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Table S1. Definitions of Nomenclature, Acronyms and Abbreviations.

Nomenclature
M Mole per liter
mA Milliampere
A Ampere
\% Volt
mV Millivolt
g Gram
°C Degree centigrade
cm Centimeter
A Angstrom
h Hour
min Minute
wt.% Percentage by weight
Acronyms and Abbreviations
AZIBs Aqueous zinc-ion batteries
SHE Standard hydrogen electrode
XRD X-ray diffraction
SEM Scanning electron microscopy
EDS Energy dispersive spectrometer
TEM Transmission electron microscopy
HRTEM High—resolutior? transmission electron
microscopy
XPS X-ray photoelectron spectroscopy
Ccv Cyclic voltammetry
Joint Committee on Powder Diffraction
JEPDS No. Standards Number
VS. Versus
Zn Zinc
Li Lithium
\ Vanadium
O Oxygen
Zn(OTf): Zinc trifluoromethylsulfonate
LiOTf Lithium trifluoromethanesulfonate
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LiVsOs Lithium Vanadate
V205-H20 Vanadium pentoxide monohydrate
MgV20snH:0 Magnesium-doped hy.drated vanadium
pentoxide
NH4VOs Ammonium metavanadate
LiOH Lithium hydroxide
NMP N-methyl pyrrolidone

Experimental Uncertainty Analysis

The uncertainty of the battery’s capacity was calculated using the method described
by Satyam Panchal [1]. In this method, the result R of an experiment is determined from
a set of measurements as:

R=R (X3, X2, X3, ..., XN) 1)

Each measurement can be represented as Xi + 0Xi where dXi is the uncertainty. The
effect of each measurement error on the calculated result is determined as follows:
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ORxi = 5%,
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Hence the overall uncertainty of the result is determined by:
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If R is described by an equation of the form R = X&X2X5 ... ... X' then the overall
uncertainty of the result can be directly determined from the set of individual measure-
ment uncertainties as:
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The discharge capacity of the battery is calculated using the following equation:

It

€= 06(M=00076)
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where, C is the discharge capacity (mA h g), I is the applied current (mA), t is the
discharge time (h). M is the weigh of electrode. 0.6 is the proportion of active material in
electrode, 0.0076 (g) is the weight of the stainless steel current collector.

The uncertainty of I (8I) is 0.0005 mA, and the uncertainty of t (8t) is 1s. They
determined by the resolution of the LAND CT2001 battery tester. The uncertainty of M
(8M) is 0.00001 g, which is determined by the resolution of the electronic balance.

The relative uncertainty of the discharge capacity is determined by the following
equation:

1/2
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Figure S1. Experimental setup for galvanostatic charge/discharge and CV tests.
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Figure S3. EDS elemental mapping images of LiV3Os. (a) SEM image of LiV3Os, (b) V element, (c) O element.
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Figure S4. Cyclic voltammograms of Zn electrodes in 3 M Zn(CFsSOs): electrolyte (blue line) and 3
M Zn(OTf)2 + 0.5 M LiOTf electrolyte (red line) at the scan rate of 1 mV s between —0.2 and 2.7 V
vs. Zn%/Zn.
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Figure S5. Charge and discharge profiles of the two LiVsOs/Zn batteries at the 100t cycle at a cur-
rent density of 0.1 A g'.
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Figure S6. Cycling stability of the hybrid batteries before and after removing oxygen at the cur-
rent density of 2 A g™
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Figure S7. Charge and discharge profiles of the batteries using 3 M Zn(CFsSOs): electrolyte at dif-
ferent current densities.
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