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Abstract: Traditional epoxy resin (EP) materials have difficulty to meet the performance requirements
in the increasingly complex operating environment of the electrical and electronic industry. Therefore,
it is necessary to study the design and development of new epoxy composites. At present, fluorinated
epoxy resin (F-EP) is widely used, but its thermal and mechanical properties cannot meet the demand.
In this paper, fluorinated epoxy resin was modified by ordered filling of fluorinated graphene
oxide (FGO). The effect of FGO interlayer spacing on the thermal and mechanical properties of the
composite was studied by molecular dynamics (MD) simulation. It is found that FGO with ordered
filling can significantly improve the thermal and mechanical properties of F-EP, and the modification
effect is better than that of FGO with disordered filling. When the interlayer spacing of FGO is about
9 Å, the elastic modulus, glass transition temperature, thermal expansion coefficient, and thermal
conductivity of FGO are improved with best effect. Furthermore, we calculated the micro parameters
of different systems, and analyzed the influencing mechanism of ordered filling and FGO layer
spacing on the properties of F-EP. It is considered that FGO can bind the F-EP molecules on both
sides of the nanosheets, reducing the movement ability of the molecular segments of the materials,
so as to achieve the enhancement effect. The results can provide new ideas for the development of
high-performance epoxy nanocomposites.

Keywords: fluorinated epoxy resin; fluorinated graphene oxide; ordered filling; molecular dynamics;
elastic modulus; glass transition temperature; microscopic parameters

1. Introduction

Epoxy resin reacts with a curing agent to form a polymer with a three-dimensional
network structure. The cured product has excellent electrical insulation, mechanical proper-
ties, and chemical corrosion resistance. Therefore, EP materials are widely used in electrical
insulation, electronics, aerospace, machinery, and construction [1–4]. As the operating
conditions of epoxy resin materials become increasingly complex, higher requirements
have been put forward for their thermal, mechanical, and insulation properties [5,6]. In
recent years, fluorinated epoxy resin (F-EP) has gradually attracted researchers’ attention
due to excellent insulation and dielectric properties coming from the extremely strong
electronegativity of fluorine and the high bond energy of C-F bond [7–9]. However, the
mechanical strength, heat resistance, and thermal conductivity of F-EP materials cannot
meet the requirements of high voltage insulation materials, which has become a key factor
restricting its further application. Therefore, it is necessary to improve its thermal and
mechanical properties.
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Nano modification is one of the significant means to improve the properties of epoxy
composites. With the continuous advancement of the research and application of carbon
nanomaterials, modified graphene materials doped with epoxy resin have become a hot
spot in current research [10–13]. Graphene oxide is a graphene-based material containing
a large number of oxidizing functional groups obtained after graphite is oxidized. It
retains most of the excellent properties of graphene and has high surface activity. However,
due to the strong van der Waals force [14] on the surface of graphene-based materials,
graphene oxide flakes in the composites are easy to form serious aggregates. Relevant
experimental studies also confirmed that the distribution of graphene directly affects the
macro properties of the composites [15–17]. It is found that the dispersion of nano fillers in
polymer matrix can be improved by fluorination modification, and the fluorine-containing
groups will form a shielding layer on the surface of nano materials, so as to inhibit the
agglomeration of fillers [18–20]. This provides a method guidance for the construction of a
modified graphene packing network with good dispersion.

One dimensional or two-dimensional nano fillers are often affected by their own spa-
tial structure in many aspects. However, the agglomeration and disordered distribution of
nano fillers will seriously affect the modification effect [21–23]. The researchers found that
reasonable assembly of fillers in the polymer matrix has better modification effect on the
properties of composites [24–26]. In addition, the physical and chemical properties of nano
fillers have an important influence on the cross-linking structure and crystallization behav-
ior of polymers, but the mechanism has not been revealed, and the research on this problem
is rare. Sanat K. Kumar et al. reviewed the outstanding theoretical research progress of
polymer-nanoparticle hybrids, focusing on the functionalization of nanomaterials and
self-assembly methods of fillers, and pointed out that the design of the nanofiller network
is a key point of future research [27]. Professor Ahmad Jabbarzadeh has conducted in-depth
and systematic research on the crystallization behavior of nanocomposite polymers. The
effects of the shape, size, and volume fraction of fillers on the crystallization behavior
of the polymer were analyzed, and the crystallization mechanism of the nanocomposite
polymer was revealed [28,29]. These studies provide strong support for the development
of high-performance functional nanocomposites. The two-dimensional properties of modi-
fied graphene make it easy to construct the filler network with layered structure [30,31].
However, there is still a gap in the research on the ordered filling of functional graphene
nanosheets in epoxy resin materials. Moreover, it is difficult to fix the space position of
modified graphene by experimental method, so molecular simulation technology can be
used to realize the pre-study of this method.

