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Abstract: Photothermal therapy (PTT) has received constant attention as an efficient cancer therapy
method due to locally selective treatment, which is not affected by the tumor microenvironment. In
this study, a novel 880 nm near-infrared (NIR) laser-triggered photothermal agent (PTA), 3TT-IC-4Cl,
was used for PTT of a tumor in deep tissue. Folic acid (FA) conjugated amphiphilic block copolymer
(folic acid-polyethylene glycol-poly (β-benzyl-L-aspartate)10, FA-PEG-PBLA10) was employed to
encapsulate 3TT-IC-4Cl by nano-precipitation to form stable nanoparticles (TNPs), and TNPs exhibit
excellent photothermal stability and photothermal conversion efficiency. Furthermore, the in vitro
results showed TNPs display excellent biocompatibility and significant phototoxicity. These results
suggest that 880 nm triggered TNPs have great potential as effective PTAs for photothermal therapy
of tumors in deep tissue.

Keywords: photothermal therapy; NIR-triggered; photothermal agent; deep tissue; nanoparticles

1. Introduction

Phototherapy has attracted extensive attention in recent years as a powerful cancer
treatment method due to characteristics such as convenience, noninvasiveness, locally
selective treatment, negligible drug resistance and minimized adverse side effects [1]. Pho-
todynamic therapy (PDT) and photothermal therapy (PTT) are two typical phototherapy
approaches, PTT is based on the photothermal agents (PTA), which are preferentially taken
up and retained by diseased tissue; then after excitation by appropriate wavelength laser,
the PTA convert light to heat to induce cancer cell apoptosis or necrosis. Compared to PDT,
PTT is not affected by the tumor microenvironment, such as the local oxygen level, so PTT
has received increasing attention and developed rapidly in recent years.

PTAs are one of the most important factors determining the efficiency of PTT, and
many kinds of PTA have been developed in recent years. Current PTAs can be classified
as inorganic and organic materials, and compared to inorganic PTAs, the organic PTAs
with easy chemical structure tuning, good biocompatibility, low-toxicity and an easy
metabolism in the biological system are more desirable for clinical photo-theranostics [2–7],
such as cyanine dyes [8–13], diketopyrrolopyrrole derivatives [14,15], croconaine-based
agents [16,17], porphyrin-based agents [18–21], conjugated polymers [22–29], squaraine
derivatives [30,31], boron dipyrromethane (BODIPY) dyes [32] and so on. In organic PTAs,
the polymeric PTA was limited due to its complicated fabrication processes, indistinct
biodegradation and potential biosafety [21]. Therefore, the small organic molecules have
received increasing attention as potential alternatives to nanomaterials in the area of
PTT recently.
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In addition, another main challenge for phototherapy is to efficiently treat cancers at a
deep tissue level. Near-infrared (NIR) light is referred to as the “optical window” of the
biological tissues due to the minimal light absorption and scattering. Compared with the
UV or visible light, NIR shows larger penetration distance in tissue, lower photodamage
effect and higher signal-to-noise ratio [33,34]. The organic molecules with extended π-
conjugation usually show strong NIR absorbance, which is beneficial for deep tumor tissue
diagnosis and phototherapy [35–37]. The well-designed, conjugated small molecules of
organic PTA, especially the recently reported acceptor-donor-acceptor (A-D-A) structure
PTA, would open a new gate for efficient PTT of tumor in deep tissues [38–40].

However, a problem limiting the use of conjugated small molecules of organic PTA is
their low water solubility; the hydrophobic PTAs are difficult to use to prepare pharma-
ceutical formulations and cannot be directly injected intravenously. To overcome these
problems, various strategies have been employed to prepare water-soluble and stable for-
mulations of hydrophobic organic PTA, such as conjugate to water-soluble polymers [11],
loaded into mesoporous materials [19] or carbon materials [41–43], encapsulate in colloidal
carriers such as liposomes [18] and polymer nanoparticles [9,10,14,15,20–24,32,44,45].

