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Abstract: First-principles calculations of the electronic ground state in tantalum arsenide are com-
bined with tight-binding calculations of the field dependence of its transport model equivalent
on the graphene monolayer to study the emergence of topologically ordered quantum states, and
to obtain topological phase diagrams. Our calculations include the degrees of freedom for nu-
clear, electronic, and photonic interactions explicitly within the quasistatic approximation to the
time-propagation-dependent density functional theory. This field-theoretic approach allows us to
determine the non-linear response of the ground state density matrix to the applied electromag-
netic field at distinct quantum phase transition points. Our results suggest the existence of a facile
electronic switch between trivial and topologically ordered quantum states that may be realizable
through the application of a perpendicular electric or magnetic field alongside a staggered-sublattice
potential in the underlying lattice. Signatures of the near field electrodynamics in nanoclusters
show the formation of a quantum fluid phase at the topological quantum phase transition points.
The emergent carrier density wave transport phase is discussed to show that transmission through
the collective excitation mode in multilayer heterostructures is a unique possibility in plasmonic,
optoelectronic, and photonic applications when atomic clusters of Dirac materials are integrated
within nanostructures, as patterned or continuous surfaces.

Keywords: topological quantum phase transitions; collective excitation; nanoline; charge density
wave; Chern number

1. Introduction

One of the key drivers of emerging technologies is the ability to deliver dissipation-
free transport of carriers over topologically protected quantum states. On the other hand, it
is also technologically attractive to use the topological states of photonic crystals to realize
lossless waveguides for optical communication. As such, the search for topologically
ordered electronic phases of quantum matter is an active research frontier [1]. Topological
protection of carrier transport is required in applications like spintronics, plasmonics, high-
density data storage, and tunneling field-effect transistors, etc. and Dirac materials [2] are
promising candidates for delivering such quantum states. This is because their monolayers
can be incorporated into metamaterials and multilayer heterostructures to guarantee the
existence of chiral edge states. The major feature of a topologically protected electronic
phase is the non-trivial edge state, which is robust against all perturbations including long-
ranged interactions [3–7] and conserved on graphene lattice by bulk-edge correspondence
(BEC) principle [8].

The electronic ground state in bulk tantalum arsenide (TaAs) is determined here
from first principles and combined with tight-binding calculations of the external field
dependence of the low-energy band dispersion in graphene to study the emergence of
topologically ordered quantum states in the carrier transport model of Dirac materials. The
evolution of graphene band structure with changes in the topological order parameters is
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employed here to study the dependence of the magnitude of the emergent bandgap on-field
tuning parameters. These emergent quantum transport phases are practically realizable
using engineered multilayer material platforms when Dirac materials are incorporated into
stacked multilayer heterostructures in their 2D or monolayer form. This is because their
chiral edge and surface electron states are topologically protected against perturbations,
thus permitting topological spintronics and optoelectronics.

Achieving carrier transport through topologically protected electron states is becom-
ing the desirable strategy for developing materials for emerging technologies because the
continued scaling era is changing rapidly to the era of hyper-scaling [9]. We argue here
that this is achievable when 2D forms of Dirac materials that host topologically protected
edge states are integrated within vertically stacked van der Waals multilayer heterostruc-
tures [10–13]. This is because the presence of chiral anomalies in the spin conductance
spectra of heterostructures makes carrier transport field-tunable [12]. However, a different
problem emerges from the coexistence of bulk and topological electron states due to the
presence of intrinsic long-ranged disorder in metamaterials and multilayer heterostruc-
tures [14]. By contrast, magnetotransport experiments on bulk Sb2Te3 show a weak mixing
between the surface and bulk electron states [15]. The weak coupling is due to the absence
of long-range disorder in bulk Sb2Te3. Thus, the long-ranged disorder in multilayer het-
erostructures means that alternative strategies for using heterostructures as the platform
for realizing coherent current must be developed.

Herein, we identify such strategies by developing a rational understanding of the
topological electron states and their topological quantum phase transitions (TQPTs) for
emerging applications in photonics, optoelectronics, and spintronics. We present combined
first principles and field-theoretic calculations of the electrodynamic signatures of carriers
at characteristic energies at which distinct topological phase transitions occur in Dirac
materials. By including explicit degrees of freedom for nuclear, electronic, and photonic
interactions within the quasistatic approximation of the time-dependent density functional
theory (TDDFT), we unravel how the intensity of the applied electromagnetic field distorts
the underlying potential energy landscape of the Born-Oppenheimer hypersurface. We
obtain topological phase diagrams to reveal distinct topological quantum phase transition
(TQPT) points and study the signatures of quantum electrodynamics at these points.
We demonstrate the formation of optical non-linearities in the topologically protected
quantum phases and show that these propagate dynamically with increasing intensity of
the symmetry-breaking field as standing waves modes.

We unravel unique TQPT points in the topological phase diagram as a function of the
external drive field and show that the intrinsic SOC-induced semiconducting band gap
in bulk TaAs is both scalable and field-tunable to obtain topologically ordered transport
phases. The emergent transport phases considered herein are practically realizable in
stacked multilayer heterostructure platforms that incorporate Dirac materials in mono-
layer or 2D form. The dependence of the magnitude of the emergent band gap on field
tuning parameters shows that the carrier transport phase can be tuned from the trivial bulk
semiconducting state to the topological insulating phase. Our study provides a unique
framework for the rational understanding of the conversion of trivial equilibrium bands to
non-equilibrium topological phases from engineered Floquet bands [16–21], photovoltaic
Hall effect [22], photo-induced superconductivity [23–25], and the recently observed light-
induced anomalous Hall effect in graphene [26]. Our results show that a switch between
trivial and topological quantum states is realizable through the application of a perpendic-
ular electric or magnetic field alongside a staggered-sublattice potential in the underlying
lattice. Signatures of the near field electrodynamics show the formation of a quantum
fluid-like phase at the topological quantum phase transition points. We discuss the impli-
cations of the field-induced carrier density wave phase and assert that the transmission
of topologically protected carriers over this collective excitation mode is a possibility in
optoelectronic and photonic applications.
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This paper is organized as follows. In Section 2, details of the theoretical and compu-
tational methods are presented. These include first-principles calculations of the ground
state in bulk TaAs, and its renormalization on the honeycomb lattice within an effective
tight-binding model, to allow for the determination of emergent topological properties on
the graphene lattice. In addition, the resulting near-field electrodynamics is computed in
the quasistatic limit of the finite difference time-dependent density functional theory. In
Section 3, the electronic structure and the derived topological phase diagrams are presented
as a function of drive fields. The combined effect of a magnetic field, intrinsic SOC, and
Zeeman spin-splitting fields on the topological stability of topologically ordered electronic
phases are explored as a function of drive intensity, and the resulting optoelectronic and
transport properties are analyzed in terms of the induced fields, transition contribution
matrix, the photoabsorption, and carrier transmission spectra. Finally, conclusions are
drawn in Section 4.

2. Theoretical and Computational Details
2.1. First-Principles Calculations

Tantalum arsenide (TaAs) crystallizes in a body-centered tetragonal structure with
a non-symmorphic space group I41 md (No. 109) with lattice constants a = b = 3.37 Å,
c = 11.56 Å [27]. The crystal structure lacks spatial inversion symmetry because there are
two Ta atoms and two As atoms in each primitive unit cell, wherein each pair of Ta and
As atom types are crystallographically non-equivalent. Firstly, collinear magnetization
calculations were performed without spin-orbit coupling (SOC) for the structure relaxation
using the plane-wave basis set, as implemented in the PWSCF code of the QUANTUM
ESPRESSO suite [28,29]. Electron-ion interactions were described using PAW potentials [30].
Exchange-correlation energy correction as described in the generalized gradient approx-
imation (GGA) as parameterized by Perdew, Burke and Ernzerhoff (PBE) [31]. Cut-off
limits of 45 and 270 Ry we set for the kinetic energy and charge density expansions in the
plane wave basis. The calculations were performed on a uniform Monkhorst-Pack k-point
mesh of 8 × 8 × 8 (≈512) points, which is enough to achieve convergence of electronic
energies and Hellman-Feynman forces to within 10−12 eV and 10−3 eV/Å, respectively.
The Brillouin zone was sampled with a much denser k-points grid of 24 × 24 × 24 [32].

To impose time-reversal symmetry (TRS) constraints, electron states were treated as
spinors with double group symmetry and populated using a Methfessels-Paxton smearing
scheme with a smearing width of 7.35 mRy [33] since spin is a proper quantum number
in Dirac materials. This constraint ensures that the electronic structure converged to the
correct non-magnetic ground state. The lattice constants and internal coordinates of TaAs
were fully optimized. Secondly, the relaxed structures were used as the input charge
density for the calculation of the non-collinear magnetic ground state. In the non-collinear
magnetization calculation, fully relativistic pseudopotentials were used. These inherently
include the relativistic SOC as a first-order correction to the ground state electronic structure.
SOC lifts Kramers’ degeneracy by splitting degenerate electron states. Using the DFT-level
ground state, we compute the near field electrodynamics to unravel the optoelectronic
and carrier transport response of dimers, small clusters, and bulk structures of TaAs and
graphene in Section 3.

