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Abstract: This work aims to present the dynamic character of microstructured materials made of
hexagonal-shape particles interacting with elastic interfaces. Several hexagonal shapes are analyzed
to underline the different constitutive behavior of each texture. The mechanical behavior at the macro
scale is analyzed by considering a discrete model assumed as a benchmark of the problem and it
is compared to a homogenized micropolar model as well as a classical one. The advantages of the
micropolar description with respect to the classical one are highlighted when internal lengths and
anisotropies of microstuctured materials are taken into consideration. Comparisons are presented in
terms of natural frequencies and modes of vibrations.

Keywords: composite materials; cosserat theory; dynamics; finite element method; hexagonal
shaped particles

1. Introduction

Particle composites are a class of materials which present an internal microstructure
constituted by particles and interfaces: ceramic and metal composites, poly-crystals, ma-
sonry, porous rocks are some examples of media characterized by this peculiarity. In order
to describe the macroscopic response of these materials is fundamental to detect the influ-
ences of the microscopic scale: a possible approach to study the mechanical response is to
realize a discrete model of the microstructure. However, an approach like this, results to be
computationally cumbersome [1–3], both for the microstructure and for the high number
of the degrees of freedom. An alternative approach is to homogenize particle composites
in an equivalent continuum that takes into account all the mechanical aspects of the mi-
crostructure. This strategy is faster and computationally less expensive [4], nevertheless the
selection of the homogenization procedure is a challenging task, mostly because it requires
the choice of the proper macroscopic continuum that is able to preserve memory of the
microstructure not only in terms of shape and arrangements of the elements but also of
their size, in problems where the internal length effects are not negligible [5,6].

It is recognized that the classical continuum is not always suitable for capturing the
macroscopic behaviour of these composite materials [7]. Some continuum theories have
non-local character for the presence of the internal length, as the distance between particles
in a discrete structure, the grain or cell size, the correlation radius of at-a-distance force,
or due to spatial dispersion properties, in fact there may be a dependence of the wave
velocities on wavelength or frequency [8–10].

Starting from this circumstance different models have been presented as the strain
gradient [11–13], and micropolar continua, that can be considered non-local models of
implicit type [4,14–18], one of the peculiarities of the latter is that they include additional
degrees of freedom [19].

One of the cause of great interest by researchers to apply these non-local theories is
to properly describe the buckling and dynamical behaviour of composite materials and
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nanomaterials, such as nanoplates, nanorods [20], nanobeams, composite plates, which are
widely used in many industrial fields; the strain gradient theory is largely adopted [21–28],
as well as the modified strain gradient theory, [29–34]. Finally, many works concerning the
study of the elastic [35,36], viscoelastic [37] and elastoplastic [38] behavior of composite
materials are based on different homogenization approaches [39–41].

As regards the micropolar continuum, it takes into account the strain measure of the
microrotation, which makes a contribution in anisotropic media [42]. Moreover, it is useful
to emphasize the effects of the additional strain measure of the so-called relative rotation,
defined as the difference between microrotation and macrorotation, the local rigid rotation,
corresponding to the skew-symmetric part of the displacement gradient [17,43].

Furthermore, several studies on the dynamics of particle materials are present in
the literature [44], in particular for hexagonal lattice systems, [45–47], materials with pe-
riodic hexagonal microstructure [48,49], chiral materials [50], granular matter [51] and
polymeric composites [52]. Consequently, it is of interest to study materials of this type as
continuous models, and the Cosserat theory is widely applied to study the dynamic be-
haviour of media with internal microstrucuture, such as: granular materials [53], plates [54]
and shells [55], composite materials [56], masonry structures [57,58] and to investigate
dispersive properties [59,60].

