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Abstract: The present work is intended to biosynthesize zinc oxide nanoparticles (ZnO NPs) via
facile and modern route using aqueous Ziziphus jujuba leaves extract assisted by microwave and
explore their photocatalytic degradation of methyl orange anionic dye and methylene blue cationic
dye under solar irradiation. The biosynthesized microwave assisted ZnO NPs were characterized and
the results showed that ZnO NPs contain hexagonal wurtzite and characterized with a well-defined
spherical-like shape with an outstanding band gap (2.70 eV), average particle size of 25 nm and
specific surface area of 11.4 m2/g. The photocatalytic degradation of the MO and MB dyes by
biosynthesized ZnO NPs under solar irradiation was studied and the results revealed the selective
nature of the ZnO NPs for the adsorption and further photocatalytic degradation of the MO dye
compared to the MB dye. In addition, the photocatalytic degradation of MO and MB dyes by the
ZnO NPs under solar radiation was fitted by the first-order kinetics. Moreover, the photodegradation
mechanism proposed that superoxide ions and hydroxyl radicals are the main reactive species.

Keywords: Azo dye; photocatalytic degradation; solar irradiation; ZnO NPs

1. Introduction

Currently, nanotechnology is based on the preparation, characterization and appli-
cations of different nanoparticles (NPs) such as metals, metal oxides, semiconductors,
ceramics and polymers, due to their outstanding morphological, structural and physic-
ochemical properties allowed the NPs to be the used in a wide variety of applications.
Among the most commonly used nanoparticles is zinc oxide nanoparticles (ZnO NPs),
which are usually used in different applications, such as corrosion protection [1], food
packaging [2], biomedical [3–5], electronics [6], revolutionizing agriculture [7], textiles [8]
and as photocatalysts for environmental applications [9–13]. The synthesis of ZnO NPs
are usually based on various physical, and chemical process, such as via combustion,
thermal decomposition, sol-gel method, mechanical synthesis combined with high-energy
milling and hydrothermal methods, which are mainly based on the usage of different
chemicals and reagents such as the aqueous solution of zinc nitrate, zinc sulphate or zinc
acetate as the precursor, followed by provision of basic environment such as sodium hy-
droxide or ammonia, in addition to some additives acting similarly to capping agents
to produce well defined nanoparticles such as polyethylenimine (PEI) or polyethylene
glycol (PEG) [14–16]. The physical and chemical processes for synthesis of ZnO NPs
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usually generate chemical waste, leading to adverse effects on the life of flora and fauna
and, critically, water. Recently, an alternative and interesting trend was adopted to min-
imize the generation of such chemical waste known as biosynthesis, or green synthesis,
of nanoparticles, where various plant parts extract have been used for this synthesis, as
the biosynthesis of ZnO NPs in comparison with conventional synthesis is recommended,
as it has minimal impact on the environment and is without health risk [17]. In several
studies, the extract of various plants parts have been applied for the biosynthesis of ZnO
NPs, such as Azadirachta indica (Neem) leaf [18], Abelmoschus esculentus (okra) mucilage [19],
Cuminum cyminum (cumin) [20], Mangifera indica (mango) leaves [21], Calotropis gigantea
leaves [22], Aloe socotrina leaf [23], Parkia roxburghii seeds [24], Nigella sativa seed [25] and
Ziziphus jujube (Sidr or Nabq) [26], where the plant extracts act as capping and stabilizing
agents [17], which stabilized the formed nanoparticles, and prevent the agglomeration of
the particles. In addition, the biosynthesized ZnO NPs were characterized with compara-
ble, and most of the times higher activities when compared with traditionally prepared
nanoparticles [17–27]. Ziziphus jujube is a very common plant that is grown locally in Saudi
Arabia and surrounding areas and is used extensively for its health properties [28–31].
It was found that the medicinal benefits of Ziziphus jujube are anti-inflammatory effects,
antimicrobial, antioxidant and anticancer [28–31]. The Ziziphus jujube plant is rich in sev-
eral organic compounds, including phenolic compounds, beta-carotene, alpha-tocopherol,
alkaloids, sterols, flavonoids, saponin, tannins and fatty acids which could act as capping
agent, and prevent the agglomeration of the NPs due to the existence of long chain natural
products in the plant extract [32,33].