In Section 2.2, the ground state is renormalized to the graphene electronic structure
and used to characterize the emergence of topologically ordered electron states. With the
application of the external drive field to the rescaled graphene ground state, the response of
the electronic structure to the applied external field is investigated. This scheme permits the
analysis of the conversion of the trivial equilibrium bands into non-equilibrium topological
bands as a function of the applied field intensity. In this approach, all the energy values used
in the numerical computation are scaled by the hopping parameter t. This is expectedly
different for chemically distinct 2D lattices like silicene, germanene, stanine, etc., with
different t scaling compared to graphene.
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2.2. Emergence of Topological Order in Electronic Phases

The simplest tight-binding model of the honeycomb lattice representation of a Dirac
material is adopted to describe graphene with an orbital per site. The effective Hamiltonian
of graphene is written in our tight-binding model as a sum of five contributions:

H = Hhc + HSO + HR + HST + HM . (1)

The terms denote contributions from the nearest-neighbor hopping, intrinsic spin-
orbit, Rashba spin-orbit, staggered sublattice and magnetic exchange interactions. There-
fore, the electrodynamics of a Bloch electron propagating in a 2D Dirac material under
the effects of a uniform drive field [34–38] can be understood from the equivalent tight-
binding formalism [37] of graphene. For the honeycomb lattice, this reduces to an effective
Hamiltonian:

H = −t ∑
〈i,j〉α

c†
iαcjα +i

λSO

3
√

3
∑

�i,j�αβ

νij c†
iασZ

αβcjβ+i λR(EZ) ∑
〈i,j〉αβ

c†
iα

(
σ× d̂ij

)Z

αβ
cjβ−l ∑

iα
µi EZc†

iαciα + M ∑
iα

c†
iασZciα (2)

where c†
iα (ciα) denotes the operator that creates (annihilates) an electron with spin polariza-

tion α at site i, and the sums over 〈i, j〉 and� i, j� run over all the nearest or next nearest
neighbor hopping sites. The first term is the nearest neighbor (NN) hopping with unit
energy t, which takes the value t ' 2.7 eV [39]. The second term represents the effective of
intrinsic spin-orbital coupling λSO, where σ =

(
σx , σy , σz

)
is the Pauli matrix of the spin,

with νij = +1 if the next-nearest-neighboring hopping is anticlockwise and νij = −1 if it is
clockwise to the positive z-axis. The third term represents the Rashba SOC (λR) associated
with nearest neighbor hoppings induced by external electric field Ez [40–42]. The fourth
term denotes the staggered sublattice potential, which is induced by the electric field Ez
and l denotes the buckle height of the lattice, where µi = ±1. The last term represents the
exchange field, M [40,43,44]. It is related to the magnetic field strength. It is equivalent
to the total magnetic flux per unit cell Φ = 1

2π
gB0
λz

µB, where the Zeeman spin-splitting
magnetic field effect on the spin-space Hamiltonian HZ is an on-site term. The exchange
field M arises from proximity effect due to the coupling of the graphene sheet to a fer-
romagnet. This is obtained in multilayers that integrate a ferromagnetic slab in stacked
heterostructures [10–12] or when ferromagnetic atoms are deposited on the graphene. The
vector operation σ× d̂ij yields a spin matrix of zero diagonal and non-zero off-diagonal
elements, such that hopping from site i to j leads to the flipped-spin configuration.

The emergence of topological order in the quantum transport phase of artificial-
stacked multilayer systems plays an important role in modern condensed matter physics.
However, detecting topological quantum phase transitions (TQPTs) is still a major challenge
due to the absence of local order parameters. We address this challenge by tracking
the emergence of topological order in the SOC-corrected DFT ground state of TaAs as
a projection on graphene and tuning the TQPTs. By retaining the scaling parameters
that reproduce the transport properties of the SOC-corrected TaAs band structure on
the graphene lattice, we reproduce the correct low energy dispersion with t = 2.05 eV.
Since other parameters like λSO and EZ are expressed in terms of this t, the emergence
of topological order from the renormalized ground state and any renormalization to
another buckled honeycomb structure depends explicitly on the ratios of λSO and EZ to
the value t = 2.05 eV. The renormalized band structure is obtained with λR/t = 0.04 t and
M/t = 0.06 t. This guarantees transferability of t since the above scaling self-consistently
adjusts to the competing internal fields to graphene. Our implementation uses QUANTUM
HONEYCOMP version 0.19.1 (Jose Lado, Galicia, Spain). This is an open-source PYTHON
utility for computing the topological, magnetic, and transport properties of quantum
materials in the tight-binding approximation [45].

In the quantum Hall regime considered here, wherein quantized conductance has the
notion of topological order intrinsically linked to the total flux Φ that passes through the
Brillouin zone during gauge-invariant adiabatic cycling, distinct topological properties
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are known to emerge [46]. Quantized Hall conductance is thus the number of electrons
transported across the Brillouin zone when Φ is increased by one unit of the flux quantum.
As the graphene lattice is periodic in both x and y directions, both the vector potential
A(t) and the effective Hamiltonian H(t) are also periodic in x and y directions, with the
expectation value of the Hamiltonian H matrix obtainable in the Bloch functions basis via
the discrete Harper eigenvalue problem [47]. Thus, the internal fields of the nonmagnetic
bulk TaAs wherein the quantum state at 0 K are partitioned into an effective space and
an orthogonal space and mapped onto the above effective Hamiltonian are adjusted to
recover the unique spectral features in their low-energy band dispersion of graphene.
With orbital hopping and self-energies described within a tight-binding model for nearest
neighbor hopping on the hexagonal lattice, the two-band model of the dynamical bulk
band structure was determined for the non-degenerate spin system subject to periodic
boundary conditions.

The best candidate materials to realize TQPTs using applied external fields would be
2D materials with SOC. Since their monolayer form makes them suitable for integration into
multilayer heterostructures coupled together through van der Waals forces, understanding
their optical properties and characterizing how they respond to electromagnetic fields is
crucial for optical and optoelectronic applications. We have implemented a combination
of Rashba spin-orbit coupling effect, magnetic exchange field, and external electric field
to drive a topological change in the quantum phase, which is tractable using the Chern
number C and the Z2 topological index. For simplicity, we consider a 2D crystalline system
whose Berry connection of the mth band is:

A(m)(k) = i〈um(k)
∣∣∣∆kum(k)〉, k =

(
kx, ky

)
(3)

so that the Berry curvature is given by:

Ω(m)(k) = ∆k × i〈um(k)
∣∣∣∆kum(k)〉 (4)

Thus, the Chern number of mth band is obtained as:

C(m) =
1

2π

∫
BZ

Ω(m)(k)dk, (5)

where the integration is over the Brillouin zone (BZ). The Chern number is an intrinsic
property of the band structure and has various effects on the carrier transport of the
system [48,49]. In the presence of SOC, the effective Hamiltonian is analogous to the
graphene quantum spin Hall effect (QSHE) Hamiltonian [50]. Thus, spin is a good quantum
number in this formalism. Spin up and down Chern numbers individually serve as good
topological invariants. Since spin (SZ) is a good quantum number in this two-band model
of graphene, the Z2 index is identical to the spin-Chern number CS. These are defined when
the topological state is gapped and the Fermi level lies within the gap region and given by:
C = C+ + C− and C = 1

2 (C+ + C−), where C± is the summation of the Berry curvature
in momentum space over the occupied electron states with SZ = ±1. These metrics are
well-defined even in systems where spin Sz is not a good quantum number [42,44,51].

2.3. Relationships with Other Models of Transport via Emergent Topological Quantum Phases

Over three decades ago, Schluter and Hybertsen [52] and Hybertsen, et al. [53] used
two successive stages of the renormalization strategy to derive strong-coupling models for
the electronic structure of La2CuO4 from results of local-density-functional calculations. In
the first stage, they derived a 3-band Hubbard model with parameters calculated explicitly
from first principles using a constrained density-functional approach and a mean-field fit to
the Cu-O pdσ bands. In the second stage, they performed exact diagonalization studies of
finite clusters within the 3-band Hubbard model to select and map the low-energy transport
onto an effective one-band Hamiltonian, such as the Heisenberg, one-band Hubbard, or
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‘t-t’-J’ model. They found that at each of the stages, the calculated observables were in
quantitative agreement with experiments. They also observed that the insulating phase
of La2CuO4 is quantitatively described by a Heisenberg model with excitation energies in
good agreement with the experiment. Spectra for systems that have extra electrons or holes
added were also found to be described well by the symmetric one-band models, which
they suggested could form the basis for describing the superconducting transport state of
La2CuO4. The second stage of the above renormalization approach, also known as the t-J
formalism, has been used within the d-p model of the cell-perturbation method to describe
CuO2 planes in cuprate superconductors [54].

Herein, we have applied the same renormalization strategies by considering both TaAs
and graphene explicitly at two different levels of theory. At the first level, the electronic
structure of TaAs is computed in its native 3D body-center cubic crystal structure using
DFT. At the second level, the transport character that emerges from the SOC-corrected
band structure of TaAs is considered based on the equivalent transport character of the
2-band tight binding level model of the field-tuned graphene model. This is an important
aspect of the renormalization because the validity of the emergent quantum phases rests
based on the accuracy of the DFT-calculated band structure of TaAs. Insights derived
from results of the second level of theory constitute the theoretical basis for capturing
emergent topologically ordered phases for quantum transport on the honeycomb lattice of
the graphene.