In this paper, the aim is to characterize the dynamic behavior of microstructured
materials, in particular materials endowed of particles, with three different hexagonal
shapes, and thin elastic interfaces modelled as a Cosserat continuum and to highlight the
advantages in comparison with the Cauchy continuum [61–64], whereas a discrete model
is assumed as a benchmark characterized by rigid blocks and linear elastic springs at the
interfaces [65]. To allow this, the approach, used in this study, consists in the description
of a continuum model and of a complex lattice model which are linked through the field
variables via an energy equivalence criterion [5,6,66–69].

The paper is structured in this way: in Section 2 a short introduction about the main
micropolar continuum aspects is presented, in Section 3 details about the representative
volume element and materials constitutive properties are discussed; in Section 4 the
numerical implementation of models is discussed and at last, in Section 5, free vibration
simulations [70,71] for a comparison between the discrete model, assumed as benchmark,
and the micropolar and classical continuum are reported and finally the most important
aspects will be highlighted.

2. Micropolar Continuum

The present work refers to two-dimensional (2D) media and each material particle has
three degrees of freedom: u1 and u2 are the displacement components and ω is the micro-
rotation. The term ω, is different from the macro-rotation θ, defined as the skew-symmetric
part of the gradient of displacement. The displacement vector is u> =

[
u1 u2 ω

]
,

and the strain vector is: ε> =
[
ε11 ε22 ε12 ε21 κ1 κ2

]
, where εij are the normal and

shear strains and the microcurvatures are indicated by κ1 and κ2. Differently from the
classical continuum the strain components are not reciprocal ε12 6= ε21. The stress vector
is represented as: σ> =

[
σ11 σ22 σ12 σ21 µ1 µ2

]
where σij for i, j = 1, 2 represents

the normal and shear stress components and µ1, µ2 are the microcouples. The shear stress
components are not reciprocal, σ12 6= σ21 and the couple stress components µ1, µ2 have to
be introduced in order to satisfy the moment equilibrium of the micropolar body.

In matrix form, the kinematic compatibility relation is:

ε = D u (1)
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where the operator D is:

D> =


∂

∂x1
0

∂

∂x2
0 0 0

0
∂

∂x2
0

∂

∂x1
0 0

0 0 1 −1
∂

∂x1

∂

∂x2

 (2)

The variation of internal work can be written as:

δU =
∫

V
δε>σ dV = h

∫
A

δu>D> σ dA (3)

where h is the thickness of the present 2D solid which will be considered as unitary. The
kinetic energy is:

δK =
∫

V
ρδu̇>u̇ dV =

∫
A

δu̇>mu̇ dA = −
∫

A
δu>mü dA (4)

where m is the equivalent mass matrix defined as:

m =

ρh 0 0
0 ρh 0
0 0 ρJc

 (5)

where ρ is the material density and Jc represents the rotary inertia of the material point.
Using the Hamilton’s principle (by neglecting external actions since only free vibrations
will be here considered) the following equation is carried out:

δ
∫ t2

t1

(K−U) dt = 0 (6)

considering the previous expressions:∫ t2

t1

∫
A

δu>
(

mü + D> σ
)

dA dt = 0 (7)

The micropolar anisotropic constitutive equation takes the form:

σ = C ε (8)

where:

C =



A1111 A1122 A1112 A1121 B111 B112
A2222 A2212 A2221 B221 B222

A1212 A1221 B121 B122
A2121 B211 B212

D11 D12
sym D22

 (9)

By considering hyperelastic materials, the constitutive matrix is symmetric (C ∈ Sym):
in particular Aijhk = Ahkij; Bijh = Bhij; Dij = Dji [5]. Accounting for the constitutive
equations, the Hamilton principle for free vibrations can be formulated:∫ t2

t1

∫
A

δu>
(

mü + D> CDu
)

dA dt = 0 (10)

3. Reference Volume Element

The constitutive matrix (9) can be carried out by homogenization according to a
multi-scale approach [5]. It has been recently demonstrated that a more efficient charac-
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terization of the elastic symmetries of plane tensors can be provided by using the polar
formalism [72–74]. In particular the orthotropy condition can be expressed in a more
general form by abandoning the Cartesian representation of tensors, which is not based
on invariant quantities. However, in order to keep same nomenclature of the reference
paper [5] and for the sake of conciseness, investigation of the polar formalism is deferred
to a future publication.