In this study, an A-D-A structure non-fullerene molecule, 3TT-IC-4Cl, which includes
three fused thieno[3,2-b]thiophene as the central core and difluoro-substituted indanone
as the end group was selected as PTA for PTT. Similarly to other A-D-A structure non-
fullerene molecules, 3TT-IC-4Cl exhibits both broad absorption and effectively suppressed
fluorescence [39], and especially, 3TT-IC-4Cl exhibits strong and broad absorption in the
800–900 nm region after forming nanoparticles, and it is indicated that the 3TT-IC-4Cl has
the potential as PTA for NIR-triggered PTT of cancer in deep tissue. In order to effectively
utilize 3TT-IC-4Cl for PTT, herein, our previous reported folic acid (FA) conjugated am-
phiphilic block copolymer (folic acid-polyethylene glycol-poly (β-benzyl-L-aspartate)10,
FA-PEG-PBLA10) was employed to encapsulate 3TT-IC-4Cl by nano-precipitation and
dialysis process to form stable nanoparticles (TNPs) and improve 3TT-IC-4Cl solubility in
aqueous solution. In the TNPs system, the 3TT-IC-4Cl and PBLA segment of the copolymer
was an inner core for 3TT-IC-4Cl storage, 3TT-IC-4Cl was the heat source and the PEG
segment was the outer shell to improve solubility, stability and biocompatibility of this
system, and the active targeting ligand FA was introduced to the surface of nanoparticles
to enhance the selectivity of nanoparticles.

Recently, the NIR-triggered organic small molecular based PTT systems have been
developed [9,10,14,15,19,24,32,46]; however, few systems of A-D-A type small molecular
organic PTA-based and 880 nm-triggered PTT have been reported.

2. Materials and Methods
2.1. Materials

Folic Acid (FA), PEG-bis(amine) (Mn: 3.4 kDa), β-benzyl-L-aspartate (BLA), Triethy-
lamine (TEA), Thiazolyl Blue Tetrazolium Bromide (MTT), Phosphate Buffered Saline
(PBS), and Sodium Bicarbonate were purchased from Sigma Chemical Co. (St. Louis, MO,
USA). Triphosgene was purchased from Aldrich Chemical Co. (Milwaukee, WI, USA).
N-hydroxysuccinimide (NHS) and N,N’-dicyclohexylcarbodiimide were purchased from
Fluka (Buchs, Switzerland). Then, 3TT-IC-4Cl was provided by Zhongsheng Huateng
Technology Co., Ltd. (Beijing, China) according to a previously reported method [47].
Indocyanine Green (ICG) was purchased from Adamas (Shanghai, China). CHCl3 was
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Dimethyl
sulfoxide (DMSO) was purchased from Fuchen Chemical Reagent Co., Ltd. (Tianjin, China).
Chloroform-d was purchased from Tenglong Weibo Technology Co., Ltd. (Qingdao, China).
DMSO-d6 was purchased from Ningbo Cuiying Chemical Technology Co., Ltd. (Ningbo,
China). Dulbecco’s modified Eagle’s medium (DMEM), Fetal Bovine Serum (FBS), Peni-
cillin and Streptomycin were purchased from Gibco BRL (Invitrogen Corp., Carlsbad,
CA, USA). All other chemicals were of an analytical grade and used as received without
further purification.
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2.2. Characterization

The chemical structure was determined by 400 MHz 1H NMR (AVANCE III HD
400 MHz, Bruker, Fällanden, Switzerland) using CHCl3-d and DMSO-d6 as the solvent.
The photophysical properties of samples in aqueous solution were confirmed by UV-visible
spectrophotometry (UV-2550, Shimadzu, Tokyo, Japan) and fluorescence spectrophotome-
ter (F-4600, Hitachi, Tokyo, Japan). The morphologies, sizes and size distributions of
nanoparticles were determined by transmission electron microscopes (TEM) (TECNAI G2
Spirit TWIN, FEI, Hillsboro, FL, USA) and dynamic light scattering (DLS) (Zetasizer Nano
ZS90, Malvern Instruments Co, Malvern, UK) at 25 ◦C using a He-Ne laser (633 nm) as a
light source. The temperature was monitored by IR thermal camera (TiS65, Fluke, Everett,
WA, USA). The NIR laser (880 nm) used in this study was purchased from Beijing Laser-
wave Optoelectronics Technology Co., Ltd. (LWIRL880-20W-F, Laserwave, Beijing, China).