The outcome of our renormalization is equivalent to considerations of the Kane-Mele
model [55,56] for a bulk system, with an additional exchange field term and then fit the
parameters such that the bandgap in the Kane-Mele model matches the bandgap in the
DFT-computed TaAs band structure with SOC. Because the low-energy excitations of a
Dirac material are uniquely described by the relativistic Dirac or Weyl equations [57], we
have utilized TaAs and graphene as model lattice systems to describe the emergent carrier
transport properties of a prototypical Dirac material. This permits the above modeling
strategies, their results, and conclusions to become equally applicable to any Dirac material.
However, we emphasize that the magnitude of each of the scaling parameters for electronic
energy (i.e., t, µ, and λ) will differ as the platform used for the characterization of carrier
transport is changed from one Dirac material to another.

The mapping that permits a generalization of our analyses to all Dirac materials is the
rescaling of carrier transport from the low-energy band dispersion. This is so because the
nature of carrier transport in any Dirac material (i.e., metallic, semi-metallic, half-metallic,
semiconducting, or insulating, etc.) will depend strictly on the nature of the low-energy
band dispersion around the Fermi level. Moreover, the limit of applicability of the results
also extends to zero-buckled honeycomb structures, such as graphene and monolayer
hexagonal boron nitride when integrated into stacked heterostructures insofar as the
Hamiltonian parameters t, µ, and λ, etc. are rescaled to the correct DFT ground state in
bulk TaAs. The validity of the mapping is dependent on the bulk-edge correspondence [8],
which guarantees the same quantized conductance in any other spin-orbit coupled Dirac
material at the correct set of field-tuning parameters.

More recently, Saxena, et al. [58] have used a similar set of rescaled energy parameters
to study the effect of uniform disorder on the topological phase transitions induced by
circularly polarized light in low-buckled spin-orbit coupled materials, such as silicene,
stanene, germanene, etc. It is important to note that even though their model Hamiltonian
is designed for characterizing materials with an intrinsically low-buckled hexagonal lattice
structure, it is used to describe the carrier transport and topological properties that emerge
from the edge states of the graphene nanoribbon. This approach has allowed them to
identify a phenomenological A-phase, which appears in their topological phase diagram
with the pair of spin-resolved Chern numbers (C↑, C↓) = (0,0) as the Floquet topological
Anderson insulator phase. Their model showed that guaranteed topological protection
of phenomena such as the sum-ruled quantum Hall conductance forms the basis for
identifying phases and that these could serve as the signatures required to identify the
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individual phases in the topological phase diagrams. This is because, with the electronic
signatures of edge states of the graphene ribbon, it is possible to circumvent the need to
know the actual occupancy of bands involved in the transport.

To understand the efficacy and utility of our model to understand the charge or spin
carrier dynamics, it is important to consider that when the transport platform, e.g., vertically
stacked heterostructure system [10–13], is prepared such that carriers are transported in
the steady-state, then the edge-modes of the incorporated Dirac materials can be made to
acquire unit occupation with quantized conductance. The spin signature of such edge states
is the crucial requirement for identifying unique phases in the calculated phase diagrams
without using the occupancy of the band because spin is odd under time-reversal. The
mapping that permits the analyses performed herein is the rescaling of carrier transport
from the low-energy band dispersion. The validity of the mapping is dependent on the bulk-
edge correspondence [8], which guarantees the same quantized conductance in any other
spin-orbit coupled Dirac material at the correct set of field-tuning parameters. Srivastav,
et al. [59] showed in thermal conductance measurements on graphene that the conductance
quantization is a universal phenomenon that applies also to thermal transport on graphene
and utilized the unique edge-state profile in graphene edge to obtain information on the
topological order of heat carrier states.

Practically, spin carrier transport platforms in which the required broken TRS is
provided by spin-sensitive and magnetic heterobilayer interfaces require an applied field
to couple the spins to maintain time-reversal invariance. We show in Section 3.1.2 that
under a suitable combination of internal (i.e., µ, λR, λSO) and external (i.e., EZ, M) fields,
unique quantum transport phases emerge. In addition, markers of the local response of
spin carriers are inferred from tuned graphene bands via the pair of topological invariants
and Chern numbers, which quantify the real space topological order. Phases with order
parameter pair (Z2,C) = (0,0) and (Z2,C) = (0,2) are equivalent to the band (i.e., trivial)
insulator and topological insulator (TI) phases, respectively. Our results reveal that the
magnitude of the inherently wide bandgap of this TI phase is scalable. In Section 3.2, we
demonstrate further that the scalability of this bandgap and its field-dependent tuning leads
to the emergence of an exotic quantum fluid phase, which we attribute to the topologically
protected charge density wave transport state.

2.4. Time-Propagation TDDFT of the Topological Electronic Phase

Physical observables at the TQPT points depend on the response function of the
underlying density matrix to the applied field. From the perspective of classical electrody-
namics, it is intuitive to interpret the response of a material to light either as the absorption
or scattering of the light, and such response is described by using Maxwell equations.
However, one of the widely used numerical methods for obtaining computational solutions
to Maxwell equations is based on the finite-difference time-domain (FDTD) approach [60].
The FDTD approach is based on the time propagation of the electric and magnetic field
components of the applied electromagnetic radiation in a way that allows observables of
the field-induced response to be expressed on real space grid points. Optical constants are
derived from the resulting far-field pattern. In the microscopic limit where short length and
time scales dominate, the quasistatic approximation of the FDTD approach (QS-FDTD) is
valid. Computational implementation of the QS-FDTD approximation allows the retarda-
tion effects of the finite speed of light to be neglected insofar as the length scales are small,
typically below ~50 nm, for DFT calculations of the electronic structure within the supercell
approximation to remain valid. Compared to full FDTD, the quasistatic formulation has
some advantageous features. The magnetic field is negligible and only the longitudinal
electric field needs to be considered so that the number of degrees of freedom is smaller.
Because the retardation effects and propagating solutions are excluded, longer time steps
and simpler treatment of the boundary conditions can be used. The approximation allows
for the derivation of an alternative set of time-dependent equations for the polarization
charge, current, the electric and magnetic fields.
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By treating the electronic structure as an autonomous quantum system such that
its Hamiltonian is dependent on time, then all relevant information about the system is
contained in the matrix elements of its time evolution operator. As such, the reduced
matrix elements of the single-particle density are recoverable from frequency space Fourier
transform of the ground state density matrix since it constitutes the time propagator of
the system within QS-FDTD. The time propagator gives the probability amplitude for the
electron state to propagate between Point 1 (denoted by wave vector k1) at time t1 and Point
2 (denoted wave vector k2) at time t2 due to perturbation of the dipole moment within the
interval of time ∆t = t2 − t1. This is equivalent to the application of non-zero field to the
single-particle ground state density at time interval ∆t. The system propagator gives the
probability amplitude for the electron state to propagate between Point 1 (wave vector k1)
at time t1 and Point 2 (wave vector k2) at time t2 in reciprocal space due to the perturbation
of the dipole moment within the interval ∆t. This is equivalent to the application of zero
and non-zero radiation fields to the single-particle ground state density at time t1 and
t2, respectively. For instance, in their microscopic theory of the field-dependent carrier
dynamics, Sato et al. have treated the time evolution of the reduced density matrix ρ under
a phenomenological relaxation D using a quantum Liouville equation [61].

Hereunder, the time-propagation TDDFT approach of describing electronic states in
the presence of an applied field [62] is adopted to compute the time-dependent density
matrix (i.e., propagator) of the system n(r, t) = ∑occ

∣∣Ψ(r, t)∗Ψ(r, t)
∣∣r̃ using the corre-

sponding time-independent all-electron wave function Ψ(r) in the basis set of atomic-like
functions. In the projector augmented wave (PAW) formalism, the time-dependent Kohn-
Sham equation is represented using the PAW projector T̂ of the all-electron wave function
Ψ(r, t) = T̂ Ψ(r̃, t) as: [

T̂†
(
−i

d
dt

+ ĤKS

)
T̂
]

Ψ(r̃, t) = 0 (6)

The corresponding time-dependent wave functions Ψ(r, t) are represented using a basis
constructed from the linear combination of atomic-like orbital (LCAO) functions φ(r−R),
which are centered on atom µ located at point R as a discrete sum over all atoms as,

Ψ(r, t) = ∑µ
φ
(
r−Rµ

)
cµn, (7)

such that the matrix elements of the time-evolution operator are derived from the coeffi-
cients of the LCAO wave function as:

iS
d
dt

C(t) = H(t)C(t). (8)

The terms C, S, and H denote dense matrices of linear Hermitian operators. The
numerical implementation relies on the semi-implicit Crank–Nicolson method to propagate
the wave functions in time. For a given wave function C(t) at time t, the system is
propagated forward by using the time-dependent Hamiltonian H(t) to solve the linear
equation for the predicted matrix elements of the wave function C

′
at the forward time

(t + ∆t), while H(t) is computed at the midpoint of the time-step δt according to the
condition:

