional devices for generating vortex beams are always too bulky to be integrated
into nanoscale optoelectronic systems. In the past ten years or more, metamaterials have been
increasingly developed in manipulating electromagnetic waves, and have provided new approaches
to achieve characters not existing in natural materials [22–25]. Recently, 2D metamaterials (also called
metasurfaces), two-dimensional artificial structures consisting of arrays of subwavelength metal or
dielectric optical elements with periodic arrangement, have obtained an increasing popularity for their
special capability of flexibly manipulating the amplitude, polarization and phase of the transmitted or
reflected electromagnetic waves at nanoscale [26–35]. So far, there have been significant works in the
development of metasurfaces for generating vortex beams [36–44]. However, these works usually fail to
achieve adjustable topological charge, which means that, once it is manufactured, its topological charge
is fixed. Besides, their effective operation range is mainly limited to the visible light or mid-infrared,
and their light sources rely deeply on circularly polarized light or linearly polarized light (LPL).
Therefore, these limitations will increase the complexity of the experimental measurement device or
photonic integrated system. At the same time, the impact of Gaussian beams with different waist sizes
on the MSF generator to produce spiral focusing beams (SFB) has not been demonstrated before.

Based on the phase principle of the slab waveguide theory and the phase change material vanadium
dioxide (VO2), we numerically design a highly efficient, polarization-insensitive MSF generator to
produce SFB with adjustable OAM, which can generate SFB with topological charge l in the telecom
waveband (1550 nm) as VO2 is in the insulating phase. When the actual temperature is above the
phase transition temperature (340 K), VO2 becomes metallic-phase, and the transmissive metasurface
can turn into reflective metasurface with strong absorption, and the SFB carrying topological charge
2l are produced in the telecom waveband (1550 nm). Our device can overcome the shortcomings of
previous devices that generate optical vortices to a certain extent. The MSF generator firstly produces
the exiting light with a helical phase wavefront on the reflection surface or transmission surface,
and then the vortex beams be focused on several wavelength-sized rings whose efficiency is up to 76%
and 32% for transmission mode and reflection mode, and the transmissive focal length is 2.3 times of
the reflective focal length. In addition, we further demonstrate the impact of Gaussian beams with
different waist sizes on the MSF generator: the increase in waist size produces the enhancement in
spiral focusing efficiency and the decrease in size of focal ring. The MSF generator with tunable OAM
has potential application in optical manipulation at nanoscale [45] and optical fiber communication of
optical metasurfaces [46].

2. Theory and Design

Figure 1a,b shows the schematic diagram of SFB carrying topological charge l = 2 in transmission
mode and l = 4 in reflection mode, respectively. In transmission mode, its phase wavefront (Figure 1c)
may be considered as the result of superimposition of the spiral phase distribution ϕ1 = lθ (Figure 1d)
along the azimuthal direction that produces OAM, and the parabola phase distribution ϕ2 = k

√
f 2 + r2

(Figure 1e) along the radial direction that focuses vortex beams on the desired focal length. In reflection
mode, its phase wavefront can be regarded as the result of superimposition of 2ϕ1 and 2ϕ2. Figure 1f
is a schematic diagram of the metasurface with tunable OAM. It is made up of thousands of square
silicon nitride (SSN) nanopillars, square silicon dioxide with thickness of subwavelength scale and
VO2. The phase of SSN nanopillars in the transverse plane (xi, yi) are expressed by:

ϕ(xi, yi,θ) = 2mπ+
2π
λi

( f −
√

f 2 + x2
i + y2

i ) + lθ (1)

where m represents an arbitrary integer number, λi denotes the design wavelength and f is the focus
length of the MSF generator, l represents topological charge and θ refers to the azimuthal angle at
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transverse plane (xi, yi). The details of the unit cell structure are plotted in Figure 1g,h, where a SSN
nanopillar with height (H) placed on substrate composed of VO2 and silicon dioxide.
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Figure 1. (a,b) Schematic diagram of metasurface spiral focusing (MSF) generator carrying topological
charge of l = 2 and l = 4 work at transmission mode and at reflection mode, respectively. (c) Phase
distribution of The MSF generator, which can be considered as the superimposition of the spiral phase
distribution (d) and parabola phase distribution. (e,f) Schematic of a metasurface that generates spiral
focusing beams (SFB) in both transmission mode and in reflection mode. Incident light with wavelength
of 1550 nm illuminates on the metasurface along the negative z-axis and is focused into a focal ring.
(g,h) Side view and top view of the unit cell structure. The optimized parameters are P = 652.5 nm,
H = 1.65 µm, and t1 = t2 = 500 nm.