Moreover; the preparation of metal oxide NPs such as ZnO using microwave was
the focus of many research, mainly due to the superior heating rate when compared to
traditional heating methods as a result of volumetric heating, in addition to the fact that
microwaves usually provide high energy by penetrating the material, allowing the reaction
to be completed in minutes or even seconds, in addition to the possibility to control the
ZnO NPs properties; such as purity, low cost, reproducibility of the produced NPs and
fulfilment of the eco-friendly approach criterion as well. [34–39].

The hypothesis of the current work in the use of Ziziphus jujube leaves extract assisted
with microwave could produce ZnO NPs characterized with outstanding colloidal stability,
more uniform size, shape and higher reactivity compared to the traditionally prepared
ZnO NPs.

Accordingly, the objective of the current research is the biosynthesis of ZnO NPs using
aqueous extract of Ziziphus jujube leaves assisted with microwave heating. The biosynthe-
sized ZnO NPs were characterized using different characterization techniques to explore
their morphological, physical and chemical properties, then used for the photocatalytically
degradation of two different organic dyes: methyl orange anionic dye and the methylene
blue cationic dye, under solar irradiation.

2. Materials and Methods
2.1. Materials

All chemicals (analytical grade) were purchased from Sigma-Aldrich Canada (Oakville,
ON, Canada), and the solutions were prepared with deionized water.

2.2. Methods
2.2.1. Ziziphus jujuba Leaves Extract (Sidr) Preparation

Fresh and healthy leaves of Ziziphus jujuba (Sidr) were collected from Jeddah, Saudi
Arabia, on October 2019. The leaves were washed very well with tap water, then with
deionized water and were dried on air at ambient temperature, then the cleaned leaves
were chopped and grounded and 5.0 g was added to a 100 mL of deionized water in a
beaker. The mixture was boiled for 20.0 min, then cooled to room temperature and was
centrifuged at 3,600 rpm for 30 min, till a clear filtrate was obtained and stored at 4 ◦C.
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2.2.2. Traditional ZnO NPs (T ZnO NPs) Preparation

An aqueous solution of zinc acetate (250 mL, 0.2 M) and the solution of NaOH (250 mL,
0.5 M) were prepared with deionized water. The NaOH solution was added drop by drop
using a burette to the zinc acetate solution at room temperature under vigorous stirring,
which resulted in the formation of the white precipitate of zinc hydroxide. The white
precipitate of the zinc hydroxide was separated by centrifugation at 3900 rpm for 30 min
and washed three times with distilled water, followed by ethanol. The obtained product
was dried at 60 ◦C in air atmosphere for 24 h to convert the Zn(OH)2 to ZnO NPs.

2.2.3. Biosynthesis of ZnO NPs (B ZnO NPs)

An aqueous solution of Zinc acetate (250 mL, 0.2 M) and the solution (250 mL, 0.5 M)
of NaOH were prepared using the Ziziphus jujuba leaves extract (5 mL). The NaOH solution
was added drop by drop using a burette to the zinc acetate solution; prepared with the
extract, at room temperature under vigorous stirring, which resulted in the formation of
the light-brown precipitate of zinc hydroxide. The light-brown precipitate was separated
by centrifugation at 3900 rpm for 30 min and washed three times with distilled water,
followed by ethanol. The obtained product was dried at 60 ◦C in air atmosphere for 24 h to
convert the Zn(OH)2 to ZnO NPs.

2.2.4. Biosynthesis Microwave-Assisted ZnO NPs (BMW ZnO NPs)

Aqueous solution of zinc acetate (250 mL, 0.2 M) and the solution (250 mL, 0.5 M) of
NaOH were prepared using the Ziziphus jujuba leaves extract (5 mL). The NaOH solution
was added drop by drop using a burette to the zinc acetate solution; prepared with the
extract, at room temperature under vigorous stirring at 1000 rpm using Stuart™ hotplate
stirrer model CB162, which resulted in the formation of the light-brown precipitate of
zinc hydroxide. The resultant solution was treated by using 800 W household digital
microwave oven (Nikai, NMO-518N, Japan) for 5 min to convert the Zn(OH)2 to ZnO NPs,
then the precipitate was separated by centrifugation using Sigma Centrifuge (model 2–7)
at 3900 rpm for 30 min and washed three times with distilled water, followed by ethanol.
The obtained product was dried at 60 ◦C in air atmosphere for 24 h.