S + iH(t)
δt
2

C
′
(t + δt) = S− iH(t)

δt
2

C(t). (9)

With the predicted wave function C
′
(t + δt), the time-updated Hamiltonian H

′
(t + δt)

is computed at the midpoint of δt as:

H
′
(t + δt) =

1
2

[
H(t) + H

′
(t + δt)

]
. (10)
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By using the corrected Hamiltonian H
′
(t + δt), the system is propagated further in

time t + δt by computing the updated wave function C
′
(t + δt) as a numerical solution

to the

S + iH
(

t +
δt
2

)
δt
2

C(t + δt) = S− iH
(

t +
δt
2

)
δt
2

C(t). (11)

Diagonalization of matrices C, S, and H are handled with ScaLAPAC and BLACS
for the QS-FDTD computations within the grid-based projector augmented wave code,
GPAW [63]. The above numerical procedure was implemented over a pulse duration
∆t of 40 fs over a total of 2000 simulation steps N using a timestep δt of 4 attoseconds
(4 × 10−18 s), where ∆t = Nδt. The SICN algorithm has an embedded Euler step in each
predictor step. This makes the time propagation an efficient numerical operation over the
N simulation steps:

ΨN(t + δt) ≈
(

1− i Ŝ−1
approx.(t)Ĥ(t)δt

)
ΨN(t), (12)

where the matrix operation Ŝ−1
approx. denotes an approximate inversion of the overlap matrix Ŝ.

Because the external field effect can be complicated when the intensity is strong enough
to distort the positive Coulomb potential of the underlying lattice, we only consider the
response of the ground state density in the weak-field limit. In this case, the applied field
is treated as an absorption kick through a weak delta-function pulse of the dipole electric
field. By allowing the electronic structure to propagate freely, we also obtain the time
average of the pseudo electron density n(r, t) on a set of k-grid points as a response over
the propagation time tN as,

n(r, t) =
1

tN+1

(
∑N

0 |n (r, t)|∆t
)

. (13)

In this case, setting the simulation time to satisfy the condition: tN+1 = ∑
j=N−1
j=1 ∆tj

overall steps allow for the efficient computation of the time-dependent dipole moment,
the absorption spectrum, and the induced electric fields from the time-averaged density
matrix or propagator n(r, t). Since it is only the excitations that have been induced by the
absorption kick that can show up in the absorption spectrum, we have also computed the
Fourier transform of the density matrix on discrete grid points. This was obtained in the
frequency domain, as a discrete moving-average Fourier transform of the pseudo-charge
density n(r, t) relative to the time-averaged density n(r, t) over each simulation step as:

FN(r, ω) =
1√
π

(
∑N

0 ∆n(r, t) e−
1
2 t2

N eiωtN ∆tN

)
, (14)

where ∆n(r, t) = n(r, t) − n(r, t). The above algorithm leads to non-trivial numerical
challenges with storage of large data that must be computed on arrival at time tN on a large
number N of real-space grid points, typically N = 10,000. This challenge is surmounted by
implementing a numerical strategy that only requires data to be computed one timestep at
a time.

3. Results and Discussion
3.1. Electronic Properties
3.1.1. Renormalized Electronic Ground State

Figure 1 shows the bulk band structures of TaAs and the graphene sheet as a bench-
mark of the renormalized electronic structure. In the absence of SOC, the conduction and
valence bands of TaAs cross along the Σ-N-Σ1 direction of the Brillouin zone (Figure 1a),
as expected from a semimetal. In the presence of SOC, by contrast, the band structure is
fully gapped along with the high-symmetry directions (Figure 1b). In addition, the Weyl
points that appear in the presence of SOC have shifted away from the high-symmetry
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points, and the double degeneracy of bands is lifted except at the Kramers points. This
splitting of energies confirms the lifting of degenerate electron states due to the presence of
intrinsic SOC. Our PBE calculations of the TaAs band structure agree with published band
structures calculated for TaAs [64–66]. As a Weyl semimetal, Yan, et al. [67] described bulk
TaAs as the 3D analog of graphene because of its linear dispersion around the Weyl points.

Figure 1. The DFT electronic structure of bulk TaAs in the absence of SOC (a). In the presence of SOC
(b). Where the dashed horizontal line denotes the Fermi level. The corresponding band structure
of bulk TaAs renormalized to the graphene sheet in the absence of SOC (c). In the presence of SOC
(d) at λR/t = 0.04t and exchange field M/t = 0.06 t, with the Fermi level located at E/t = 0 eV, where
t denotes the rescaled unit of energy. The color bars in (c) and (d) denote the value of the spin texture
in units of SZ, where h̄ =1.

The two-band tight-binding model of graphene sheet yields the zero-gap band struc-
ture in the absence of SOC (Figure 1c) and a gapped band structure in the presence of SOC
(Figure 1d). This electronic structure is consistent with the semi-metallic transport expected
in the pristine graphene sheet. The corresponding spin texture of the renormalized band
structure is shown as the color bar. Although the value of the SOC in graphene is too
small to open a sizeable band gap in graphene, it is important to emphasize that the role
of the SOC is to lift the Kramers degeneracies that occur in electron band states when
SOC is ignored. Nevertheless, the presence of intrinsic SOC in a Dirac material does not
break the time-reversal symmetry of the electronic structure because the Hamiltonian and
the SOC-operator commute. The invariance of the SOC under time reversal symmetry
means that additional fields that can break the symmetry of the electronic structure must
be applied to the electronic states to open the bad gap in bulk TaAs. These additional fields
are phenomenological. In the actual calculations for bulk Dirac materials, these fields are
modelled as the Rashba SOC (λR), the magnetic exchange (or Zeeman) field M and the
external electric field EZ. Both the SOC-corrected band structure of bulk TaAs and the
renormalized graphene electronic structure are semi-metallic as expected. The SOC effect
is weak in graphene compared with other 2D materials such as silicene or germanene.
Nevertheless, its low-buckled crystal structure introduces a low-staggering potential, with
important ramifications on the dynamical electronic structure.

By contrast, in material platforms wherein a surface slab of the Dirac material (e.g.,
TaAs) has been combined with a magnetic layer to form a bilayer or a multilayer het-
erostructure with perpendicular magnetization the scenario is different. In this case, both
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structural inversion and time-reversal symmetries are broken. The broken symmetries
introduce edge as well as interfacial states into the electronic structure at ground state.
Thus, without any additional fields, the hybridization, or electronic exchange coupling,
between the surface or edge states and the magnetic ordering in the magnetic layer are
conditions that could open a band gap at the Dirac point. When the heterostructure also
incorporates a topological insulator within the stack, then either the broken time-reversal
symmetry or spatial inversion symmetry of a Dirac point can lead to the appearance of
Weyl points.

We emphasize that the renormalization of the ground state is effective in the regime
wherein the driving field intensity is sufficiently weak for its effects to be included through
a time-dependent vector potential without altering the underlying lattice system. In this
approach, experimental results for conversion of trivial equilibrium bands into topological
non-equilibrium bands in both low [16–21] and high [68] frequency limits are understood
in terms of non-stroboscopic and stroboscopic electron dynamics. We also demonstrate
how the external drive can be used to modify the trivial band structure as a necessary
and sufficient test of the renormalization strategy. In Section 3.2, we demonstrate how the
propagator of the system is recoverable from the topological phase diagram by considering
the recovery in the two physically relevant limits in which there are zero and non-zero
radiation effects on the ground state.

Figure 1d shows that the application of Rashba SOC of λR/t = 0.04t and the Zeeman
exchange of M/t = 0.06 t opens a small band gap in the graphene. The size of the band
gap in graphene is equivalent to the SOC-induced band gap in TaAs. The fact that the
magnitude of this induced band gap exactly matches the SOC-induced gap in TaAs (see
Figure 1b) is the underpinning basis for the ground state renormalization. In addition
to the Weyl and Dirac nodes, there are several other possibilities for the formation of
the zero-band gap electronic structure. Figure 1a,c shows the electronic band structure
when time-reversal and spatial inversion-symmetries are preserved at generic points in the
k-space that are not necessarily high-symmetry points. The drive field lifts the degeneracy
at the high symmetry points where the valence and conduction bands touch. As expected,
the ground state band structure shows semi-metallic transport character in the absence of
SOC since the bands at Brillouin zone point K and K’ touch each other, with an equivalently
small bandgap opened in the DFT band structure of TaAs (see Figure 1b,d). These show
that the SOC-corrected TaAs band structure is characterized by a small bandgap. The SOC
also lifts the degeneracy of electron states, and this assigns extremal spin textures, i.e.,
SZ = ±1 to the two bands that lie within both conduction and valence bands at the M-point
of the Brillouin zone. Thus, it is not the band structure of the graphene itself that captures
the sensitivity to spin. This is because the size of the intrinsic SOC in graphene is very
small [69]. It is instead the SOC-induced spectral gaps at high-symmetry points [70] that
respond to the field.

