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Abstract: This paper addresses the flexural–torsional stability of functionally graded (FG) nonlocal
thin-walled beam-columns with a tapered I-section. The material composition is assumed to vary
continuously in the longitudinal direction based on a power-law distribution. Possible small-scale
effects are included within the formulation according to the Eringen nonlocal elasticity assumptions.
The stability equations of the problem and the associated boundary conditions are derived based
on the Vlasov thin-walled beam theory and energy method, accounting for the coupled interaction
between axial and bending forces. The coupled equilibrium equations are solved numerically by
means of the differential quadrature method (DQM) to determine the flexural–torsional buckling
loads associated to the selected structural system. A parametric study is performed to check for the
influence of some meaningful input parameters, such as the power-law index, the nonlocal parameter,
the axial load eccentricity, the mode number and the tapering ratio, on the flexural–torsional buckling
load of tapered thin-walled FG nanobeam-columns, whose results could be used as valid benchmarks
for further computational validations of similar nanosystems.

Keywords: axially functionally graded materials; differential quadrature method; flexural–torsional
buckling; nonlocal elasticity theory; tapered I-beam

1. Introduction

Thin-walled beams with open cross-sections (e.g., channel, angle, I- and Tee-sections)
carry an extensive variety of potential applications as structural components in various en-
gineering fields (from civil to aeronautical engineering) since they offer high performances
with a minimal weight. Moreover, thin-walled beams with varying cross-sections have been
of great interest to designers and researches, especially in recent decades. The optimization
of weight, the reduction in volume, and the improvement of both strength and stability
represent some crucial reasons to increase their use as structural members. Due to the low
torsion stiffness, a slender beam with a thin-walled cross-section subjected to an eccentric
compressive axial force can buckle in the flexural–torsional mode. Thus, investigations
about the stability of tapered thin-walled beams can be very complicated because of the
coupled bending and torsional deformations involved, as well as the arbitrary variation in
the geometrical properties along the longitudinal direction.

As far as advanced multi-phase composites are concerned, functionally graded mate-
rials (FGMs) represent a novel generation of composite materials, based on a smooth and
gradual variation in the volume fraction of their constituent phases in any desired direc-
tion. Compared to traditional materials and laminated composites, FGMs possess some
important advantages, primarily, multifunctionality, a high temperature-withstanding
ability, the reduction or total removal of stress concentrations, together with the improved
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strength and fracture toughness. Due to these favorable features, FGMs can represent ideal
materials for the design of smart engineering systems and devices, which has motivated
their recent extensive use in many engineering applications and modern industries, such
as aerospace, automobile, optics, nuclear, electronic and turbine components.