2.3. Characterization Methods

The FT-IR spectra for the FT-IR spectra of Ziziphus jujuba leaves extract, and different
ZnO NPs, were recorded using FTIR spectrophotometer (Shelton, CT, USA). X-ray diffrac-
tion (XRD) patterns were recorded for phase analysis and the measurement of crystallite
size was performed on a Philips X-pert pro diffractometer (Malvern, Worcestershire, United
Kingdom). The instrument was operated at 40 mA and at 40 kV on a CuK α radiation
and a nickel filter in the 2θ range from 2 to 80◦ in steps of 0.02◦, with a sampling time of
one second per step. Estimation of the crystal size was achieved according to the Scherrer
equation [40]. The morphological structures of the prepared ZnO NPs were studied using
JEOL JEM-1011 high-resolution transmission electron microscope (TEM) (Peabody, MA,
USA) that operated 80 kV. The specific surface area of the ZnO NPs were estimated using
the nitrogen adsorption/desorption isotherm at 77 K, by NOVA3200e (Quantachrome,
Boynton Beach, FL, USA), and prior to measurements, the samples were outgassed under
vacuum (5 millitorrs) at were degassed at 473 K; the outgas rate was 5 mmHg/min till the
sample was degassed. The absorbance and the band gap estimation were measured using
a UV-3600 from Shimadzu (Nakagyo-ku, Kyoto, Japan). For absorbance measurement,
20 mg of the sample was mixed with 100 mg of KBr and then ground very well to prepare
a transparent pellet. After that, the pellet was used for the measurement of absorbance.

2.4. Photocatalytic Experiments

The application of ZnO NPs as a photocatalyst for environmental remediation via
photocatalytic degradation was performed using a mixture of the two azo dyes solution—
methyl orange (MO) and methylene blue (MB), under direct sunlight. A 20 mL mixture
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of 5 ppm of MO and 5 ppm MB dyes were used, and 15 mg of ZnO NPs were added and
stirred for 30 min in the dark, then the solution was exposed to direct sunlight between
10 am to 12 pm, and the light flux was 700 ± 20 W/m2 during the whole period. An
aliquot of the mixture was withdrawn at designated time intervals, the ZnO NPs were
separated by centrifuge and then the concentration of the remaining MO and MB dyes
in each solution was determined by ultraviolet-visible spectrophotometer (UV-1650 PC,
CPS-240A, SHIMADZU, Nakagyo-ku, Kyoto, Japan) at 464 nmand 664 nm, respectively.
The removal efficiency was estimated by applying the following equation:

% Removal =
100× (C0 − Ct)

C0
(1)

where C0 is the initial concentration and Ct: the residual concentration in solution at a
certain time (t).

3. Results and Discussion
3.1. Characterization of ZnO NPs

Figure 1 present the FT-IR spectra of Ziziphus jujuba leaves extract, as well as the
different synthesized ZnO NPs. The spectrum of Ziziphus jujuba leaves extract (Figure 1A,
showed strong absorption peak at 3421 cm−1 was resulted from stretching of the O-H
groups due to the presence of alcohols, phenols, carbohydrates and etc. [41]. While the
peak 2925 and 1637 cm−1 may be attributed to the stretching vibration of υ (=C–H) and
υ(C = C), and the peak at 1637 cm−1 could also be related to the surface adsorbed water
molecule. The peak at 619 cm−1 may be assigned to δ(C–H) bending vibration or C–S,
R–C–CH3 stretching for Sulphur compounds. Similarly, the bands at 3421 and 1384 cm−1

may be assigned to the stretching vibration of υ (O–H) and in-plane bending vibration of
δ (O–H), respectively. Moreover, the band at 1052 cm−1 may be contributed by skeletal
C–O and C–C vibration bands of glycosidic and pyrenoid ring [42]. Meanwhile, the FT-IR
spectra of different ZnO NPs were analyzed to confirm the phase transformation and purity
of the ZnO (Figure 1B–D). All the FT-IR spectra showed a wide band at 3400 cm−1 thereby
indicating the presence of surface hydroxyl groups due to presence of trace amount of water
in the ZnO samples. Weak absorption bands centered at about 1640, 1480 and 1370 which
can be assigned to asymmetric and symmetric C=O stretching modes, respectively, due to
traces of the Ziziphus jujuba leaves extract, especially with the biosynthesized ZnO Nps.
The peaks appeared in the region between 600 and 450 cm−1 are allotted to metal oxygen
vibration (Zn-O) of ZnO nanoparticles [43].