At present, molecular dynamics (MD) simulation technology has been widely used
in the design, development, and performance analysis of materials [32–35]. The MD
technology can be used to simulate the structure and properties of high molecular polymers
from the molecular scale, and analyze the correlation between the microstructure and
macroscopic properties of the polymer. MD technology has been widely used by researchers
in the development and research of epoxy composite materials, which not only saves
research time and economic costs, but also deepens the understanding of the modification
mechanism of epoxy composite materials [36–38]. Shenogina [39] built a diglycidyl ethers
bisphenol A (DGEBA)/diethyltoluenediamine (DETDA) cross-linking network system
through MD simulation technology, and studied the influence of the number of molecules,
molecular chain length, and cross-linking degree on the thermal performance of the cross-
linking network. Wang [40] et al. used MD simulation to modify graphene with functional
groups, and explored the effect of graphene modification methods on the Young’s modulus
and thermal conductivity of composites. The results showed that the carboxyl and amine
functionalized graphene nanocomposites have optimal performance, and the numerical
results are in good agreement with the experimental data.

In this study, we established a model of fluorinated graphene oxide (FGO)/F-EP
composites with layer spacing of 3 Å, 6 Å, 9 Å, 12 Å, and disorderly filling. Based on
molecular dynamics simulation technology, the effects of different distribution characteris-
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tics of FGO nanosheets on the thermal and mechanical properties of the composites were
studied. This study provides a new theoretical understanding for epoxy resin reinforced
by modified graphene, which can guide the design and development of high-performance
epoxy nanocomposites.

2. Model Construction and Simulation Calculation

In this study, we used Material Studio 7.0 to complete the modeling and calculation.
Firstly, the cross-linking network model of fluorine-containing epoxy resin was constructed,
and the DGEBA was fluorinated with hexafluorophobia bisphenol A (BPAF) as a fluorinat-
ing agent [8,41]. The monomer molecular models of DGEBA, methyltetrahydrophthalic
anhydride (MTHPA), and BPAF were constructed. Each monomer molecule was labeled
with reactive atoms and optimized in MD geometry, as shown in Figure 1a. The optimized
monomer molecules were put into an amorphous periodic box according to the ratio in
Table 1. The box density was set at 0.6 g/cm3, the model temperature was 600 K, and the
model was dynamically optimized. Furthermore, graphene unit cells were introduced,
and graphene supercells were constructed according to the periodic box size. The molec-
ular model of graphene oxide (GO) monomer was constructed based on Lerf–Klinowski
method, and the simplest molecular formula was C10O1(OH)1(COOH)0.5. In the model,
epoxy groups and hydroxyl groups are randomly attached to the surface, while carboxyl
groups are distributed at the edges. In this paper, a GO sheet containing 82 carbon atoms
and 22 oxygen atoms is constructed to represent graphene oxide, and hydrogen atoms
are added to prevent unsaturated edges. The GO model is shown in Figure 1a. Then,
the graphene oxide is fluorinated, and fluorine atoms are manually added at its edges to
construct a FGO model.
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Table 1. Composition of FGO modified F-EP Composites.