The tiles interact among themselves through elastic joints centered on the middle
point of the common edges; elastic linear translational and rotational stiffness are adopted.
However, in order to apply the aforementioned methodology a reference volume element
(RVE) must be detected: it is defined as the elementary volume element made of the
minimal number of elements and joints sufficient to properly define the behavior of the
material and it is the only one that preserve the material symmetry in the homogenization
procedure [75]. In these analyses a RVE made of 7 blocks is considered. This work focuses
on three different particle hexagonal geometries: regular, hourglass and asymmetric. Those
geometries have been described in previous works by the authors [65] and they show
peculiar constitutive behaviors such as orthotetragonal, auxetic and chiral elastic properties,
respectively. The geometries of the considered RVEs are depicted in Figure 1. For each RVE
configuration three scales are analyzed, named s = 1, 0.5, 0.25.

(a) (b) (c)

Figure 1. Seven blocks RVEs at larger scale (s = 1): (a) regular (b) hourglass and (c) asymmetric.

Due to the orthotetragonal constitutive model of regular hexagons Breg = 0 (0 here
indicates a 4× 2 matrix) so there is no coupling between normal and shear stresses/strains
with curvatures/micro-couples and consequently the material is centrosymmetric. The
non-zero matrices of the current geometry are listed in Table 1. As previously observed
in [65] regular hexagons are such that no coupling between normal stresses and shear
strains (tangential strains and longitudinal strains) occurs. In addition, a small Poisson
effect is shown.

Table 1. Constitutive matrices for regular and hourglass blocks.

Regular Hourglass

Areg Ahour
1.1897 0.1700 0 0

0.17 1.1897 0 0
0 0 0.8498 0.1700
0 0 0.1700 0.8498




0.5844 −0.1261 0 0
−0.1261 2.5399 0 0

0 0 1.9274 −0.1261
0 0 −0.1261 0.3467


Dreg Dhour

s = 1
[

0.1082 0
0 0.0882

] [
0.0407 0

0 0.1969

]
s = 0.5

[
0.0270 0

0 0.0221

] [
0.0102 0

0 0.0492

]
s = 0.25

[
0.0068 0

0 0.0055

] [
0.0025 0

0 0.0123

]
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The constitutive matrices for the hourglass shape are listed in Table 1 except for the
coupling matrix which is zero Bhour = 0 (0 here indicates a 4× 2 matrix). As in the previous
case, the scale effect is shown by matrix D and as aforementioned this configuration shows
an auxetic behavior (negative Poisson effect since A1122 and A1221 are negative). This class
of materials is relatively new: the first thermodynamic model and its numerical solution to
show the possibility of negative Poisson’s ratio in molecular materials is due to [76], while
the first material with auxetic properties was made by [77] and the first review of materials
and structures with these new elastic properties as well as the origin of the name they bare
today was reported in [78]. Furthermore dynamic properties of these materials [79–82], in
particular some aspects related to dispersion process [10], (i.e., band gap), have already
been studied [83].

Finally, the constitutive matrix for the asymmetric shape is given in Table 2. In the
present configuration a coupling between stresses/curvatures (microcouples/strains) is
present. There is no Poisson effect shown by the present configuration and scale effect is
provided by both matrices B and D.

Table 2. Constitutive matrices for asymmetric blocks.