2.3. Preparation of TNPs

In order to prepare TNPs, first, the amphiphilic block copolymer FA-PEG-PBLA10
used for 3TT-IC-4Cl encapsulation was synthesized by ring-opening polymerization as our
previous reported [48]. The chemical structure of FA-PEG-PBLA10 was confirmed by 1H
NMR (400 MHz, DMSO). Then, the TNPs were prepared by the nanoprecipitation method.
Briefly, 5 mg 3TT-IC-4Cl was dissolved in 1 mL THF; then, the 3TT-IC-4Cl solution was
added into to 50 mL FA-PEG-PBLA10 solution (0.5 mg/mL in DMSO) dropwise, and then
the mixture was transfered to dialysis tubs (Cut-off 3.5 K Mw) to remove THF and DMSO,
followed by freeze drying, after which the TNPs were obtained.

2.4. Photothermal Effect

To confirm the PTT application potential, the photothermal property of TNPs was
investigated, and a series of concentrations of TNPs (0, 30, 90, 180 and 250 µg/mL) in water
were irradiated by 880 nm laser (0.7 W/cm2, where, the power densities (W/cm2) = laser
beam power/laser beam area) for 720 s, the temperature of TNPs solution was recorded by
an IR thermal camera every 30 s. In addition, the constant concentration (180 µg/mL) of
TNPs were irradiated by an 880 nm laser for 720 s with various power densities (0.3, 0.5,
0.8 and 1.5 W/cm2) was investigated by the same method.

2.5. Stability of TNPs

In order to investigated the stability of TNPs, TNPs (180 µg/mL, 30 µg/mL free 3TT-
IC-4Cl equiv.) and free ICG (30 µg/mL) were irradiated with an 880 nm laser (0.7 W/cm2)
for 5 min; then the laser was turned off and the sample was cooled to the room temperature
naturally, and the temperature of samples was recorded using the IR thermal camera every
30 s. Subsequently, the procedures were repeated four times.

2.6. In Vitro Phototoxicity and Biocompatibility of TNPs

HeLa cells (provided by Dingguo Biology Technology Co., Ltd., 1 × 104 cells/well)
were seeded onto 96-well plates in 200 µL DMEM and allowed to attach for 24 h. After
cell attachment, the medium was replaced with 100 µL of fresh medium containing FA-
PEG-PBLA10 (the polymer dispersed in aqueous medium) and TNPs with a series of
concentration (0, 30, 60, 90, 120, 180 and 250 µg/mL), and then incubated for 4 h. The cells
were washed with PBS and replace with fresh DMEM. The samples were irradiated with a
laser (880 nm, 0.7 mW/cm2) for 5 min. Then, irradiated cells were incubated at 37 ◦C for
24 h and cell viability was evaluated by MTT assay. Data presented are averaged results
of quadruplicate experiments. For biocompatibility, HeLa cells (1 × 104 cells/well) were
seeded onto 96-well plates in 200 µL DMEM and allowed to attach for 24 h. After cell
attachment, the medium was replaced with 100 µL of fresh medium containing FA-PEG-
PBLA10 and TNPs with a series of concentration (0, 30, 60, 90, 120, 180 and 250 µg/mL),
and then they were incubated for 24 h. The cell viability was evaluated by an MTT assay.
Data presented are averaged results of quadruplicate experiments.



Nanomaterials 2021, 11, 773 4 of 11

3. Results and Discussion
3.1. Synthesis and Characterization of TNPs

A novel PTA with an 880 nm-triggered A-D-A structure non-fullerene molecule,
3TT-IC-4Cl, which included three fused thieno[3,2-b]thiophene as the central core and
difluoro substituted indanone as the end group [47] was selected for PTT. In order to
effectively utilize 3TT-IC-4Cl for tumor therapy. An amphiphilic block copolymer (FA-PEG-
PBLA10) was synthesized as in our previous reported method [48] and used for 3TT-IC-4Cl
encapsulation, 3TT-IC-4Cl was encapsulated in FA-PEG-PBLA10 by nano-precipitation and
a dialysis process to form stable nanoparticles (TNPs), as shown in Figure 1, the PBLA
segment of the copolymer was used as a reservoir for 3TT-IC-4Cl storage in the inner
core, the PEG segment was used as the outer shell to improve solubility, stability and
biocompatibility of TNPs, the active targeting ligand FA was introduced to the surface of
nanoparticles to enhance selectivity of nanoparticles, the chemical structure was confirmed
by 1H NMR, as shown in Figure 2A, and the characteristic peaks a and b are belong
to FA-PEG-PBLA10, and the characteristic peaks c, d, e, f, g and h attribute to 3TT-IC-
4Cl, respectively. It indicated that the 3TT-IC-4Cl was encapsulated in FA-PEG-PBLA10
successfully, the encapsulation rate (93.5%) was calculated by the relative intensity ratio of
the methylene proton of PEG at 3.5 ppm and the proton of the alkane chain of in 3TT-IC-4Cl
at about 1 ppm.