VO2 is a typical metal–insulator transition material. The temperature hardly affect the optical
permittivity of VO2 when the temperature is far away from the phase transition point (340 K) [47].
VO2 insulator material can be regarded as dielectric. Within 1 um to 5 um, the dielectric constant
of VO2 insulator material is approximately 9 [47], as presented in Figure 2a. VO2 metal material
corresponds to plasmonic and is expressed by the Drude model with the permittivity at high frequency
(ε∞ = 3.95), plasma frequency (ωρ = 3.33 ev) and scattering rate (γ = 0.66 ev) [48]. To obtain the
dielectric constant of the VO2 metal material, we substituted the experimental data in [48] into the
classic Drude-Lorentz oscillator model, as shown in Figure 2b. The advantage of using silicon nitride
as the nanopillar and silicon dioxide as the substrate is that their thermo-optic coefficient is very
small [49,50], which means that the switch of VO2 between insulator phase and metallic phase does
not significantly change the refractive index of SSN nanopillars.
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Figure 2. (a) Dielectric constant of VO2 in its low-temperature insulator phase. (b) Dielectric constant
of VO2 in its high-temperature metallic phase.

To further discover the phase realization mechanism, the numerical simulation of the unit cell
structure is performed using the commercially available three-dimensional finite difference time
domain (FDTD) solver from Lumerical Inc (Lumerical Inc., Vancouver, BC, Canada). The size of a
mesh cell is 0.01 µm. The relationship between the effective index of single SSN nanopillar and its
width for x-LPL incidence are plotted in Figure 3a. The result denotes that by adjusting the width of
SSN nanopillar, the effective index of its fundamental mode can vary anywhere from ne f f ≈ nair = 1
(when the incident light is mostly in air) to ne f f ≈ nSi3N4 = 2.46 (when the incident light is mostly in
SSN). The effective index of the fundamental mode is changed to gain the desired phase distribution
(Equation (1)). If there are two parallel SSN nanopillars, they have different widths and the optical
coupling between them is negligible, then light traveling along the different SSN nanopillars will
accumulate a phase shift ∆ϕWG, which is proportional to their height (H) [51]:

∆ϕWG =
2π
λi

∆ne f f H (2)

where ∆ne f f is the difference of effective index between the two SSN nanopillars. A phase difference
of ∆ϕWG = 2π can be acquired when H = λi/∆ne f f . Figure 3b displays the appearance of the phase
difference among the waveguides of two SSN nanopillars with different widths. It is noteworthy that
the waveguide of SSN nanopillar can confine incident light in a subwavelength area owing to large
index difference between SSN and air.

Figure 3. (a) Effective index of a single square silicon nitride (SSN) nanopillar as a function of its width
(w) for x-LPL incidence (Ex). (b) Side views of the electric field (real [Ex]) distribution in two SSN
nanopillars with different widths (400 nm, 560 nm).
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To ensure high transmittivity and cover the entire phase span of 0 to 2π, other parameters such as
unit cell size (P) are optimized in the telecom waveband (1550 nm), as shown in Figure 4a. The height
of the SSN nanopillar should be tall and sufficient for covering the entire phase span of 0 to 2π through
a range of square widths. Figure 4b denotes that when VO2 is in the insulating state and its unit
cell size is 652.5 nm, for SSN nanopillars with height of 1.65 µm, their width must be in the range
of 250 nm to 566 nm in order to achieve large transmittivity and cover the phase span of 0 to 2π.
Figure 4c reveals the reflectivity and phase of the reflected light when VO2 is in its metallic state. It can
be found that the phase has doubled when VO2 changes from insulating state to metallic state by
comparing Figure 4b,d. This phenomenon is mainly due to the propagation of reflected light in the
SSN waveguide. The discontinuities that appear on the spectra of Figure 4a,c is due to the optical
resonance of SSN nanopillar. In the unit cell structure for simulation, periodic boundary conditions are
used at the x-boundaries and y-boundaries, and the boundary conditions of perfectly matched layer
(PML) are applied at the z-boundaries.
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Figure 5e,f depicts the simulated intensity profiles of reflected light and transmitted light on focal 