With the recent development of nanotechnology, nanoscaled structural elements such
as nanobeams and nanoplates are being widely used as key components in different
modern engineering devices, including sensors, actuators, transistors, probes, and nano-
electromechanical systems (NEMS). This requires an appropriate study of the mechanical
properties of similar structural systems, with even more complicated natures. The ex-
perimental tests demonstrate that classical continuum theories cannot be implemented
for the exact analysis of nanostructures, as the size effect can play a significant role in
their mechanical behavior. Thus, various higher-order size-dependent continuum theories,
such as the modified couple stress theory [1], the surface energy theory [2] and nonlocal
elasticity theory [3,4], have been expanded to model small-sized structures. Among these
models, the nonlocal elasticity theory, as suggested by Eringen [3], has been widely used in
the literature to investigate the stability, deformation and vibrational responses of nanos-
tructural elements, assuming that the stress state at an arbitrary point in a body depends
not only on the strain field at that point, but also on the strain fields at all points of the
body. At the same time, FGMs have been increasingly applied in small-sized structures
due to their superior mechanical properties. In such a context, over the past few years,
several investigations have been performed to study the linear and nonlinear mechanical
responses of nanosized structures made from homogenous or FGMs. Moreover, a large
number of works can be found in the literature focusing on the elastic and/or inelastic
static, vibration and instability behavior of beams with a thin-walled cross-section, due to
their vast relevance in many engineering configurations. Among the most relevant works
on the topic, Kitipornchai and Trahair [5] determined the flexural–torsional critical force of
doubly- and/or singly-symmetric I-beams with a geometrical variation under non-uniform
torsion. Wekezer [6,7] studied the stability of thin-walled beams with varying open sections
based on shell theory strain tensors. Considering the influence of geometric nonlinear-
ity, a finite element technique was suggested by Yang and Yau [8] to assess the buckling
behavior of doubly symmetric tapered I-beams. Bradford and Cuk [9] adopted a novel
finite element technique to determine the buckling limit state of web-tapered beams with a
mono-symmetric I-section. In another study, web-tapered beams with a Tee-section were
probed by Baker [10]. A finite element formulation was also applied by Rajasekaran [11,12]
to approximate the linear stability resistance of tapered thin-walled beams. Similarly, a
simple finite element solution was presented by Gupta et al. [13] and Ronagh et al. [14]
to predict the lateral–torsional resistance of tapered I-beams. With the help of the total
potential energy and Hamilton’s principle, Chen [15] computed the vibrational properties
of thin-walled beams with geometrical variation. An innovative finite element formula-
tion was also proposed by Kim [16] to analyze the lateral–torsional buckling (LTB) and
vibration behavior of beams with a tapered I-section under different boundary conditions.
The shear deformation effect was also accounted within the formulation of Li [17] for the
stability study of beams with a linearly variable cross-section under a compressive axial
load. A nonlocal elasticity version was also suggested by Peddieson et al. [18] to elaborate
a nonlocal Benoulli/Euler beam model. A semi-inverse approach was then employed by
Elishakoff et al. [19] for the vibrational analysis of beams made of axially-inhomogeneous
materials, whereas Refs. [20–22] represent some further useful contributions to the lateral–
torsional stability study of thin-walled beams with doubly- and singly-symmetric I-sections
under different boundary conditions. Taking into account small deformations and large
displacements, Mohri et al. [23,24] analyzed the nonlinear flexural–torsional behavior
of thin-walled beams with arbitrary cross-sections by employing the Galerkin method,
while Samanta and Kumar [25] provided a shell finite element solution for the study of
the distortional buckling resistance of beams with a singly-symmetric I-section under
simply supports.
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In the field of nonlocal differential elasticity methodology, Reddy [26] proposed some
pioneering analytical solutions for the static, buckling and vibrational analyses of beams by
considering different shear deformation theories. Some additional analytical outcomes for
cantilever beams with linear tapered section were also presented by Challamel et al. [27].
Wang et al. [28] perused the flexural vibration problem of nano- and microbeams, following
the assumptions of the nonlocal elasticity theory of Eringen in conjunction with the Timo-
shenko beam model. Many further works in the literature have successfully applied the
Eringen nonlocal elasticity approach combined with different beam theories and numerical
solution methods—see Refs. [29–38]. Among them, Pradhan and Sarkar [29] studied the
deformation, instability and vibrational responses of an Euler–Bernoulli beam with variable
geometrical and material properties. Aydogdu [30] derived a generalized nonlocal beam
theory for the mechanical analysis of nanosize beams by means of the Eringen elasticity
assumptions combined with different beam theories. In the same direction, Civalek and
Akgöz [31] studied the free vibrational properties of microtubules, which problem was
solved numerically based on the DQM. Danesh et al. [32] determined the equations of mo-
tion for the longitudinal vibration of nanorods with tapered cross-sections, and solved them
via the DQM. Şimşek and Yurtcu [33] used the Timoshenko beam theory to survey the de-
formation and buckling capacity of nanobeams with varying materials. McCann et al. [34]
studied the lateral buckling resistance of steel beam members under pure bending and with
simply-supported ends, in presence of discrete elastic lateral restraints along their axial
direction. Following the nonlocal continuum theoretical assumptions, a finite element for-
mulation was suggested by Eltaher et al. [35,36] to assess the size effect on the mechanical
response of nanobeams made of FG materials. An Euler–Bernoulli beam model was also
proposed by Shahba et al. [37] to compute the critical axial forces and natural frequencies of
tapered beams with axially non-homogeneous materials. Within the framework of large tor-
sion, Benyamina et al. [38] developed a nonlinear formulation to analyze the lateral stability
and buckling moment of tapered I-section beams under simply–simply supports. Among
the different numerical strategies to handle similar problems, Nguyen et al. [39] proposed
an approximate methodology to evaluate the critical moment of I-section beams in the
presence of discrete torsional bracing. Attard and Kim [40] included the shear deformations
to determine the lateral stability equations for isotropic beams with a thin-walled open
section. Challamel and Wang [41] employed Bessel functions for an exact computation
of the lateral–torsional buckling load of strip cantilever beam members subjected to an
arbitrary loading distribution. A modified couple stress theory was differently combined
with the first-order shear deformable beam model of Ke et al. [42] to describe the size
effect on the dynamic stability of microbeams made of FGMs. A novel finite element
solution was proposed by Borbon [43] to study the coupled vibrational responses of beams
with non-symmetric thin-walled cross-sections, accounting for the possible influence of
loading eccentricities, shear deformation and rotatory inertia, and a further approximate
methodology was successfully introduced by Serna et al. [44] to study the elastic flex-
ural buckling of non-uniform columns subjected to arbitrary axial forces. Akgoz and
Civalek [45] surveyed the free vibrational problem of axially functionally graded (AFG)
non-uniform microbeams based on a Euler–Bernoulli beam model and modified couple
stress theory. In order to exhaustively assess the static and dynamic responses of beams
made of FG piezoelectric materials, an improved three-noded beam element was formu-
lated by Lezgy-Nazargah et al. [46], whereas a novel beam finite element was developed
by Trahair [47] for the lateral stability analysis of cantilever tapered steel beams. Different
examples of nonlocal models and numerical methods can be found in the literature for a
large variety of coupled problems and engineering applications. In Refs. [48,49], the au-
thors proposed a Timoshenko beam nonlocal model to assess the free vibrational response
of magneto-electro-elastic nanobeams [48], also made of FGMs [49]. The von Kármán
geometric nonlinearity was included within a first-order shear deformable beam model by
Liu et al. [50] in a nonlocal elasticity context, to evaluate the buckling and post-buckling
responses of nanobeams made of piezoelectric materials in thermo-electro-mechanical
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conditions. A third-order shear deformable beam theory was adopted by Nami et al. [51]
for a thermal stability analysis of FG nanoplates. Among tapered member applications, a
novel beam finite element was introduced by Mohri et al. [52], together with a large torsion
assumption, to estimate the stability resistance of tapered thin-walled beams. A semi-
analytical procedure based on the Ritz technique was employed by Kuś [53] for analyzing
the lateral stability of linearly tapered-web and/or flange doubly-symmetric I-beams. A
finite element-based solution was proposed by Pandeya and Singhb [54] to survey the free
vibrational behavior of a fixed–free nanobeam with a varying cross-section. According to
the Eringen nonlocal theory and Euler–Bernoulli beam model, the nonlinear vibration of
AFG nanobeams with a tapered section was exploited by Shafiei et al. [55], and a semi-
analytical finite strip procedure was implemented by Zhang et al. [56,57] for the study of
the stability capacity of bars with an open and closed cross-section under an axial loading
condition [56], accounting for the effect of lateral elastic braces on the overall stability re-
sponse in Ref. [57]. Further studies on the nonlocal vibration, buckling, and post-buckling
of size-dependent beams, rods and plates at different scales can be found in [58–67], both
in an analytical and a numerical sense. More specifically, as far as thin-walled structures
are concerned, novel efficient models and computational methods have been developed in
the literature to treat even more complicated applications. Among the most recent works, a
novel optimization methodology was proposed by Maalawi [68] to enhance the vibrational
response of thin-walled box beams with varying material properties. An innovative finite
element formulation was also suggested by Lezgy-Nazargah [69] based on the theory of
a generalized layered global–local beam (GLGB), to carry out an elasto-plastic analysis
of thin-walled beams with reduced computational effort. Nguyen et al. [70,71] derived
an efficient finite element formulation to investigate the flexural–torsional stability and
buckling response of FGM beams with a singly symmetric open section, in the framework
of Vlasov’s theory. Li et al. [72] applied the method of generalized differential quadrature
to rigorously solve the bending, buckling and vibrational problems of AFG beams, account-
ing for nonlocal strain gradient theoretical assumptions. Moreover, Khaniki et al. [73–80]
published several important contributions elated to the static, vibrational and buckling
analysis of small-size beams with a constant or variable cross-section, made of homogenous
and/or FGMs. A finite element approach was recently developed by Koutoati [81] to assess
the static and free vibrations of multilayer composites and FG beams by means of different
shear deformation beam theories. Following the first-order shear deformation theory,
Glabisz et al. [82] formulated an innovate algorithm to analyze the stability and vibrational
problem of nanobeams incorporating different end supports. Within a modified shear
deformation theory context, in which it is not essential to use the shear correction factor, the
stability and free vibration behavior of FG nanobeams were explored by Ebrahim et al. [83]
using the Chebyshev–Ritz method. A double analytical and finite element solution has
recently been proposed by Jrad et al. [84] to assess the triply coupled free vibrational
responses of thin-walled beams under different boundary conditions. More recently, a
third-order shear deformation theory was employed by Arefi and Civalek [85] to check
for the static deformation of cylindrical nanoshells made from FG piezoelectric materials
supported by a Pasternak elastic foundation.