System Layer Spacing (Å)
Number of Molecules

FGO DGEBA MTHPA BPAF

F-EP – 0 50 100 25
Random – 3 50 100 25

3-FGO/F-EP 3 3 50 100 25
6-FGO/F-EP 6 3 50 100 25
9-FGO/F-EP 9 3 50 100 25

12-FGO/F-EP 12 3 50 100 25

The FGO nanosheets were filled into the F-EP box to construct the composite material
model, as shown in Figure 1b. The molecular dynamics calculation results of epoxy resin
are greatly affected by the number of model molecules, so we control the same number of
molecules in each model, and only change the interlayer spacing of modified graphene
nanosheets. We filled three FGO Nanosheets in the cell and controlled the FGO Nanosheets
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array to be located in the center of the cell. The distance between FGO layers was set as
3 Å, 6 Å, 9 Å, and 12 Å, respectively. The position coordinates of FGO molecules in the
model were fixed, and a disordered filling model was constructed as the control group.
The unfilled F-EP model and the FGO filled composites models with hidden epoxy resin
are shown in Figure 2.
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Figure (c) to (e) are the F-EP composite models with ordered filling of FGO (epoxy resin molecules
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The geometric optimization of the composite model with different FGO layer spacing
was carried out. The box with the lowest energy was selected to calculate the binding
energy parameters of GO, FGO, and F-EP. After the nano-filler is doped into the epoxy
matrix, an inorganic−organic interface layer will be formed between filler and matrix.
Generally, the stronger the interfacial force between the nano-filler and the matrix, the
better the performance of the corresponding composite. Binding energy is an important
parameter to characterize the interfacial bonding force between modified filler and epoxy
system. The larger its absolute value, the stronger the interaction force between matrix and
filler in composite material [42], and the calculation formula is as follows:

Einterface = Etotal − Efiber − Eresin (1)

where Einterface is the interfacial bonding energy between nanofiller and matrix, Etotal is the
total energy of composite material, Eresin is the energy of epoxy substrate, and Efiber is the
energy of nano-filler. The calculation results of bonding energy are shown in Table 2.

Table 2. Binding energy of different modified graphene/F-EP systems (kcal/mol).

System Eresin Efiber Etotal Einterface

GO/F-EP −4761 −769 −4157 1373
FGO/F-EP −4761 −805 −3766 1799

As illustrated in Table 2, the interfacial bonding energy between FGO and matrix after
grafting fluorine element is obviously improved compared with GO. The analysis shows
that fluorine has strong electronegativity, and bonding with carbon will make the common
electrons of fluorocarbon atoms tend to fluorine atoms, forming a negative charge shielding
layer, which inhibits the agglomeration effect of modified graphene materials and provides
more surface area for the interaction between filler and substrate. In addition, due to the
strong polarity of C-F bond, it is easy to react with groups in epoxy resin, and the interfacial
bonding strength between filler and epoxy matrix can be enhanced at low filling mass
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fraction. Therefore, the fluorinated grafting modification of graphene oxide nanosheets is
beneficial to improve its dispersibility and compatibility in epoxy resin matrix.

The model of composites with cross-linking degree of 90% was obtained by further
running the cross-linking program [4], the calculation program is shown in Figure 1c. The
cross-linking temperature was set at 600 K, and the truncation radius of reaction atom
bonding was set at 3.5 Å−7.5 Å. After cross-linking, the model was optimized geometrically
and MD treated to eliminate the internal stress generated during cross-linking. In MD
process, NVT of 100 ps and NPT relaxation of 200 ps were carried out at 600 K, the
Andersen and Berendsen were chosen to control temperature and pressure, respectively.
The pressure of molecular dynamics process is 105 Pa and the time step is 1 fs. The size of
the cross-linking network model of the optimized epoxy resin composite is 43 Å*43 Å*43 Å.
The optimized composite models were annealed, with the annealing span controlled at
600–280 K and the annealing rate selected as 20 K/100 ps. After each round of annealing,
NPT optimization treatment of 200 ps was performed to eliminate the internal stress caused
by temperature change. Finally, the epoxy composite models at different temperatures were
output for the subsequent calculation of system performance and structural parameters.