Figure 2 illustrates the XRD patterns of different prepared ZnO NPs; T ZnO NPs,
B ZnO NPs and BMW ZnO NPs show characteristic peaks at 2θ angles equals 31.74◦,
34.40◦ and 36.22◦ corresponding to (100), (002) and (101) planes, respectively, relative to
hexagonal wurtzite structure (JCPDS file no. 36–1451). The ZnO NPs calculated crystallite
size applying the Scherer equation were 21.5 nm, 25.7 nm, 26.40 nm, for T ZnO NPs, B
ZnO NPs and BMW ZnO NPs, respectively, indicating the increase in the crystallite size
due to the thermal treatment via the microwave heating, which was characterized with
the rapid, and high temperature compared with the traditional method. The increase in
crystallite size with the microwave prepared ZnO NPs could be attributed to thermally
promoted crystallite growth [44]. Figure 3 presents the SEM images of the different ZnO
nanoparticles at different magnification power. The SEM images revealed the formation of
irregular agglomerated nanoparticles when the ZnO NPs prepared traditionally (T ZnO
NPs) or biosynthesized using the the Ziziphus jujuba leaves extract only (B ZnO NPs), as
well as the prepared by the microwave assisted using the Ziziphus jujuba leaves extract
(BMW ZnO NPs) characterized with uniform and less agglomeration nanoparticles, and
accordingly, the ZnO NPs were characterized with TEM to confirm the shape and size of
the nanoparticles. Transmission electron microscope images of the ZnO NPs; T ZnO NPs,
B ZnO NPs and BMW ZnO NPs are presented in Figure 4, which shows that ZnO NPs
exists in several sizes and shapes depending on the preparation method. For example, T
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ZnO NPs composed of irregular agglomerated particles, and the B ZnO NPs characterized
with the irregular flake-shape composed of very small particles with an average particle
size of 20 nm, whereas BMW ZnO NPs characterized with the well-defined spherical-like
shape with an average particle size of 25 nm. The small size of the B ZnO NPs may be
attributed to the presence of the Ziziphus jujuba leaves extract which act as capping agent
and prevent the agglomeration of the ZnO NPs due to the existence of long chain natural
products such as the polyphenols in the extract [41,42,45–48]. In addition, the well-defined
spherical shape of the BMW ZnO NPs compared with the traditional and biosynthesized
ZnO NPs may be ascribed to the thermally promoted crystallite growth due to the fusion
of the small particles as a result of the high temperature, as well as the effect of the long
chain natural products associated with the Ziziphus jujuba leaves extract.
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The specific surface areas of the ZnO NPs were calculated from the nitrogen gas
adsorption/desorption isotherms at 77 K applying the BET equation, as shown in Figure 5.
The BET specific surface areas were 12.7, 11.5 and 11.4 m2/g for the T ZnO NPs, B ZnO
NPs and BMW ZnO NPs, respectively, indicating a slight decrease in the surface area upon
the microwave treatment. The average particles size (D) of BMW ZnO NPs was estimated
based on their spherical shape, calculated specific surface area and the ZnO NPs theoretical
density using the following equation [49,50]:

D = (N× 1000)/(SSA× ρ) (2)
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where D is average particle size of particles (nm), N is the shape coefficient (N= 6 for the
spherical shape), SSA is specific surface area m2/g and ρ is theoretical density of the ZnO
NPs (5.61 g/cm3). The calculated average particle size was 98.8 nm, based on the SSA
value of 11.4 m2/g of the BMW ZnO NPs, which is significantly higher than the TEM
value of 25 nm and the crystallite size of crystallite size of 26.40 nm estimated by applying
the Scherer equation to the main diffraction peak at 2θ value of 36.22◦ corresponding to
(101) plane.
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In order to investigate the optical property of the traditional and biosynthesized
ZnONPs on the band gap energy value, the UV–Vis absorbance spectra were recorded at
room temperature in the range of 200–800 nm and are shown in Figure 6. As can be seen
from figure, the position of the absorption spectra exhibits red shift with the biosynthesis
which indicates that the band gap of ZnO material decreases compared with traditional
method. It shows the UV–vis absorption spectra of ZnO nanoparticles exhibiting absorption
peak at 364 nm, 368 and 370 nm for T ZnO NPs, B ZnO and, BMW, respectively.
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The optical band gap energy (Eg) of the samples is determined by fitting the absorption
data using Tauc’s relation [51]:

αhυ = E(hυ− Eg)1/2 (3)

where hν is the photon energy, Eg is the direct band gap and E is a constant, α is the
optical absorption coefficient and found from the absorption data. As presented in Figure 6,
plotting (αhν)2 as a function of photon energy (hυ) and extrapolating the linear portion of
the curve to zero absorption gives the value of the direct band gap (Eg). It was observed
that the band-gap energy was decreased to 2.70, 2.80 and 3.00 eV for BMW ZnO NPs, B
ZnO NPs and T ZnO NPs, respectively, which were lower than the typical ZnO (3.2 eV) [52].
Compared to the bulk ZnO, the optical band gap of the prepared ZnO NPs were smaller,
which may be due to the structural defects that arising during the sample synthesis. As it
is well known, the point effects in ZnO introduce levels within the bandgap lead to the
appearance of the wide deep level emission band covering the whole visible range [53]. The
wide band gap of ZnO indicates that it is difficult to photo-excite electrons from the valance
band (VB) to the conduction band (CB) under visible light. However, the presence of
4 oxygen vacancies in ZnO as surface defects plays an important role in optical absorption
in visible light region. Theoretical calculations by first principle density functional theory
(DFT) concluded that the valence states near Fermi level originated from the O2p and Zn3d
states in the valence band can lead to the electronic transitions in visible region [54,55].

3.2. Photocatalytic Degradation of MO and MB

The photocatalytic degradation of MO and MB was explored using T ZnO NPs, B ZnO
NPs and the BMW ZnO NPs under the solar irradiation, and the results revealed that the
most of the MO and MB dyes were removed within 100 min using BMW ZnO NPs, 100.0%
and 99.6%, respectively, whereas in the case of B ZnO NPs it required 150 min to remove
most of the dyes—95.5% and 96.6% removal for MO and MB dyes, respectively, meanwhile
in the case of T ZnO NPs it required 180 min to remove most of the dyes—94.2% and 92.6%
removal for MO and MB dyes, respectively. The high photodegradation efficacy of the
BMW ZnO NPs may be attributed to the small band gap (2.70 eV), compared with the B ZnO
NPs (2.80 eV) and T ZnO NPs (3.00 eV), which facilitate the photocatalytic degradation
of the organic dyes, as a results of the uniform spherical shape of the biosynthesized
microwave treatment of the ZnO NPs, as the geometrical shape play an important role
in the reactivity of the nanoparticles [17,56], which presents the unique characteristics
of the biosynthesized microwave-assisted ZnO NPs. Accordingly, further photocatalytic
degradation experiments were performed using the MWG ZnO NPs.

The environmental application of the biosynthesized ZnO NPs for the removal of
MO and MB dyes from aqueous solution was explored and the results were presented
in Figures 7 and 8. As it is presented, the first part of the experiment was carried out in
the dark for 30 min to study the removal of the pollutants via the adsorption pathway,
and the results revealed that the removal efficiencies due to adsorption were 52.3% and
27.2% for the MO and MB, respectively. Then, the photocatalytic properties of ZnO NPs
on the degradation of MO and MB dyes were studied under direct sunlight for 100 min,
and it was observed that the degradation was generally in two stages. The first stage of the
photodegradation was fast, followed by a slower stage. The slow degradation in the second
stage might may be due to difficulty to oxidize of the N-atoms of the dye in addition to the
accumulated intermediates in the first stage decrease the rate of oxidative photocatalytic
reaction [57].
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The kinetics of MO, MB dyes photodegradation was explored, using the first order
model to determine the kinetics rate in the photodegradation process of MO and MB dyes
by the biosynthesized ZnO NPs according to the following equation:

ln
(

Ct

C0

)
= −k t (4)