Figure 4. (a) Simulated transmittivity and phase of the transmitted field as a function of the unit cell
size and the width of SSN nanopillar when VO2 is in the insulator phase. (b) Simulated transmittivity
and phase of the transmitted field for a fixed unite cell size of 652.5 nm. (c) Simulated reflectivity and
phase of the reflected field as a function of the unite cell size and the width of SSN nanopillar when
VO2 is in the metallic phase. (d) Simulated reflectivity and phase of the reflected field for a fixed unite
cell size of 652.5 nm. All the simulated results for (a–d) are performed at the wavelength 1550 nm with
x-LPL incidence.

3. Results and Discussion

3.1. Generation of Spiral Focusing with Adjustable Orbital Angular Momentum

In this section, the MSF generator carrying topological charges of l = 2 (in transmission mode)
and l = 4 (in reflection mode) is demonstrated. The schematic of the MSF generator with the diameters
of 40 µm and the focal length (f ) of 41 µm is shown in Figure 1f. Here, the incident light is x-LPL
(λi = 1550 nm). Figure 5a,b are the simulated intensity profiles of y–z cross section in reflection mode
and in transmission mode, respectively, and the dashed lines (Figure 5b) represents the position of
focal plane (z = −39 µm). The slight difference between the designed focal length and the simulated
focal length is caused by the discontinuous phase distribution of the SSN arrays. Figure 5c,d represents
the simulated phase distribution of reflected light and transmitted light at one wavelength away from
exit facet of the MSF generator, respectively. We can see that the phase distribution in transmission
mode corresponded to the calculated phase distribution ϕ1 +ϕ2 (Figure 1c), and the phase distribution
in reflection mode corresponded to the calculated phase distribution 2ϕ1+2ϕ2 (the inset in Figure 1f).
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Figure 5e,f depicts the simulated intensity profiles of reflected light and transmitted light on focal plane,
respectively. The inset in Figure 5e,f depict the phase distribution of reflected light and transmitted
light on focal plane, respectively. We found that SFB carrying topological charge l = 2, l = 4 may
be produced in transmission mode and in reflection mode, respectively. The results of numerical
simulation show that spiral focusing efficiency reaches 76% (l = 2) and 32% (l = 4), which is calculated
as the ratio of the optical power in the focal spot region (Pring) to that of the incident beam (Pincidence):

η =
Pring

Pincidence
=

∫
s1

real(P1)dS∫
s2

real(P2)dS
(3)

where P1 is the Poynting vector on focal plane, S1 is the area with the same size as the focal ring,
P2 is the Poynting vector for 1.55 um away from exit facet of the metasurface. S2 is the area with the
same size as the designed. Figure 5g,h shows the vertical cut of focal ring in reflection mode and in
transmission mode, respectively. The full width at half maximum (FWHM) of vertical cut of focal ring
are 1.07 µm and 1.58 µm in the two modes.
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Figure 5. (a,b) Simulated intensity profiles on the y-z cross section for the MSF generator in reflection
mode (l = 4) and in transmission mode (l = 2), respectively. (c,d) Simulated phase distribution of
reflected light and transmitted light at one wavelength away from exit facet of the MSF generator,
respectively. (e,f) Reflected focal ring and transmitted focal ring of the MSF generator at focal plane
(z = 17.2 µm and z = −39 µm), respectively. (g,h) Corresponding vertical cuts of focal ring.
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3.2. The Relationship between the Focal Lengths in Two Modes