For nanomedicine used in cancer therapy, size, morphology and stability are the key
properties that influence in vivo performance. These factors affect the bio-distribution and
circulation time of the drug carriers. Stable and suitable-sized particles have reduced up-
take by the reticuloendothelial systems (RES) and provide efficient passive tumor targeting
ability via an enhanced permeation and retention (EPR) effect [49]. The incomplete tumor
vasculature results in leaky vessels with gap sizes of 100 nm to 2 µm depending on the tu-
mor type, and some studies have shown that particles with diameters of <200 nm are more
effective [49,50]. The morphology of TNPs was evaluated by TEM, as shown in Figure 3.
The TNPs were submicron in size and uniform and nearly spherical with no aggregation
between nanoparticles observed due to the polymer modification, the average diameter
was 150 nm. DLS measurements showed average hydrodynamic diameters of TNPs were
about 200 nm (Figure 3, inset), a suitable size for passive targeting ability through the EPR
effect. The size distribution of TNPs maintained a narrow and monodisperse unimodal
pattern. Zeta potential of TNPs was measured as shown in Figure S1. It was shown
that TNPs have negative surface charges, and zeta potential is about −13.2 mV. The zeta
potential of TNPs showed that it would more stable against aggregation. Furthermore, the
size of TNPs in DMEM remains almost same within 60 days (Figure S2).
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Figure 3. TEM image of TNPs and typical size distributions of TNPs (insert).

3.2. Optical Properties of TNPs

The optical properties of TNPs were investigated by UV-vis absorption spectra and
fluorescence spectra (Figure 4A,B), for free 3TT-IC-4Cl in CHCl3 solution, and it shows
strong absorption at 772 nm and a maximal fluorescence at about 840 nm. However, after
the formation of nanoparticles, the TNPs aqueous solution exhibits strong absorption
at 874 nm, the significant red shift was due to the π-π stacking of 3TT-IC-4Cl during
the nanoparticles formation and this result would be conducive to trigger TNPs by an
880 nm NIR light source for the phototherapy of the tumor in deep tissue. On the other
hand, compared to free 3TT-IC-4Cl in CHCl3 solution, in the TNPs aqueous solution,
nearly no fluorescence signal was observed due to the 3TT-IC-4Cl aggregation during the
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nanoparticle formation, which would significantly increase non-radiative heat generation
and enhance PTT efficiency [20,51].
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3.3. Photothermal Properties of TNPs In Vitro

To investigate the photothermal conversion property of the TNPs, the temperature
of TNP aqueous solution with a series of concentrations (from 0 to 250 µg/mL) under
the 880 nm laser irradiation (0.7 W/cm2) for 15 min was monitored (Figure 5A), and the
related infrared (IR) thermal images of TNPs aqueous solution were showed in Figure 5C.
As shown in the Figures, the temperature increased significantly as TNP concentration
increased. It is noted that the TNPs at 90 µg/mL exhibit effective hyperthermia (>50 ◦C),
which is sufficient to induce apoptosis or necrosis of cancer cells [52]. The relationship
between temperature of TNPs aqueous solution (180 µg/mL) and different laser power
(from 0.3 to 1.5 W/cm2) was future measured, as shown in Figure 5B, and the temperature
of the TNPs aqueous solution depends on the laser power. The related infrared (IR) thermal
images of TNP aqueous solution were showed in Figure 5D. On the other hand, we also
investigated the photothermal conversion efficiency of TNPs through a cycle of heat-up
and cooling using the previously reported method (Figure S3) [53]. The photothermal con-
version efficiency of the TNPs was 31.5%, which is higher than other PTAs such as cyanine
dyes (e.g., ≈26.6%) and gold nanorods (e.g., ≈21.0%) [24,54,55]. The strong absorption and
high photothermal conversion efficiency of TNPs in the NIR region provided the potential
of photothermal treatment of cancer.
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Figure 5. (A) Photothermal conversion behavior of TNPs at different concentrations (0–250 µg/mL) under 880 nm irradiation
at 0.7 W/cm2, (B) Photothermal conversion behavior of TNPs at different laser power (0.3–1.5 W/cm2) under 880 nm
irradiation at 0.7 W/cm2, and (C) IR thermal images of TNPs at different concentrations (0–250 µg/mL) under 880 nm
irradiation at 0.7 W/cm2, and (D) IR thermal images of TNPs at different laser power (0.3–1.5 W/cm2) under 880 nm
irradiation at 0.7 W/cm2.