where C0, Ct and k are the initial concentration, the concentration at different irradiation
times (mg/L) of MO and MB dye, and the photodegradation rate constant (min−1), re-
spectively. As it is presented in Figure 9, the plot of ln(Ct/C0) versus time (t) for both
MO and MB dyes photodegradation experimental data showed in Figure 8, yield straight
lines with slopes equal to k with the linear correlation coefficient value (R2) higher than
0.90 indicating that the photodegradation of the MO and MB dyes by the ZnO NPs follows
the first order kinetics behavior, with a photodegradation rate constants of 0.0545 min−1

and 0.0241 min−1 for the MO and MB, respectively, indicating the high photodegradation
rate of the MO dye compared with the MB dye by the ZnO NPs. Intriguingly, this may
indicate the significant role of the organic dye molecule charge on the removal process as
MO is anionic dye whereas MB is a cationic dye. As it was observed earlier, the adsorp-
tion (in the dark) of the MO dye molecules was much more compared with the MB dye
molecule—52.3% and 27.2%, respectively, indicating the selective nature of the ZnO NPs
for the adsorption and further photocatalytic degradation of the MO dye compared with
the MB dye.
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3.3. Photodegradation Mechanism

The photocatalytic degradation reaction of the MO and MB dyes by ZnO NPs generally
includes the following steps: photoexcitation, charge separation and migration and finally
surface oxidation–reduction reactions [58], as it explained by Equations (5)–(11), the reactive
species generated during irradiation of the ZnO NPs were h+

(VB), OH. and O−.
2 .

ZnO → ZnO
(

e−
(CB)

)
+

(
h+
(VB)

)
(5)

ZnO
(

h+
(VB)

)
+ H2O → ZnO + H+ + OH (6)

ZnO
(

e−
(CB)

)
+ O2 → ZnO + O−.

2 (7)

O−.
2 + H+ → HO.

2 (8)

HO.
2 + HO.

2 → H2O2 + O2 (9)

H2O2
hv→ 2OH. (10)

Organic pollutants + OH. → degradation products (11)

Figure 10 presents the proposed mechanism for photocatalytic degradation of MO
and MB dyes by ZnO NPs photocatalyst under solar irradiation. It is proposed that the
electrons in the VB transfer to the CB under the solar irradiation of the of the ZnO NPs,
and the corresponding energy is higher than the band gap of ZnO (2.7 eV), in that way
promoting the generation of valance band holes (h+) and conduction band electrons (e−),
and possibly, the photogenerated holes at the VB could either directly oxidize the adsorbed
MO and MB dyes or directly react with hydroxyl (OH−) or H2O to generate hydroxyl
radicals (·OH). Meanwhile, the photoelectrons at the CB could reduce the oxygen (O2)
adsorbed on the ZnO NPs surface into superoxide radical (·O2

−). Accordingly, the MO
and MB dyes could be decomposed photocatalytically by the both generated ·OH and
·O2
− [59–61].
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4. Conclusions

Zinc oxide nanoparticles were biosynthesized using Ziziphus jujuba leaves extract
assisted with microwave and used for the photocatalytic degradation of the methyl orange
anionic dye and the methylene blue cationic dye under solar irradiation. The biosyn-
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thesized ZnO NPs were characterized and the results showed that ZnO NPs contained
hexagonal wurtzite and was characterized with a well-defined spherical-like shape with
an average particle size of 25 nm with an outstanding band gap of 2.7 eV and surface area
of 11.4 m2/g. The photocatalytic degradation of the MO and MB dyes by biosynthesized
ZnO NPs under solar irradiation was studied and the results revealed the selective nature
of the ZnO NPs for the adsorption and further photocatalytic degradation of the MO dye
compared with the MB dye. In addition, the photocatalytic degradation of MO and MB
dyes by the ZnO NPs under solar radiation was fitted by the first-order kinetics. Moreover,
the photodegradation mechanism proposed that superoxide ions and hydroxyl radicals are
the main reactive species.
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software, N.H.K.; validation, S.B., and I.I.; formal analysis, M.N.A., and M.A.S.; investigation, M.N.A.,
and M.A.S.; resources, M.A.S.; data curation, M.N.A.; writing—original draft preparation, M.N.A.;
writing—review and editing, M.N.A. and M.A.S.; visualization, S.B.; supervision, M.A.S. and I.I.;
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published version of the manuscript.
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