Here, we discuss the relationship between the focal lengths of the MSF generator in two modes:
transmission mode (l = 2) and reflection mode (l = 4). Figure 6a,b represents the simulation results of
intensity profiles on the y-z cross section for MSF generators with different focal lengths in two modes,
respectively. The simulation results of FWHM and spiral focusing efficiency for several MSF generators
with f ranging from 32 to 44 µm in two modes are presented in Figure 6c. It is obvious that the MSF
generator with f = 41 µm has the spiral focusing efficiency of 76% and 32% in transmission mode and
in reflection mode, respectively. It is notable that the focus length in two modes can approximately
satisfy the following relationship:

f1 ≈ 2.3 f2 (4)

where f1 is focus length in transmission mode and f2 is focus length in reflection mode. Obviously,
for l = 0, the SFB turns into focusing beams with parabola phase distribution (ϕ2). Here we design
a metasurface focusing (MF) generator with the diameters of 40 µm and focal length (f ) of 65 µm
to generate focusing beams. As found from Figure 6d, the focusing efficiency reaches 72% and 42%
in transmission mode and in reflection mode, respectively. We found that the relationship between
focus lengths in two modes can approximately satisfy Equation (4), which is because the phase of
reflected light can be regarded as 2ϕ2. Figure 6e shows the simulated values of FWHM and focusing
efficiency for several MF generators with f ranging from 25 to 45 µm in two modes. It is clear that
the MF generator with f = 41 µm has a maximum focusing efficiency of 77% in transmission mode,
and within a certain range, as the design focal length increases, the focusing efficiency in reflection
mode will be enhanced, which is because the simulated phase of the reflected light is closer to 2ϕ2.
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Figure 6. (a,b) Simulated intensity profiles on the y–z cross section of transmitted light and reflected
light are produced by MSF generators with different focal lengths, respectively. (c) Simulated values of
full width at half maximum (FWHM) and spiral focusing efficiency for several MSF generators with
different focal lengths in two modes. (d) Simulated intensity profiles on thee y–z cross section for
the MF generator in transmission mode and in reflection mode. (e) Simulated values of FWHM and
focusing efficiency for several MF generators with different focal lengths in two modes.

3.3. Impact of Different Light Sources on MSF Generator

It is very important to study the influence of different light sources on metasurfaces. If a
metasurface can work normally under any light source, it will inevitably reduce the complexity of
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the experimental measurement device. To understand the impact of different light sources on the
MSF generator, we simulate the MSF generator under illumination by plane wave carrying different
polarization in transmission mode, the results are shown in Figure 7a–c. For incident plane waves
carrying different polarization, the simulated intensity profiles change little, and the corresponding
simulation spiral focusing efficiencies are all 76%. That is to say, the spiral focusing effect of our
MSF generator is insensitive to incident polarization. The insets in Figure 7a–c display the phase
distribution at the focal plane. Besides, the impact of Gaussian beam with different waist sizes on the
MSF generator working in transmission mode is demonstrated in Figure 7d. The attenuation of the
intensity on the y–z cross section is mainly because the incident power is proportional to the waist size
of the Gaussian beams. We can find that the SFB evolves into vortex beams when the waist size of the
Gaussian beams decreases. The insets in Figure 7d depict the phase distribution at the focal plane.
Figure 7e shows the simulated values of FWHM and spiral focusing efficiency for the incidences of the
Gaussian beams of different waist sizes (W0 ranging from 12 to 20 µm). It is notable that an increase in
waist size produces an enhancement in spiral focusing efficiency and a decrease in the size of FWHM.
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normal incidences of (a) x-LPL, (b) right-handed circular polarization light, (c) left-handed circular
polarization light. (d) Simulated transmitted intensity profiles on the y–z cross section of the MSF
generator for the normal incidences of Gaussian beams with different waist sizes. (e) Simulated values
of FWHM and spiral focusing efficiency for the normal incidences of Gaussian beams with different
waist sizes.