From Figure 1a, it is observed that two of the four TaAs bands that cross the Fermi level
at the midpoint along the Σ-N and N-Σ1 directions of the TaAs Brillouin zone (BZ) denote
the two bands modeled by the graphene band crossings at points K and K’ in Figure 1c.
This is because the magnitude of the SOC-induced band gaps at these two pairs of BZ
points is both minimal and equal (Figure 1b). As such, these limit the overall transport
character of the system to the semiconducting state notwithstanding the magnitude of any
other gap determined at any other BZ point and the differences in their local structure and
chemistry. Thus, the carrier transport character that results from the SOC-corrected TaAs
band structure around the Fermi level is correctly approximated by the emergent transport
character of the tuned graphene, as modeled in the 2-band tight-binding approximation at
a given set of field-tuning parameters. This specific set of field-tuning parameters for TaAs
gives unique carrier transport signatures on the honeycomb lattice. As such, a one-to-one
correspondence exists between the carrier transport character of the 3D body-center cubic
TaAs as a mapping to the equivalent transport character of the field-tuned hexagonal lattice
of graphene.
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The above renormalization strategy is valid insofar as the mapping is not construed to
imply that any form of physical transformation of the 3D body center cubic TaAs lattice
structure into an equivalent 2D hexagonal lattice representation exists for the same material.
This is because no physically intuitive information on carrier transport is lost in this process.
The electronic structure presented herein is neither a mapping to establish an equivalence
between the underlying lattices in TaAs and graphene, nor to establish the equivalence be-
tween their essential chemistries. Instead, it establishes that the emergent carrier transport
character in the electronic structure of TaAs around the Fermi level after the SOC-correction
is equivalent to the suitably tuned graphene electronic structure. Consider that TaAs is
ordinarily semi-metallic in the absence of the SOC, which upon field-tuning yields an
equivalent semiconducting character just as graphene. This emergent carrier transport
matches the semiconducting behavior observed in the band dispersion along the Γ-Σ-N-
Σ1-Γ direction of the BZ in TaAs, notwithstanding the actual point in the BZ at which the
carrier transport limiting bandgap, is opened. The one-to-one correspondence established
in the above renormalization procedure is used in the following to track the emergence
of topologically ordered quantum transport phases from the field-free semiconducting
transport phase of TaAs (Figure 1b). This is performed in a representation in which the
SOC-corrected DFT ground state of TaAs has been mapped onto an equivalently gapped
graphene band structure where the emergence of topological order is captured.

3.1.2. Characterizing the Topological Order and Quantum Phase Transitions

The use of topological phase diagrams to identify electronic phases is presented
below. By analyzing the low energy dispersion of electronic phases, we demonstrate
the emergence of non-local topological order and identify the associated TQPTs using
topological order parameters. To check that the BEC principle correctly preserves the chiral
edge states expected on the graphene ribbon, the corresponding band structures are shown
for special Brillouin zone points in each topological phase and labeled with quantized
topological order parameters. Topological invariant (Z2) and Chern number (C) is used to
characterized phases for time-reversal invariant electronic systems, where Z2 = 1 denotes
a non-trivial electronic phase such as the topological insulator phase (TI) or the quantum
spin Hall insulator (QSH) phase, whereas Z2 = 0 indicates trivial phase such as band
insulator.

In the low-energy effective theory of the electrons, carrier dynamics is described by
the Hamiltonian h±,0(q) = E0(q) σ0 + Vxq1 σx + m0σz, where q = K − K0, σ denotes
the Pauli spin matrices and mass m is a tuning parameter for the TQPT [71]. The TQPT
between the QSH and band insulator (BI) phases is distinguished only by the Z2 index.
This occurs only when the mass m term in the Hamiltonian h±,0(q) changes its sign. The
argument used to determine the change of Z2-index allows for classification of phase
transitions in terms of the changes between the expectation values of the order parameter
of two distinct time-reversal invariant topological and trivial phases [72]. The presence of
both time-reversal and inversion symmetries guarantees that order-parameter C vanishes.
Close to the transition point between two quantum phases, the electronic structure is
prone to strongly enhanced field-dependent responses, which are tractable with topological
quantum numbers, Z2 and C.

Topological order parameters that characterize the QSH and band insulator phases
are often a pair of integers (Z2, C). The integral form of the order parameters (Z2, C) for
an electronic phase denotes quantization of the topological order, and their discontinuous
change signals a TQPT. For the applied drive intensity to spontaneously break the symmetry
of the Hamiltonian of the electronic system as to warrant a TQPT, at least one of the
parameters of its Hamiltonian must be tuned through a critical value. In addition, the
resulting phase transition must signal a change from one state of quantum matter to another.
This phase change could be from a trivial to a topological electronic phase and vice versa.
Both Z2 and C are proper quantum numbers that are necessary to characterize the state of
quantum matter at 0 K as trivial or topological. These metrics indicate the global properties
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of the state manifold of the quantum matter defined on the irreducible Brillouin zone
(IBZ). Because all quantum states that belong to the same topological sector of the IBZ
are homotopic, they can be continuously deformed from one state to another or driven
in-between states without closing the bulk energy gap by applying a symmetry-breaking
field. Therefore, at the point of TQPT, the state manifold must experience a discontinuous
change in configuration. The changes manifest as a sign-change in the mass term of the
Hamiltonian can also show up through the inversion of electronic bands in TIs since the
bandgap closure is guaranteed by the BEC principle as an effect of broken time-reversal
symmetry.

3.1.3. Tuning the Topological Order Using Material-Dependent Potentials

In this section, the topological phase diagrams and the corresponding band struc-
tures derived from the applications of global symmetry-breaking fields are analyzed to
demonstrate that the occurrence of the TQPT points are tunable through the application of
fields-both intrinsic and extrinsic to the material Therefore, it is important to understand
how the above characterization of topological order and the resulting TQPTs would change
when the renormalized electronic structure of the TaAs ground state is projected instead
onto any other 2D material with intrinsic honeycomb structure apart from graphene. To
this extent, the effect of the staggered sublattice potential µ on the electronic structures is
explored. This effect originates from the low buckled honeycomb structure. As such, µ is
different in graphene and any other Dirac material for the tuned honeycomb model. Figure
2 shows the influence of the staggered sublattice potential on the topological invariant
phase diagram of the Haldane model on the honeycomb lattice of graphene [73], and
the derived band structure showing distinct TQPTs. The phase diagrams represent the
response of the ground state to changes in the internal field due to the staggered potential µ.
From the sensitivity of the topological order parameters and the resulting electronic phases
to µ, we now demonstrate that a facile electronic switch is obtainable on these materials
by suitably tailoring the internal fields. This way, the low energy transport character can
be tuned from the low energy dispersion of its topological edge states, and thus tune the
TQPT.

Figure 2a shows the topological invariant phase diagram of the Haldane model
obtained on the modified graphene lattice with µ1 set to 0.1 t. This also exhibits a two-
phase region identified with Z2 = 0 (green) and Z2 = 1 (blue). Figure 2b) shows the
modified band structure of the (0,0) trivial electronic phase at 0.1 t. The band structure is
characterized by a small bandgap at the KK’ points of the IBZ and the blue, red, and green
regions in the band structures (Figure 2b,c,e,f and 3c–j) denote the up spin (↑↑), the down
spin (↓↓) and edge states respectively. Besides, the nature of the low energy dispersion is
fundamentally different relative to the band structure of the equivalent electronic phases. In
addition, µ has significantly influenced the low-energy dispersion but without altering the
underlying topological order of the phase since the pair of order parameters (0,0) remains
unchanged. Figure 2c shows the band structure of the electronic phase after the TQPT
has occurred under the lattice distortion effect due to µ1. This shows that this TQPT has
been accompanied by a considerable closure of the bandgap although the overall electronic
structure is still gapped of the transport character of the quantum state is unchanged.

The effect of setting the staggered potential µ2 = 0.3 t in the topological invariant phase
diagram of the Haldane model is shown in Figure 2d. In addition, the corresponding band
structures are shown in (Figure 2e,f) it is thus concluded that the effect of µ on the band
structure of this electronic phase is non-negligible–both from the perspective of carrier
transport and the topological order. We have noted that only the two indicated values
of the staggered potential can yield a transition between trivial and non-trivial quantum
phases and vice versa. At any given staggered-potential, phase transition lines separate
the trivial insulating (denoted by C = 0) and non-trivial insulating (denoted by C = +1)
Chern phases. In Figure 2e, the Chern number changes by three units from ±1 to 2 across
phase boundary lines due to the creation of the three satellite Dirac points at the KK’ points.
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The appearance of non-zero Chern numbers (see Figure 2c,e,f) guarantees the existence of
gapless edge states due to the topological index theorem [74]. To summarize, the Haldane
model on the honeycomb lattice has four phases made up of three topological phases with
C = +2 and one trivial insulator phase with C = 0.

Figure 2. Effect of a fixed staggered sublattice potential of 0.1 t on the topological invariant phase diagram of the Haldane
model on the modified honeycomb lattice (a). The associated band structure of identified electronic phases in phase fields is
indicated by the blue color (b) and green (c). A similar plot at a fixed staggered sublattice potential of 0.3 t (d) and the band
structures are associated with the two-phase regions denoted by color blue (e), and green (f). The color bars in (b,c) and
(e,f) denote the expectation value of the spin texture in units of SZ, where h̄ = 1.