3. Results and Discussion
3.1. Static Mechanical Performance Calculation

In this paper, the static constant strain method was used to analyze the elastic me-
chanical properties of the system [43]. After MD optimization process, the system had
reached the mechanical equilibrium. Then, a small strain was applied to it and the energy
optimization was carried out again. In the process of molecular simulation, the strain
is applied to different directions and repeated many times. The stiffness matrix can be
calculated as the second derivative of the deformation energy (U) per unit volume (V) with
respect to strain (ε).

Cij =
1
V
∗ ∂2U

∂εi∂εj
(2)

In this process, three groups of uniaxial tension, three groups of uniaxial compression,
and six groups of shear deformation were applied to the balanced epoxy resin system in x,
y, and z directions respectively. The stiffness constant matrix can be obtained by extracting
the stress of the optimized deformation system. We found that the elastic mechanical
properties of the matrix did not show obvious anisotropy, which is related to the small
size and mass fraction of FGO. Therefore, we calculated elastic mechanical parameters
according to the isotropic stiffness matrix of conventional epoxy composites.

Cij =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 (3)

where λ and µ are elastic constants, and the corresponding constants can be obtained by
further solving the matrix.{

λ = 1
6 (C12 + C13 + C21 + C23 + C31 + C32)

µ = 1
3 (C44 + C55 + C66)

(4)
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According to λ and µ, the static elastic modulus of the system such as Young’s modulus
E, shear modulus G, and bulk modulus K can be obtained.

E = µ 3λ+2µ
λ+µ

G = µ

K = λ+ 2
3µ

(5)

In this study, the static elastic modulus of each model at 300 K is calculated, and the
results are shown in Figure 3. It can be found that when the interlayer spacing is changed
from 3 Å to 12 Å, the mechanical properties of the material show a sinusoidal-like behavior
of first decreasing and then increasing. When the spacing between FGO layers is 9 Å,
the static elastic modulus of the composite reaches the highest, and it can be considered
that the comprehensive mechanical properties of the composite are better at this time.
It is considered that when the interlayer spacing is small, the structure distribution of
the composite material is uneven, which cannot utilize the characteristics of high elastic
modulus of modified graphene. However, when the interlayer spacing is too large, the van
der Waals interaction force between FGO and epoxy matrix is weak, which leads to the
weak deformation resistance of the system. After adjusting the distance between the layers,
the modified graphene can fully contact with the matrix material and form a well dispersed
adsorption layer. The external stress on the substrate can be effectively buffered in the
adsorption layer and transferred to the modified graphene sheet with excellent mechanical
properties. At the same time, the force of FGO on the matrix also limits the movement of a
polymer molecular chain, which makes the epoxy resin form a relatively close cross-linking
network. This can also better bear the stress of the material. Therefore, reasonable control
of FGO filler network structure can improve the mechanical properties of the composites.
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Figure 3. Static elastic modulus of FGO/F-EP composites with different distribution characteristics.

3.2. Thermal Performance Analysis
3.2.1. Glass Transition Temperature

Glass transition temperature (Tg) can be calculated by extracting the density and
temperature parameters of epoxy composites during annealing. During the transition
from glassy state to the rubbery state of polymer, the density and volume of materials will
change with the increase of temperature. There are obvious differences between the change
rates of density and volume of materials with temperatures before and after the glass phase
transition [44]. According to this rule, we can get the Tg of epoxy composites by fitting the
temperature-density curve, and the change of Tg of FGO/F-EP with different interlayer
spacing, as shown in the Figure 4. It can be found that, similar to the change of static elastic
modulus, Tg also shows a sinusoidal change with the increase of the interlayer distance.
The Tg value reaches the highest when the interlayer distance is 9 Å, which is 483 K. We
believe that when the interlayer spacing is small, FGO exists in epoxy substrate in a form
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similar to agglomerated nano-filler, which has an adverse effect on the improvement of Tg
of epoxy composites. With the increase of spacing between FGO layers, FGO nanosheets
with fixed spatial positions form a localized filler network with pivotal effect, and F-EP is
attracted and fixed near the filler to a certain extent, forming a relatively stable cross-linked
network structure. Meanwhile, fluorine atoms existing in both filler and matrix provide a
more stable acting force for this connection form, which delays the glass phase transition
process of the composites and improves Tg. Similarly, when the interlayer spacing is too
large, the pivotal effect of the filler is weakened, and the advantages of the filler itself
and the network structure regulation cannot be fully exploited, which makes the Tg a
downward trend.
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3.2.2. Coefficient of Thermal Expansion