Among the studies on tapered structures, Osmani and Meftah [86] studied the shear
deformation effect on the buckling response of tapered I-shape beams under different
loading conditions. An innovative methodology based on the classical energy approach
was expounded by Chen et al. [87] for predicting the lateral buckling resistance of I-
beams with simple supports. Achref et al. [88] analytically assessed the higher-order
instability loads of beams with thin-walled open cross-sections under different loading
conditions by resorting to a classical finite element approach for comparative purposes.
Different numerical approaches were applied in Refs. [89–93] for the linear stability and
free vibrational study of homogenous and AFG tapered thin-walled beams with an open
cross-section, subjected to different boundary conditions and arbitrary loading cases.
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Based on the available literature, however, it seems that the flexural–torsional stability
of AFG nanobeam-columns with tapered I-section has never been assessed. The current
research is moving in this direction, and is aimed at probing the size-dependent buckling
properties of AFG tapered nanobeams with a doubly-symmetric thin-walled cross-section,
according to Vlasov assumptions. All the mechanical properties in the present work are
graded in the longitudinal direction using the power function except, for the Poisson’s
ratio, wherein the small size effect is taken into account via the Eringen nonlocal elasticity
theory. The nonlocal governing equations of the problem, together with the associated
boundary conditions, are obtained by implementing the Vlosov model and the energy
method, in order to account for the eccentricity effect of of a compressive axial loading
from the centroid within the formulation. The DQM is here employed to solve the resulting
stability equations in a strong form and to determine the flexural–torsional buckling
load. Different numerical examples analyze the effects of several parameters, namely,
the constituent volume fractions, tapering ratio, nonlocal parameter and mode number,
on the flexural–torsional stability of AFG tapered nanobeams with an I-section subjected
to simply supported boundary conditions. The work is organized as follows. After a
preliminary description of the theoretical formulation (Section 2), we provide (in Section 3)
the basic notions of the DQM, here applied as an efficient tool to solve the problem with
reduced computational effort. In Section 4 we present the results from a large parametric
investigation aimed at checking the sensitivity of the mechanical response to different input
parameters, which is useful for design purposes. The main results and concluding remarks
are discussed in Section 5.