Consider that the Chern number of a band can only change when it crosses another
band at the TQPT point. The transport signature of the electronic phase must be either
metallic or semi-metallic, i.e., without an insulating gap. On the contrary, C = 0 guarantees
the existence of the trivial insulator phase in the Haldane model, we assign the opening of
the KK’-point bandgap to the formation of the topological insulating phase from the trivial
band insulator phase. In massive Dirac fermion systems, the BEC principle guarantees
the existence of a chiral edge state per boundary of the system. Thus, when the Fermi
level is located within the gap region, the case where C 6= 0 means that bands must appear
below the Fermi energy. This implies that both (integer) quantum Hall and gapless chiral
edge states must coexist in the presence of disorder. For this reason, we suggest that
such exotic quantum phases are realizable in artificially stacked van der Waals multilayer
heterostructures [10–13] when engineered to incorporate layers of heavy metal species due
to the presence of strong SOC and intrinsic long-range disorder.

We have also monitored the effects of changes in the intrinsic SOC term on the emer-
gent electronic phases. The contribution is small in graphene and but can also be enhanced
on purpose. For instance, time-reversal symmetry can be tuned through electrostatic
doping of the ferromagnetic (FM) layer [75]. In artificially stacked multilayer heterostruc-
tures [10–13], this is achievable by incorporating a heavy metal (HM) layer with large
intrinsic SOC. The use of the HM layer or electrostatic doping with an FM layer breaks
time-reversal symmetry. This ensures that tunability of the inherent topological order of
the ground state is guaranteed. By contrast, the introduction of sublattice asymmetry also
breaks the inversion symmetry of the graphene layer to open a trivial bandgap. This also
occurs in the ground state of hexagonal boron nitride monolayer [76,77]. The asymmetry
is realizable through substitutional doping, lattice symmetry engineering, and the appli-
cation of uniaxial or biaxial strain. It is important to emphasize that since the sublattice
asymmetry leads to different hoppings terms in the effective Hamiltonian, the Dirac points
are guaranteed to shift away from the K and K’ points.
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To illustrate the sensitivity of the electronic structure to the underlying material,
we have also investigated the Chern number phase diagram at two different constant
intensities of the staggered sublattice potential. Material dependence is modeled in terms
of a fixed value of the staggered sublattice potential. To maintain consistency with the
previous section, the staggered sublattice potential has been fixed. Figure 3 shows the Chern
number phase diagram at staggered sublattice potential µ1 = 0.1 t (Figure 3a) and µ2 = 0.3 t
(Figure 3b), and the band structure of unique quantum phases at the computed Chern
numbers. We also find that changes in the Rashba SOC independently induces a finite
bandgap in all the band structures shown in Figure 3. The corresponding topological order
parameters result in a series of trivial-to-topological phase transitions as the parameters
are ramped up suggesting that the intensity of the drive field plays a non-ignorable role in
the TQPT, but once a transition the topological phase occurs, intensity changes do not have
any further effect.

Figure 3. Chern number phase diagram as the function of staggered sublattice potential µ1 = 0.1 t (a).
µ2 = 0.3 t (b). Where green denotes C = 0, blue denotes C = 2, red denotes C = −1 and yellow denotes
C = 1, respectively. The band structure derived for unique quantum phases at 0.1 t are plotted for
Chern numbers: −1 (c),0 (d), 1 (e), 2 (f). The corresponding band structure for unique quantum
phases at 0.3 t are plotted for Chern numbers: −1 (g), 0 (h), 1 (i), 2 (j), respectively. The color bars in
(c) to (j) denote the expectation value of the spin texture in units of SZ, where h̄ = 1.

From Figure 3a,b, the Chern phases are highly sensitive to the small range of the
changes in the Rashba SOC. For instance, not only are the areas of the non-trivial Chern
phase greatly enlarged but also the values of Chern number are changed. This general
feature is observed when the underlying transport character and SOC parameter of the
effective Hamiltonian change under the drive. Figure 3c–f suggests that as the Kramers
degeneracy of the bands is lifted at the KK′ point, it is substantially easier for Chern phases
to form. A similar manner has also tuned the Z2 invariant as a function of Rashba λR/t
and exchange field (Zeeman) M/t with a fixed value of electric field Ez/t = 0.5 t. This value
of the applied field yields a TQPT and corresponds to an absorption kick on intensity 0.01.
Nevertheless, it is shown in Section 3.2.1 that even lower intensity fields are enough to
create non-zero components in the optical transition matrix. The transition from trivial
to topological electronic phase is observed and the bandgap increases when the driving



Nanomaterials 2021, 11, 2914 16 of 28

field intensity increased. When the Rashba field is increased, the bandgap is decreasing
systematically, leading to gap closure near K and K′. This also demonstrates the ability to
tune a normal insulator into a topological insulator using the electric field since the Chern
number for both cases is C = 2.

Analyses of our results on the Haldane model (Figure 2) demonstrate that if the value
of C is non-zero, all the topological phenomena expected in the quantum Hall transport
state will be observable, including the quantized Hall conductivity and the existence of the
edge states. In addition, Figure 3 illustrates the use of fixed staggered sublattice potential,
as an internal field constraint of the transport platform, to also achieve the tunability of
the SOC-induced semiconducting gap in TaAs. For instance, (Figure 3c,g,h,j) show the
semiconducting band structure while Figure 3f shows the insulator band structure. On
the other hand (Figure 3d,e,i) each shows the metallic band structure. These show that
the carrier transport phase is scaled by the magnitude of the bandgap and tunable with µ.
The range of the bandgap, which spans from zero (metallic), minimal (semiconducting)
to maximal (insulating) indicates that the is scalable under the constraints of broken time-
reversal symmetry. Our results show that both intrinsic (λSO) and Rashba (λR/t) SOC
are key parameters for obtaining quantized Hall conductivity under the fixed staggered
sublattice potential µ in time-reversal symmetry invariant systems because there is no
spontaneous magnetic moment. These imply that in both TaAs and graphene, the effect of
an external magnetic field can play the role of the two forms of SOC contributions [55,56].

3.2. Optoelectronic Properties

Signatures of the near field quantum electrodynamics in the topological electron phase
are analyzed below to reveal a quantum fluid-like phase as a collective excitation mode for
carrier transport. This is central for understanding the non-linear optoelectronic response
of Dirac materials at the TQPT point. The response of the underlying chemical bonds to
light, and the light-induced interband transitions are strongly sensitive to the ground-state
density and the intensity of the applied field. To understand these electronic responses,
we also investigated the contributions from the optical transition matrix to the photon
absorption spectrum due to the distinct peaks identified in the photoabsorption spectrum.
Our results show that apart from the selective absorption of photons at critical fields
wherein TQPT is found to occur in the two models, there are also significant increases
in the intensity of the induced field around constituent atoms, even at very weak drives.
The atomic site resolution of the intensity of the induced fields is presented and discussed
to reveal wavelike quantum interference patterns as the field-dependent response of the
underlying electronic structure to carrier transport.

3.2.1. Near-Field Electrodynamics of Topological Electronic Phases

The theoretical models presented above are useful for understanding emergent carrier
transport in bulk Dirac materials. However, their implementation on transport platforms
derived from bulk Dirac material is computationally intensive. When a Dirac material is
incorporated into the van der Waals multilayer stack, its surface and edge states support
topologically protected states for tunable carrier transport. Quite fortunately, it is nanosized
(not bulk) components of Dirac material that are integrated into heterostructures for
device applications where oscillations of the free-electron density and spin sensitivity of
heterobilayer interfaces are crucial. Such interfaces typically require the integration of 2D
(or monolayer) material forms into vertical multilayer stacks or lateral heterostructures.
Thus, the emergent quantum transport phases modeled herein are readily realizable using
suitably engineered multilayer heterostructure platforms. Due to system size limitations,
we have extended the computational implementation from periodic 3D bulk Dirac materials
to their equivalent but smaller-sized 2D and 1D systems such as nanoclusters and atomic
nano-line, as structural models of TaAs and graphene nanoparticles.

This computational approach allows us to gain insights into the plasmonic signatures
that arise from optoelectronic responses of the free electron gas when nanoclusters and
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single-bond geometries of Dirac materials have been integrated into artificially stacked
materials platforms. We emphasize that the presence of coupled heterobilayer interfaces in
such coupled heterostructure introduces long-ranged structural disorder which guarantees
the broken spatial inversion symmetry expected in bulk Dirac materials. Recently, the
use of multilayer heterostructures that incorporate Dirac materials in 2D (or monolayer)
form for spintronic memory applications has been demonstrated [78]. The calculations
are tractable using TaAs and graphene models of Dirac materials because they retain their
chiral edge states in nano nanocluster geometries. Expectedly, retention of the chiral edge
states at reduced system size means that quantum confinement effects also become relevant.
The transport signatures that arise from edge-modes will still be topologically protected.
The tunability of the preserved topological order in reduced geometries is guaranteed by
the spontaneous appearance of a pair of topological invariant numbers (Z2, C), as discussed
in Section 3.1.2.