Asymmetric

Aasym
0.7931 0 0 0

0 1.7846 0 0
0 0 1.2747 0
0 0 0 0.5665


B>asym

s = 1
[

0 0 0 0
0 0.1244 0 0

]
s = 0.5

[
0 0 0 0
0 0.0622 0 0

]
s = 0.25

[
0 0 0 0
0 0.0311 0 0

]
Dasym

s = 1
[

0.0655 0
0 0.1516

]
s = 0.5

[
0.0164 0

0 0.0379

]
s = 0.25

[
0.0041 0

0 0.0095

]

Starting from the above constitutive matrices, the same for the classical Cauchy
continuum can be obtained [43] as:

C =

A1111 A1122 0
A2211 A2222 0

0 0
1
2
[A1212 + A2121] + A1221


It is worth mentioning that Cauchy continuum does not present any scale effect as

well as no micro-couples (micro-rotation ω = 0 is not included in the formulation).
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The rotary inertia depends on the shape and the size of the micro-elements. Consider-
ing the entire reference volume element used in the homogenization technique the inertia
is calculated for the whole RVE and then it is divided by the RVE area ARVE:

Jc =
J

ARVE
, for J =

∫
A
(x2 + y2) dA (11)

where J is the inertia of the single tile, whereas Jc is the inertia of the whole RVE. As a
consequence there are three different rotary inertias for the three shapes which are scale
dependent. The rotary inertia values for all configurations are reported in Table 3.

Table 3. Rotational inertia for the RVE: J (µm4), ARVE (µm2), Jc (µm2).

RVE
J · 10−2 ARV E Jc · 10−2

Regular

s = 1 35.73 1.392 25.68
s = 0.5 2.230 0.348 6.406
s = 0.25 0.141 0.087 1.621

Hourglass

s = 1 8.210 0.636 12.92
s = 0.5 0.512 0.159 3.230
s = 0.25 0.032 0.039 0.820

Asymmetric

s = 1 16.06 0.928 17.31
s = 0.5 0.960 0.232 4.137
s = 0.25 0.063 0.058 0.092

4. Numerical Implementation

In order to solve the present differential problem a finite element framework is im-
plemented in MATLAB environment. The validity of this continuum micropolar model is
verified by comparing the results to a discrete model where particles are modeled as rigid
with elastic interactions among them.

4.1. Continuum Model

The present implementation follows the approach presented in [65] where Q4 finite
element with reduced integration are employed and a rectangular FE mesh of 32 × 32
elements has been used. To perform reduced integration the strain vector has to be
reordered by separating strain terms which are fully integrated and the ones for which
reduced integration is applied. Once the problem is solved in terms of displacements other
quantities such as stresses and relative rotation have to be post computed [63,64].

The finite element method enforces an approximation through nodal kinematic pa-
rameters as:

u = N de (12)

where the kinematic displacement vector is ordered as:

deT =
[
u1

1 ... u4
1 u1

2 ... u4
2 ω1 ... ω4] (13)

each finite element exhibits 12 degrees of freedom (3 per node). The matrix of the shape
functions takes the form:

N =

N 0 0
0 N 0
0 0 N

 (14)
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where N is the vector of the linear Lagrangian shape functions. Below energy quantities
required by the Hamilton Principle are provided. The kinetic energy reads:

δK = −δdeT
∫

A
N>mN dA d̈

e
(15)

Finally, mass matrix is given by:

Me =
∫

A
N>mN dA (16)

The internal work takes the form:

δU = δdeTh
∫

A
(DN )>C(DN ) dA de = δdeTh

∫
A

B>C B dAde (17)

where B = DN , thus the element stiffness matrix is:

Ke =
∫

A
B>C B dA (18)

which has to be integrated according to a 2× 2 Gauss integration for the normal components
as well as micro-couples, whereas reduced integration is applied on shear components.

4.2. Discrete Model

In order to verify the equivalent continuum micropolar model, a discrete model is
carried out in ABAQUS where particles are modeled as rigid and elastic (spring) interfaces
are considered among the particles. Normal K11 and shear K22 stiffnesses are considered
in the following, thus these springs have to be reported according to each local reference
system for each elastic joint. In order to have a rigid behavior of blocks a high elastic
modulus with respect to the elastic springs is considered [65].