Coefficient of thermal expansion (CTE) is an important parameter to characterize the
stability of polymer materials at high temperature, which can be calculated by calculat-
ing the internal stress generated after the internal deformation of the system [45]. The
calculation formula is:

CTE =
1

V0

(
∂V
∂T

)
P

(6)

where V0 is the volume of the initial model after cross-linking (in this study, the volume
parameter of the system at 300 K is used), and P is the standard atmospheric pressure.
According to the formula (5),

(
∂V
∂T

)
P

can be obtained by linear fitting the volume and tem-
perature parameters of the model. Furthermore, the CTE of FGO/F-EP epoxy composites
with different interlayer spacing can be obtained, and the results are shown in the Figure 5.
It can be found that the overall CTE of the composite material system after adding FGO is
lower than that of the pure resin system. However, when the distance between the FGO
layers is near the range of 3 Å~6 Å, the filler spacing is too small, resulting in agglomeration.
At this time, the filler lacks binding effect on the epoxy resin. As the temperature increases,
the heated movement of the filler makes agglomerates expanded, which leads to a slight
increase in the thermal expansion coefficient of the composite material. When the interlayer
spacing of FGO nanosheets is about 9 Å, the two-dimensional nanosheets have a greater
binding effect on the polymer segments and are not affected by filler agglomeration. When
the composite material is thermally expanded, the segments preferentially fill the free
volume space, so the thermal expansion coefficient of the system is small.
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3.2.3. Thermal Conductivity

In order to study the influence of FGO interlayer distance on the axial thermal conduc-
tivity (TC) of materials, the TC of different systems was studied by using TC script. In this
script, the TC is calculated according to reverse perturbation nonequilibrium molecular
dynamics (RNEMD), and its computer model is shown in Figure 6 [46]. The calculation
formula of thermal conductivity is:

κ = −
∑

transfers

m
2
(
v2

h − v2
c
)

2tLxLy〈∂T/∂z〉 (7)

where κ is the exchange rate of hot particles, vc is the exchange rate of cold particles, LxLy

is the area where heat transfer occurs, and ∂T
∂Z is the temperature gradient in the z direction.
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In order to improve the accuracy of the simulation calculation, the composite material
model needs to be extended three times in the Z-axis direction before calculating the TC to
obtain a 1 × 1 × 3 composite unit cell [47]. The TC of each system is calculated 10 times
and the average value is taken. The results are shown in the Figure 7 below.
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Comparing the TC data of different distribution states of FGO/F-EP system, it can be
seen that the orderly-filled FGO can greatly improve the TC of the F-EP system. When the
distance between the modified graphene layers is greater than 9 Å, the TC of the system is
increased by about 4% relative to the disordered filler distribution system. This shows that
graphene itself has good TC, but the commonly used disorderly doping methods often
make fillers agglomerate and stack together, which reduces the interaction area between
fillers and matrix. At the same time, there is a lack of binding force for the polymer
segments outside the filler interface, which makes it difficult to overcome the interfacial
thermal resistance between the filler and the matrix in the heat transfer process. As a result,
even if the nano filler is doped with high thermal conductivity, the improvement of the
thermal conductivity of the composite is very limited.

After FGO is filled in an orderly manner, the uniformly dispersed two-dimensional
FGO nanosheets provide a sufficient surface area of the filler, and the presence of fluorine
also greatly enhances the bonding between the filler and the matrix. In addition, the
polymer segments are bound by spatially fixed fillers, which makes the cross-linking
network structure of epoxy resin molecules between nanosheets more compact. These
factors play a bridging role for F-EP segments on both sides of the filler, which will greatly
reduce the interfacial thermal resistance during heat conduction, thus forming an effective
heat conduction network and improving the overall thermal conductivity of the composites.
At the same time, the interconnected network structure formed between FGO and matrix
relies on strong interaction force, and evenly distributed adsorption layers are produced.
When the temperature rises, the heat flow can spread more rapidly along the uniform
adsorption network structure, thus significantly improving the TC of epoxy composite
materials. Based on this, it can be predicted that the thermal conductivity of composite
materials can be significantly improved by designing a reasonable spatial structure of the
filler network and increasing filler concentration.