To obtain deeper insights into the fundamental physics of the interaction between the
applied field and the ground state density in topologically protected electronic phases, we
emphasize that time propagation of the ground state density is implemented based on
real-time propagation of atomic-like basis functions and not plane waves. As such, the
interacting density response function of a periodic structure cannot be described within
periodic boundary conditions because periodically repeating unit cells are not suitable to
describe the non-periodic structures investigated here. For clusters such as nanoparticles,
nanolines, and small molecular fragments, it is not necessary to define an upper bound for
the electrostatic potential for the field-structure interaction. Instead, it is only necessary
to ensure that the reference energy for collective excitation modes, such as the excitonic
or plasmonic state is defined to account for the energy difference between an isolated
nanocluster within a large encompassing vacuum region, and the corresponding Bloch
state obtained from the propagating LCAO functions.

The binding energy of the collective excitation mode, in this case, denotes the differ-
ence between the eigenvalue in each structure relative to the propagator eigenvalue in the
reference dielectric system, in which the absorption kick is non-vanishing. We have used
Au as the reference system for computing the binding energy of the collective optical excita-
tion mode because only a set of time-dependent polarizations and currents are propagated
on near-field scales and the time step used in the simulation is determined by the rate of
damping in the material and plasma oscillations and not the speed of light [79].

Figure shows the local distribution of the field enhancement intensity in the classical
(Figure 4a,c) and quantum (Figure 4b,d) subsystems in TaAs (top panels) and graphene
(bottom panels). These two subsystems represent the nanoparticle and dimer, respectively.
It is important to note that the order of magnitude of the field enhancement in the classical
subsystem is the same in both TaAs and graphene. This correspondence underscores the
equivalence of the renormalized electronic structure as the size of the system is increased.
Both the classical and quantum mechanical models reveal fringing field effects although the
effect is more noticeable in the region around the dimers. The field intensities are computed
at the TQPT point with energy t = 2.05 eV. The classical subsystem of the TaAs cluster
(Figure 4a) is modeled as a spherical nanoparticle of radius 7.85 Å while the quantum
subsystem (Figure 4b) denotes the Ta–As dimer at an interatomic distance of 2.62 Å.

The field enhancements reveal localized regions of high and low intensities around
the local geometry—even at a low absorption kick of 10−5. Thus, once TQPT has occurred,
a change in field intensity does not change the topological order of the electronic phase.
Figure 4a,b shows significant enhancements of the field predominantly at the sharp edges
(denoted by yellow region) of the nanoparticle geometry. The field lines typically form
symmetrical fringes that radiate outwards from the sharp edges in the classical subsystem.
Thus, the core of the nanoparticle acts as a sink of the electric field lines. In the quantum
subsystem, by contrast, the field enhancement reveals the response of chemical bonds
in the Ta–As (Figure 4b) and C–C (Figure 4d) subsystems to the applied external field.
Crucially, the field patterns in the two dimers reveal two different responses. We attribute
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the distorted field profile in (Figure 4b) to the asymmetric charge distribution that exists
between Ta and As in the dimer. In Figure 4d, the field profile around the C–C atom is
symmetrical. It is thus plausible that this charge symmetry is attributable to the symmetrical
response of the local structure around the C–C dimer to the external field. Overall, our
analyses reveal that the applied field produces an auxiliary or induced field as a direct
response to the changes in the local potential due mostly to the moving carriers. In
Section 3.2.2, it is shown that this carrier motion forms a wavelike collective mode akin to
charge density waves.

Figure 4. Local distribution of field enhancement in the Classical (a,c) and Quantum (b,d) subsystems
for TaAs (top panels) and graphene (bottom panels). The color bars denote the field enhancement in
Volts/Å.

The electric field is the negative potential gradient that arises because of the potential
caused by the induced volume charge density. As such, the local distribution of the induced
potential in the topological phase is analyzed in the following paragraphs. Figure 5 shows
the induced potential in TaAs (top panels) and graphene (bottom panels), respectively for
the classical and quantum subsystems. In the classical subsystems for both TaAs (Figure 5a)
and graphene (Figure 5c), the profiles of local potential are similar insofar as that the order
of magnitude of the potential and distribution of equipotential surfaces are concerned.
However, there are minimal albeit noticeable differences in the distribution of localized
regions of high and low potentials. Although the spatial distribution of localized regions
of local potential extrema is nearly equivalent in both structures, subtle differences are also
observable. This is consistent with the order of magnitude of the field enhancement in the
same subsystem.
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Figure 5. Induced potentials in TaAs (top panels) and graphene (bottom panels) for classical (a,c) and
quantum (b,d), subsystems. The color bars denote the induced potential in volts.

Figure 5b,d show the imaginary part of the induced potential in the quantum subsys-
tem of the Ta–As and C–C dimers respectively. Firstly, this shows that the induced potential
in the Ta–As dimer is three orders of magnitude smaller than the C–C dimer. Secondly,
there is a juxtaposition of two adjacent regions of maximum and minimum potential away
from the ionic cores of the dimers. Notice that the extremal potentials are shifted along the
axis of the Ta–As dimer. The spatial location of the extremal potentials of the C–C dimer is
shifted away from the axis of the dimer by 90◦. This shift distorts the effective background
potential of the dimer. Lastly, since the renormalization of the ground state guarantees
equivalence between the two species in models of quantum subsystems (see Figure 5b,d),
the origin of the discrepancy is attributable to the induced potential being a short-ranged
function of the Ta–As distance in the dimer.

Consider that there is no single near-neighbor distance that characterizes the Ta–As
bond length along the dimer axis uniquely. This inherent lack of structural inversion
symmetry makes the Ta–As bond length an ill-defined property along the nanoline axis.
Thus, the local structure of the TaAs nanoline is challenging to model, unlike the carbon
nanoline. Therefore, it is plausible to ascribe the discrepancy observed in the magnitude of
the induced potential within the quantum subsystem to the nonexistence of a proper bond
length in the Ta–As dimer. These suggest that it is the symmetric distribution of carrier
density around ionic cores and the C–C bonds that lead to the substantial increase in the
magnitude of the induced volume charge density in graphene. Secondly, although the
positions of the local extrema are shifted slightly away from the ion cores, the juxtaposition
of two adjacent regions of extremal potentials at alternate lattice sites distorts the effective
background potential to modulate carrier transport. In the following subsection, we
analyze the volume charge density in the two quantum subsystems to show that despite
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the discrepancy in the magnitude of the induced potentials in Ta–As and C–C dimers, the
order of magnitude of the underlying volume charge density is consistent with the induced
potentials in the quantum limit of both materials.

Figure 6 shows the imaginary part of the induced volume charge density in the two
quantum subsystems denoted by the Ta–As (see Figure 6a) and C–C (see Figure 6b) dimer.
The spatial distributions of charge density reveal pockets of high and low charge density
around the ionic sites. For instance, the region between the Ta and As atoms (see Figure 5a)
is characterized by a mixture of both high and low charge density whereas in the region
between the two C ions of the dimer (see Figure 6a), the low charge density distribution is
symmetrical along the axis of the dimer. In both cases, the localized regions of high and
low charge densities are embedded in a uniform background of vanishing charge density—
especially at large radial distances away from the dimers. Nevertheless, a noticeable
oscillation in the charge density distribution is observable around the Ta and As ions of
the dimer. By contrast, this is completely absent in the C–C dimer. The magnitude of the
charge density localization along the axis of the C–C dimer is low (see Figure 6b). Two
localized regions of high charge density are located adjacent to the axis as if their spatial
coordinate has been shifted by 90◦ along with the interatomic distance. Thus, insofar as
the regions of charge accretion and depletion are symmetrically distributed around the
dimer atoms, a constant induced potential is expected. In both structures, the degree of
localization and symmetry of the distribution of spatial regions of the induced charges
densities suggest that a finite amount of work must be done on each system to initiate
carrier dynamics in the ordered topological electronic phase.

Figure 6 gives an insight into the plasmonic response of the nanoclusters when inte-
grated into a nanojunction. The charge distribution pattern in the classical subsystem is
like the quantum subsystem in the sense that the charge density is highest at the vicinity of
the ion cores and decreases away from it. These suggest that within the limit in which the
length of the Ta–As and C–C dimers are sufficiently large, signatures of the electrodynamic
response in both classical and quantum subsystems agree qualitatively. Since the classical
and quantum mechanical limits in the above analyses are determined by both atomistic
and first principles QSFDTD calculations, the actual electrodynamic phenomenon that
culminates in the formation of the induced field is a dynamic process. The distortion in the
electrostatic potential background in Dirac materials suggests that the transport of carriers
is subjected to the additional potential wells and barriers at the TQPT point. Insights to the
resultant time propagation of the carrier density are obtained from the photoabsorption
spectra. It is therefore plausible that the external field on the surface of the Dirac material
will not necessarily be uniform during the carrier transport at the TQPT point.

Similar studies of the plasmonic response of metallic nanojunctions have suggested
that a strong correlation exists between the imaginary part of the induced volume charge
density distribution with the excitation frequencies and spectral positions of the dominating
resonances of the collective excitation [80]. The plasmonic response of our quantum
subsystems agrees with Fukuoka and Tanabe’s attribution of the strong enhancement of
the electromagnetic field energy in the region surrounding the nanoclusters to the unique
signature of plasmons [81]. Moreover, the established correlation of the plasmonic modes
with the quantized carrier transport properties reveals that the mechanism is driven by the
lightning-rod effect at the atomic scale [82], which is a signature of the local distribution
of field enhancements (Figure 4). Therefore, we expect facile plasmons in multilayer
heterostructure systems due to the strong induced potential gradients in the quantum
subsystems (Figure 5), which is attributable to the presence of heterobilayer interfaces.
We also find in Section 3.2.2 that the collective oscillation of the free electron gas yields a
plasmonic response that is akin to the carrier density wave phase.
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Figure 6. The imaginary part of the induced volume charge density in the quantum subsystems Ta–As
(a) and C–C (b) dimers. The color bars denote the induced volume charge density in Coulombs/Å3.