5. Simulations

In this section the free vibration problem of a rectangular panel is analyzed for the
three microstructured geometries introduced in the previous section. The analyses are
conducted in reference to the following units: µg, µm, µs respectively for mass, length and
time quantities. The panel, of rectangular planform (Lx, Ly), is clamped at the base. Such
panel is considered with Ly = 7.7 µm fixed and the following variable heights as:

• regular: Lx = 6.6 µm;
• hourglass: Lx = 5 µm;
• asymmetric: Lx = 5.85 µm.

Constant stiffness is set among the particles for every scale, K11 = 0.785 mN/µm as
normal stiffness and K22 = K11/2 = 0.3925 mN/µm as shear stiffness. In all simulations
the material density is considered constant as ρ = 10−6 µg/µm3.

5.1. Regular Geometry

The results of the panel made of regular hexagonal shapes for the first three modes are
listed in Table 4. The same table reports the relative errors with respect to the discrete model
of both micropolar and classical models. It is noted that the error in the classical model in-
creases with the mode number, however for the present regular geometry (orthotetragonal
constitutive behavior) the Cauchy model works quite well and similarly to the Cosserat
one. Figures 2–4 graphically represent the first three modes at three different scales for
discrete, Cosserat and Cauchy models. First and third modes represent a bending mode
with respect to y axis, whereas second mode is axial along y axis. Among all representations
small differences are observed because of the orthotetragonal material considered.
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Table 4. Natural frequencies (MHz) for the regular shape.

Scale Discrete Cosserat Error (%) Cauchy Error (%)

Mode 1
s = 1 14.78 14.07 −4.77 15.34 3.82

s = 0.5 14.43 13.98 −3.10 15.34 6.37
s = 0.25 14.22 13.94 −1.98 15.34 7.89

Mode 2
s = 1 35.98 35.12 −2.40 35.13 −2.38

s = 0.5 35.64 35.11 −1.49 35.13 −1.45
s = 0.25 35.45 35.11 −0.98 35.13 −0.93

Mode 3
s = 1 42.99 41.04 −4.56 49.24 14.52

s = 0.5 42.15 41.10 −2.49 49.24 16.82
s = 0.25 41.60 41.02 −1.41 49.24 18.36

s
=

1
s
=

0.
5

s
=

0.
25

Discrete Cosserat Cauchy

Figure 2. First natural vibration mode, regular geometry.
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s
=

1
s
=

0.
5

s
=

0.
25

Discrete Cosserat Cauchy

Figure 3. Second natural vibration mode, regular geometry.

5.2. Hourglass Geometry

In Table 5 the frequency values for the three models are reported: unlike the regular
hexagonal microstructure, the differences on the frequency evaluation for the continua
models is more marked and this is expected for the anisotropic nature of the material. For
the Cosserat model the error is under the 1% for the smallest scale instead for the Cauchy
model the maximum error is around the 45%, only the third mode, related to the axial
vibrations, gives reliable results. Consequently, focusing the attention on the displacements
fields (see Figures 5–7) the micropolar model matches more with the discrete one for all
modes. Lastly, it should be noted that the second and third vibration modes of the classical
continuum are switched compared to the discrete system, therefore the second frequency
value is greater than the third.
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s
=

1
s
=

0.
5

s
=

0.
25

Discrete Cosserat Cauchy

Figure 4. Third natural vibration mode, regular geometry.

Table 5. Natural frequencies (MHz) for the hourglass geometry.