3.4. Photothermal Stability of TNPs

The photothermal stability is an important parameter of photothermal drugs for PTT
applications, and it would be crucial for clinical applications and therapeutic efficiency.
The photothermal stability of TNPs was evaluated by monitoring its ability to maintain the
temperature elevation. As shown in Figure 6A, the TNPs were irradiated at 0.7 W/cm2

for 5 min, then the laser was turned off, the following samples were cooled down to room
temperature, the temperature was recorded by IR thermal camera throughout the process,
this irradiation/cooling procedures were repeated five times, as Figure 6A shows, and TNPs
displayed negligible change in their temperature elevation after five irradiation/cooling
cycles. However, the temperature elevation of free ICG decreased significantly after one
irradiation/cooling cycle. On the other hand, we also observed the changes in the color
of the samples, as shown in Figure 6B, and after 5 min irradiation the color of free ICG
solution changed observably, but the TNPs exhibit no change after 30 min irradiation.
These results indicated the TNPs exhibit excellent photothermal stability.
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Figure 6. (A) Temperature elevation of TNPs, and free ICG under five irradiation/cooling cycles (under 880 nm irradiation
at 0.7 W/cm2 for 5 min), (B) Photographs of the TNPs, and free ICG in PBS solutions after 880 nm light irradiation for
different time.

3.5. In Vitro Cell Test

In order to investigate the feasibility of TNPs as nano photothermal agents for PTT,
in vitro cytotoxicity of TNPs was investigated by MTT assay and the average cell viability
was monitored. For a biocompatibility test, the dark toxicity of TNPs was investigated. As
shown in Figure 7A, both FA-PEG-PBLA10 and TNPs exhibited no significant dark toxicity.
As the concentration increased, the average cell viability was greater than 90% even when
cells were treated with 250 µg/mL of TNPs. For the phototoxicity test, we investigated the
concentration dependent (0, 30, 60, 90, 120, 180 and 250 µg/mL) cytotoxicity of TNPs with
880 nm laser irradiation. As shown in Figure 7B, after irradiation at 0.7 W/cm2 for 5 min,
the cell viability gradually decreased as the TNPs concentration increased. Taken together,
these results indicate that the TNPs could considerably enhance the efficiency of PTT for
tumor in deep tissue, even at low concentrations.
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Figure 7. In vitro cytotoxicity test using FA-PEG-PBLA10 and TNPs against HeLa cells (A) dark toxi-
city depending on the nanoparticles concentration and (B) phototoxicity depending on nanoparticles
concentration.

4. Conclusions

In summary, an 880 nm NIR laser that triggered TNPs as PTA for photothermal
therapy of a tumor in deep tissue was developed. In this work, a novel PTA, 3TT-IC-
4Cl, was selected and used for PTT; it included three fused thieno[3,2-b]thiophene as the
central core and difluoro-substituted indanone as the end group. After encapsulation
by the FA-PEG-PBLA10 block copolymer and forming nanoparticles, the TNP aqueous
solution exhibited strong absorption at 880 nm due to the π-π stacking. DLS and TEM
measurements showed that the TNPs have a spherical shape and narrow size distribution
with a mean diameter of 150 nm. TNPs exhibit excellent photothermal stability and high
photothermal conversion efficiency after 880 nm laser irradiation. In the in vitro test, TNPs
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display excellent biocompatibility and significant phototoxicity. Therefore, the 880 nm-
triggered TNPs have great potential as an effective PTA for the photothermal therapy of
tumor in deep tissue.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/3/773/s1, Figure S1: Zeta potential of TNPs in water, Figure S2: Changes of hydrodynamic
diameters of TNPs in DMEM with time, [TNPs] = 180 µg/mL, Figure S3: (A) Temperature elevation
of TNPs (180 µg/mL) under 880 nm irradiation at 0.7 W/cm2 for 5 min, followed by subsequent
cooling to room temperature and (B) Linear time data versus-Ln (θ) obtained from the cooling period
of NIR la-ser off.
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