3.2.2. Optical Photoabsorption

One of the established ways for linking the results of computational studies of field-
theoretical predictions with experimental measurements is to study the optical spectra [83].
Figure 7 shows the structural dependence of the optical photoabsorption spectra after
Gaussian folding at a width of 0.1 eV. The top panels (Figure 7a,b) denote the photoab-
sorption spectrum in the C-C dimer and bulk structures of graphene while the equivalent
spectra for TaAs are shown in the bottom panels (Figure 7c,d). The photon absorption
gives the fraction of the incident radiation that is absorbed by the material over a range of
photon energies. The discrete peaks in (Figure 7a,c) show that optically induced interband
transitions can also occur between valence and conduction bands states in a manner akin
to the quantum dots. In (Figure 7b,d) the absorption spectra of the two bulk structures are
broad with a dominant peak at 9.96 eV (TaAs) and 8.9 eV (graphene), respectively.
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Figure 7. Structure dependence of optical photoabsorption spectra. Top panels show the spectra of
the sp3-hybridized C–C dimer (a) and the carbon nanoline (b). Bottom panels show the absorption
spectrum for the Ta-As dimer (c) and the TaAs nanocluster (d).

The dimers are characterized by well-resolved peaks with principal absorption at
energies 4.2 eV (graphene) and 9.4 eV (TaAs). These suggest that the C–C dimer absorbs
radiation strongly at low energy of 4.2 eV compared to the relatively low absorption of
graphene carbon dimers at 9.4 eV. The poor resolution of the dominant cluster peaks in
the bulk photoabsorption spectra is an intriguing non-linear optical effect. Moreover, the
position of the dominant peak in the spectra of both bulk structures is well-resolved in the
cluster spectra. However, they both appear as low-intensity peaks but are more diminished
in TaAs than graphene. We attribute the poor resolution of optical absorption peaks
in the bulk to the quantum confinement-induced broadening of the degree of freedom
of electronic state space of the bulk structure. It is plausible that the reverse effect is
responsible for the sensitivity of the size of the bandgap to the nanoparticle size.

Despite the underlying chemical differences between the graphene and TaAs, it is
important to recall that their zero-field ground state has a gapless electronic structure.
However, the semiconducting phase emerges from the suitable combination of perturbation
fields (see Section 3.1). With a finite gap between their valence and conduction bands,
transport in the semiconducting phase supports charge carrier transitions between the
electron (e) and hole (h) states. The first absorption maxima in (Figure 7a–d) represent
the transition of electrons from the valence band to the conduction band leaving behind
a hole, which can combine with an electron to produce an exciton. The photon energy of
the first absorption maximum approximately yields the size of the bandgap. Where the
material hosts bound e-h pairs (i.e., excitons), the discrete peaks in (Figure 7a,c) suggest
that additional transitions from the bound electron-hole pairs must occur. This assertion
is also valid because the C-C dimers show small absorption peaks at 1.74 and 7.96 eV in
(Figure 7a), and at 2.44 and 3.68 eV in (Figure 7c).

Figure 8 shows the field-induced carrier density wave along the carbon nanoline
at the photon energies corresponding to distinct absorption peaks in the spectra. This
shows that the induced field is distributed symmetrically around atoms of the nanoline,
with alternating domains of high and low intensities. We note that the field intensity is
distributed in a characteristic manner wherein the alternating regions of low (red) and
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high (blue) intensities alternate. This indicates the formation of a unique non-linear optical
signature at the TQPT point akin to a quantum fluid-like phase. The induced electric field
sets up as a standing wave like normal modes of vibration. Their localization intensities
change periodically as the energy of the absorbed photon increases. At increasing photon
energy of 1.74 to 7.95 eV (see Figure 8a–e), the halos of the low field are localized around
the two carbon atoms cores located at the center of the nanoline.

Figure 8. Field-induced carrier density wave along the carbon nanoline at a photon energy of 1.74 (a). 4.22 (b). 4.86 (c). 6.07
(d). 7.95 (e). 9.65 eV (f). Black balls denote atomic cores, while blue and red colors indicate minimal and maximal carrier
density (in Coulombs/Å3), respectively.

A somewhat similar trend is observed at 9.65 eV (see Figure 8f), except that the high
field halos are independently localized on the two C atoms at the center of the nanoline. We
ascribe the wave-like induced charge density in the bond region and around near-neighbor
sites to the formation of static carrier density waves. This offers potential grounds for rich
physics and emergent applications in photonics, optoelectronics, and quantum computing.
The static induced charge density denotes the charge density wave (CDW) phase. In
nanoline systems in which time-reversal symmetry is broken, it corresponds to the spin
density wave (SDW) phase. The same trend is found in the Ta–As dimer because the
induced charge density is localized around constituent atoms despite its isolated nature.
Carriers transported via the CDW phase form a standing wave pattern and can carry
electric current collectively. Thus, dissipation-free transport is achievable when carrier
current flows through this topologically ordered quantum fluid phase.

Figure 9 shows the combined electronic DOS and the optical transition contribution
map (TCM) at extremal energies in the photon absorption spectrum of the graphene
system. In addition to the TCM, (Figure 9) shows two independent DOS—one each for
total electronic states (top spectra) and the unoccupied (i.e., hole) states (right spectra)
for photon absorption peaks the 1.74 eV (Figure 9a) and 9.65 eV (Figure 9b). Firstly, the
spectra of the total electronic DOS and the h states are invariant under changes in photon
absorption energy showing that the density of states of the carrier species does not depend
on the photon absorption. Secondly, analysis of the TCM reveals that each peak in the
absorption spectra consists of many single-particle e-h transitions. Holes are created from
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the Fermi level (i.e., 0.0 eV) down to the top of the occupied valence band states about
−3.0 eV. In addition, carriers are created from states in the lowest unoccupied conduction
band up to about 1.75 eV. In this broad energy range, only carbon p- states are active and the
total transition shows no mixing with contributions from the carbon 2s-states. Lastly, the
number of h states is higher at 9.65 eV compared to 1.74 eV. For the low-energy absorption,
there is a net deficit of electron density at the Fermi level while there is a surplus at 1.75 eV.
However, the TCMs in (Figure 9) do not show any collective dipolar oscillations since the
surplus density disappears at 9.65 eV.

Figure 9. Combined electronic density of states (in states/eV.cell) and the optical transition contribution map at extremal
energies 1.74 eV (a). 9.65 eV (b). In the photon absorption spectrum of the graphene system. Blue and red colors indicate
net deficit and surplus of electron density, respectively.

The validity of the above analyses stems from our computation of the discrete Fourier
transform of the reduced density matrix in the frequency domain. This is crucial because
the frequency domain analysis and their Fourier transforms underpin the engineering
of electrical transport signals and systems. For instance, a real-space discrete Fourier
transform of a carrier transport signal at fixed bias constitutes an input that has no variation
and, therefore, has the only slowest, constant Fourier component, which corresponds to
the direct current, component. This is equivalent to the mean of the carrier transport signal.
In addition, the time propagation scheme for the perturbed ground state electronic density
yields additional insights on the local structure, as well as the ability to distinguish between
peaks in the absorption spectrum that correspond to specific principal directions in a lattice.
Since the dipole moment is generated from displacements in the charge density, the strong
peaks in the absorption spectrum signify nearly harmonic oscillations in the charge density,
and understanding these dynamic phenomena requires sensitive probes that respond to
spin, charge, and orbital degrees of freedom of carriers which encompasses the chiral edge
states under excitation from the dipole field.

4. Conclusions

In summary, we have performed field-theoretical computations based on the combi-
nation of first-principles calculations with time-dependent density functional theory to
study the carrier transport phases that emerge from the optical excitation of the electronic
structure in TaAs and graphene as prototypical models of Dirac materials. The dynamic
properties of the topologically ordered carrier transport phases are unraveled in terms
of the field-induced modifications of the electronic structure under the renormalization
constraint from the drive field. We find distinctive features of plasmonic modes as an
emergent response of the topological quantum phases. Our results reveal unique critical
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points in the topological phase diagram as a function of the external drive fields. We find
that mixing of two or more internal and external fields in the tight-binding model of the
tuned graphene model generates a rich spectrum of non-trivial phases, and this provides
the theoretical basis for experimental platforms to tune the carrier transport states of Dirac
materials using internal and external fields. This study offers insights into the near field
regime of quantum electrodynamics for carriers in topological quantum materials, and on
how their quantum interferences are tractable in the dynamics of free carriers. Our results
reveal strategies for obtaining topological band structures from the engineering of trivial
equilibrium bands using electromagnetic fields. The insights gained herein underpin the
physical bases for strategies to develop adaptive material platforms that are suitable for
emergent applications in plasmonics, optoelectronics and photonics.
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