3.3. Microscopic Parameter Calculation and Principle Discussion

In order to analyze the influence mechanism of the above performance changes,
the free volume, mean square displacement (MSD), and axial density distribution were
further calculated.

3.3.1. Free Volume

According to the free volume theory, the total volume (Vt) of solid or liquid substances
can be divided into occupied volume (V0) and free volume (Vf) [48]. The size of the free
volume in polymer composites has a significant impact on the thermal and mechanical
properties of the material. By analyzing the distribution of free volume inside the material,
the mechanism of the change in the macroscopic properties of the material can be explored.
In this study, due to the MD treatment during model construction, the volume of different
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epoxy systems is not exactly the same. Therefore, the Vf of each epoxy system cannot be
directly compared. Consequently, the percentage is used to calculate the fractional free
volume (FFV) to characterize; its expression is [49]:

FFV =
Vf

V0 + Vf
× 100% (8)

This paper calculated the FFV of FGO/F-EP system with different interlayer spacing
at 300 K, and the results are shown in Figure 8. With the continuous increase of the distance
between the FGO filler layers, the FFV shows a trend of first decreasing and then increasing.
Compared with the random system, when the interlayer spacing is 3 Å to 9 Å, the FFV of
the composite material is relatively reduced, and when the interlayer spacing is further
increased, the FFV of the system increases significantly. We think that FGO with random
distribution is easy to agglomerate in the system, which makes the free volume of the
system relatively large, while the FGO with reasonable interlayer spacing will be evenly
filled in the epoxy system, and the binding effect of FGO on both sides of the matrix
material will lead to the orderly arrangement of epoxy molecules, which will reduce the
FFV of the system. When the layer spacing is further increased, FGO is distributed too
loosely in the composite material, and the binding effect on the epoxy resin molecules
is relatively weakened. At the same time, more holes are generated in the interface area,
which makes the FFV significantly increased.
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3.3.2. Mean Square Displacement

A large number of studies have shown that the movement of molecular segments
in polymer composites is one of the important factors affecting material properties. The
strength of segment movement is directly related to the degree of looseness of the composite
network structure. In many application scenarios, reducing the movement capacity of the
chain segment is a key method to ensure that the material has high mechanical properties.
The strength of the internal chain segment movement of the material can be characterized
by the MSD parameter [50], and the MSD is defined as:

MSD =
1

3N

N−1

∑
i=0

(
|Ri(t)−Ri(0)|2

)
(9)

where N is the total number of atoms in the system, Ri(t)and Ri(0) respectively represent
the displacement vector of the atom i in the epoxy system at time t and the initial time. This
paper calculated the MSD parameters of the FGO/F-EP system with different interlayer
spacing at 300 K, and the results are shown in Figure 9. It can be seen from the figure that the
order of MSD of F-EP with different FGO distribution is 9 Å < 12 Å < Random < 6 Å < 3 Å,
and this result is generally consistent with the trend of the FFV. The analysis suggests
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that the filler itself has an inhibitory effect on the movement of the epoxy resin molecular
chain, but the excessively agglomerated filler has little effect on the matrix, which causes
its effect on the epoxy molecular chain to be limited. After FGO is filled in order, a binding
layer can be generated in the system through interaction force. At the same time, the
fluorine-containing group can also bond with the epoxy matrix. The strong polar C-F bond
also forms a certain barrier effect, and further guides the regular distribution of the resin
matrix chain segments, thereby effectively reducing the MSD of the system.
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3.3.3. Axial Density Distribution

In order to study the effect of graphene addition on the distribution of resin matrix
molecules in the composite material, we calculated the relative density distribution curve
of the FGO/F-EP composite material model in the axial direction (perpendicular to the
FGO surface). The long distance of epoxy resin along the z-axis is divided into several
small areas. The results of axial density distribution are shown in Figure 10.
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Figure 10. Axial density distribution of FGO/F-EP composites with different distribution characteris-
tics. (a) Random; (b) 3-FGO/F-EP; (c) 6-FGO/F-EP; (d) 9-FGO/F-EP; (e) 12-FGO/F-EP.