3.4. Generation of Vortex Beam with Adjustable Orbital Angular Momentum

To further demonstrate the ability of our metasurface to flexibly manipulating phase of the
transmitted or reflected light at nanoscale, we design a vortex beams generator with the radii of
30 µm, which has the capability to convert incident Gaussian beams into vortex beams carrying
topological charge l = 2, l = 4 in transmission mode and reflection mode, respectively. As presented
in Figure 8. The phase distribution on metasurface for generating vortex beams with l = 2 can be
designed as ϕ1 = 2θ (Figure 8a). Figure 8b shows the simulated transmitted intensity profiles for the
vortex beams carrying l = 2 on the x–z cross section. The transmitted intensity and phase profiles
of the generated vortex beam at 18.6 µm (12 wavelengths), 62 µm (40 wavelengths) and 124 µm
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(80 wavelengths) away from the exit facet of the metasurface are provided in Figure 8c,d, respectively.
We find that the generated vortex beams can transmit a distance of 250 µm and have a divergence
angle of 4◦. Generally speaking, the propagation distance of vortex beams is proportional to the
energy of the incident beam, and the degree of curvature of the equal phase line is proportional to the
propagation distance. Our simulation results basically conform to these laws. The metasurface we
proposed will operate in reflection mode when VO2 changes from insulating state to metallic state,
which can convert Gaussian beams into vortex beams carrying topological charge l = 4. The topological
charge is doubled mainly because the reflected wavefront satisfies 2ϕ1 (Figure 8e). Figure 8f shows
the simulated reflected intensity profiles of the vortex beams carrying topological charge l = 4 on the
x–z cross section. The simulated reflected intensity and phase distribution of generated vortex beams
at 18.6 µm (12 wavelengths), 62 µm (40 wavelengths) and 124 µm (80 wavelengths) away from the
exit facet of the metasurface are shown in Figure 8g,h. We notice that the generated vortex beams can
only transmit a distance of 150 µm and have a divergence angle of 5.7◦. These phenomena are mainly
because that the propagation of incident light cannot be completely restricted in the waveguide and
the reflection of incident light is incomplete. Moreover, the nonuniform reflectivity of unit cells will
contribute to the nonuniform intensity distributions along the angle direction.
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Figure 8. (a) Distribution of the calculated phase and width of nanopillar at the transmitted facet.
(b) Simulated transmitted intensity profiles on the x–z cross section. (c) Simulated transmitted intensity
profiles on the x–y cross section for 12λi, 40λi and 80λi away from the exit facet of the metasurface.
(d) Simulated transmitted phase distribution on the x–y cross section for 12λi, 40λi and 80λi away
from exit facet of the metasurface. (e) Calculated values of ideal phase distribution at the reflected
facet. (f) Simulated reflected intensity profiles on the x–z cross section. (g) Simulated reflected intensity
profiles on the x–y cross section for 12λi, 40λi and 80λi away from exit facet of the metasurface.
(h) Simulated reflected phase profiles on the x–y cross section for 12λi, 40λi and 80λi away from the
exit facet of the metasurface.

4. Experimental Feasibility

The experimental measurement is shown in Figure 9. The phase state of VO2 can switch between
insulating and metallic phase by controlling temperature. The intensity of the MSF generator in
transmission mode and reflection mode can be measured through a detector. This experimental
measurement can be divided into two parts, the first case, we can make VO2 be in the insulating
state by controlling room temperature. The incident beam was converted into linearly polarized
light with wavelength λi = 1550 nm through a polarizer. The linearly polarized light was collimated
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by a collimator, and the beam was split by beam splitter, and then illuminated onto the sample.
The generated transmission light was converted into linearly polarization light with wavelength
λi = 1550 nm after passing through a collimator and polarizer. The intensity profiles of the transmitted
light were captured by a detector. In the second case, when the MSF generator was located at a
temperature controller, we could make VO2 in the metallic state by controlling the temperature with
the temperature controller. The first half of the measurement process for the second case was the same
as the first case. The difference was that the sample at this time was in reflection mode. The intensity
profiles of the reflected light can be measured by another detector after passing through the beam
splitter, mirror, collimator and polarizer.
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5. Conclusions

In this article, a highly efficient MSF generator with insensitivity to polarization is proposed,
which can realize metallic switches and dielectric metasurfaces. The MSF generator is able to convert a
plane wave carrying arbitrary polarization into spiral focusing beams with efficiency as high as 76%
and 32% in transmission mode (l = 2) and in reflection mode (l = 4), respectively, and the relationship
between the focus length in the two modes approximately satisfies f2 ≈ 2.3 f1. In addition, the impact of
Gaussian beams with different waist sizes on the MSF generator is demonstrated. The spiral focusing
efficiency is proportional to the waist size of Gaussian beams and the SFB evolve into vortex beams
when the waist size of Gaussian beams decreases. Owing to some advantages of the device we
proposed, including wavelength thickness, high efficiency, tunability in topological charge and focal
length, and insensitivity to polarization, our devices will be able to be applied to a variety of integrated
compact optical systems, such as optical communication systems and optical trapping systems.
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