Scale Discrete Cosserat Error (%) Cauchy Error (%)

Mode 1

s = 1 13.03 13.55 3.97 17.06 30.95
s = 0.5 12.86 12.94 0.62 17.06 32.64

s = 0.25 12.76 12.70 −0.44 17.06 33.69

Mode 2

s = 1 39.88 43.39 8.77 56.83 42.46
s = 0.5 39.22 40.39 2.98 56.83 44.88

s = 0.25 38.79 39.04 0.63 56.83 46.47

Mode 3

s = 1 52.22 51.47 −1.43 51.48 −1.42
s = 0.5 50.20 51.44 2.48 51.48 2.55

s = 0.25 51.91 51.43 −0.92 51.48 −0.83
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s
=

1
s
=

0.
5

s
=

0.
25

Discrete Cosserat Cauchy

Figure 5. First natural vibration mode, hourglass geometry.
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s
=

1
s
=

0.
5

s
=

0.
25

Discrete Cosserat Cauchy

Figure 6. Second natural vibration mode, hourglass geometry.
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s
=

1
s
=

0.
5

s
=

0.
25

Discrete Cosserat Cauchy

Figure 7. Third natural vibration mode, hourglass geometry.

5.3. Asymmetric Geometry

The results reported in Table 6 about the asymmetric microstructure confirm the
previous trend, the Cosserat model is able to catch the frequency values of the discrete
system with a good approximation (the maximum error is around 1%). The classical
continuum is not able to predict the present material behavior. Moreover, a new aspect
can be observed for the displacement fields in Figures 8–10: the level curves of the second
(Figure 9) and third (Figure 10) modes, change trend with the scale reduction due the
asymmetry of the microstructure, differently from the regular and hourglass case and for
all the three scales there is a good correspondence between the discrete and continuum
Cosserat model. Obviously only the micropolar model can match with this trend because
of his property of taking into account the internal length scale.
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Table 6. Natural frequencies (MHz) for the asymmetric geometry.

Scale Discrete Cosserat Error (%) Cauchy Error (%)

Mode 1

s = 1 14.50 14.44 −0.41 16.44 13.38
s = 0.5 14.25 14.14 −0.76 16.44 15.38

s = 0.25 14.11 14.03 −0.59 16.44 16.51

Mode 2

s = 1 42.48 42.93 1.06 43.38 2.11
s = 0.5 42.41 42.39 −0.06 43.38 2.27

s = 0.25 41.94 41.89 −0.11 43.38 3.41

Mode 3

s = 1 44.29 43.97 −0.72 52.40 18.30
s = 0.5 43.55 43.45 −0.24 52.40 20.31

s = 0.25 43.35 43.38 0.08 52.40 20.87

s
=

1
s
=

0.
5

s
=

0.
25

Discrete Cosserat Cauchy

Figure 8. First natural vibration mode, asymmetric geometry.
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s
=

1
s
=

0.
5

s
=

0.
25

Discrete Cosserat Cauchy

Figure 9. Second natural vibration mode, asymmetric geometry.
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s
=

1
s
=

0.
5

s
=

0.
25

Discrete Cosserat Cauchy

Figure 10. Third natural vibration mode, asymmetric geometry.

6. Conclusions

This work investigates the free vibration response of microstructured materials,
with three different hexagonal shapes, in order to integrate the studies conducted previ-
ously [63–65] to have an enhanced and a complete overview about the mechanical behavior
of these media and to highlight the advantages of a micropolar continuum representation.
Moreover, the homogenization procedure provides reliable results also for the dynamic
case and confirming the validity of the approach already tested for the static case [5,66,67].
The possibility of considering particle materials as continuous models considerably sim-
plifies the modeling and the computational cost. It is worth noting as the best results in
terms of frequency evaluation and displacement field representation are obtained for the
smaller scale. This is the case of greatest interest because more computational burden for
the discrete model is required, on the contrary, the computational cost of the equivalent
micropolar model does not depend on the scale.

The three examined geometries present a different mechanical character: for regular
hexagons an orthotropic behavior emerges and this is the only case in which the Cauchy
model is able to give satisfactory results, and it is the same case where the scale reduction
has less contribution; instead for the hourglass and asymmetric shapes, where the material
assumes an anisotropic behavior and the scale dependence is more marked, only the
micropolar continuum is able to match with the discrete model. What has already been
done can be extended for different microstructure geometries, or for granular materials
and for different constitutive laws at the microstructure scale.
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