When FGO is disordered, the axial density of the system shows strong fluctuation,
and there is no obvious density concentration area. When FGO is filled orderly, the axial
density distribution curve of the epoxy composite material model shows three sharp peaks,
and the peak position is the z-axis coordinate corresponding to the three intercalated FGO
in the system. It can be found that the density of the system near the FGO nanosheets is
relatively high, and with the increase of the interlayer spacing, the peak width gradually
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increases, which indicates that the epoxy resin molecules during the cross-linking reaction
will be bound on both sides of the FGO. This is also in line with the previous forecast.
The 3 Å model can clearly see the overlap of the peaks, which proves the effect of filler
agglomeration. The overlap effect of the 6 Å model is weakened, but the peak width does
not change significantly. The peak width of the 9 Å model is significantly increased, and
the adsorption effect of the FGO nanosheets on the epoxy molecules can be clearly seen.
When the interlayer spacing is further increased, the peak amplitude and peak width in
the axial density curve decrease, which is believed to be the reason that the excessive
distance between the FGO layers leads to the weakening of the binding effect on the epoxy
resin molecules.

Based on the research results, we believe that the pre-fixed two-dimensional filler
network can be used to control the cross-linking network of epoxy resin materials. After
functionalizing graphene by fluorination, the epoxy resin can be induced to cross-link into
bonds. The network structure of epoxy resin can be controlled by the binding effect of the
filler network, so that the regular cross-linking region can grow orderly along the spatial
structure of filler network. Through this idea, the number of free segments in polymer
materials can be effectively reduced, and the movement ability of the segments can be
reduced, so as to improve the mechanical strength of the material and increase the glass
transition temperature. This will greatly expand the application of polymer composites and
provide theoretical guidance for the design of high-performance polymer nanocomposites.

4. Conclusions

In this paper, the model of ordered filled FGO nanosheets was constructed, and the
effect of FGO nanosheets spacing on the thermal and mechanical properties of fluorinated
epoxy resin composites was studied. It shows that the orderly filling of FGO can signifi-
cantly improve the static elastic modulus, Tg, CTE, and TC of the composite materials. The
interlayer spacing distribution of FGO nanoflakes in the matrix also has an obvious effect
on the thermodynamic properties of the composites. The results show that the composite
has the best comprehensive properties when the interlayer spacing of FGO is about 9 Å.
Among them, Young’s modulus, bulk modulus, and shear modulus are increased by 9.2%,
6.36%, and 0.57%, respectively. The glass transition temperature increases by 21.79 K, the
thermal conductivity increases by 3.47%, and the thermal expansion coefficient of glass
state decreases by 20%.

Furthermore, the influence mechanism of FGO interlayer distance on the properties
of the composites was analyzed by calculating the microscopic parameters of the systems.
After ordered filling, the aggregation characteristics of FGO are weakened, and the fillers
can be evenly distributed in the composites. There is a strong interaction between the
fluorinated FGO and F-EP, which can induce the ordered distribution of epoxy resin
molecules on both sides of the two-dimensional filler and cross-linking. This makes the
FFV of the materials significantly reduced, and the chains segment motion capacity is
also limited by the filler network. When the FGO layer spacing is too large, the binding
effect is weakened, which leads to the disorder of the microstructure of the composites. By
analyzing the axial density distribution of the composite material, it is found that the fixed-
space functionalized filler network structure does have an adsorption effect on epoxy resin
molecules, and can bind them on both sides of the two-dimensional filler to guide its orderly
cross-linking. We predict that there is a key connection between the crystallization behavior
and glass transition behavior of epoxy resin materials. In the future, we can control the
cross-link behavior of polymer materials by designing functionalized two-dimensional
filler networks and develop high-performance polymers composite materials.
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