2. Problem Definition

The following stability model represents an extension of the formulation proposed in
Ref. [94] for non-prismatic thin-walled nanobeam-columns with an arbitrary distribution
of the material properties in the axial direction, whose numerical outcomes could be useful
for the development and design of thin-walled structures, such as scanning tunneling
microscopes with nonuniform nanobeams at tunneling tips. Due to the rapid development
of nanoscience, the stability of FG nanobeams with variable thin-walled cross sections rep-
resents one of their key design benefits, as here explored theoretically via nonconventional
Eringen nonlocal elasticity, and numerically via the DQM.

2.1. Kinematics

Consider a straight tapered doubly symmetric I-beam made of non-homogeneous ma-
terial, with variable properties along its longitudinal direction, as represented in Figure 1.
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Figure 1. Geometrical scheme of variable doubly symmetric I-section beam—coordinate system and
notation for the displacement parameters.

The orthogonal right-hand Cartesian coordinate system (x, y, z) is adopted, wherein x
denotes the longitudinal axis, and y and z are the first and second principal bending axes
parallel to the flanges and web, respectively. The origin O of these axes is located at the
centroid of the cross-section. In the current work, it is assumed that the height of the web
and/or width of both flanges can vary linearly along the longitudinal direction (x-axis),
while the thickness remains constant. In the case of doubly-symmetric thin-walled sections,
the shear center coincides with the centroid. In this study, we consider only slender beams,
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such that shear deformations can be ignored in our formulation, together with the local and
distortional deformations. Based on these assumptions and following the Vlasov model
for non-uniform torsion [95], the displacement field for an arbitrary point on the beam can
be expressed as

U(x, y, z) = u(x)− y
∂v(x)

∂x
− z

∂w(x)
∂x

−ω(y, z)
∂θ(x)

∂x
(1a)

V(x, y, z) = v(x)− zθ(x) (1b)

W(x, y, z) = w(x) + yθ(x) (1c)

In these equations, U is the axial displacement, V and W represent the lateral and
vertical displacements (along the y- and z-directions, respectively); u,v,w are the kinematic
quantities defined at the reference surface; ω(y, z) stands for the warping function for the
variable cross-section, which can be defined based on St. Venant torsional theory, and θ is
the twisting angle. The Green strain tensor components in the large displacement include
both the linear and the nonlinear strain parts, as follows

εij =
1
2
(

∂Ui
∂xj

+
∂Uj

∂xi
) +

1
2

(
∂Uk
∂xi

∂Uk
∂xj

)
= εl

ij + ε∗ij i, j, k = x, y, z (2)

where εl
ij denotes the linear part, and ε∗ij refers to the quadratic nonlinear part. For thin-

walled beams, the strain tensor components reduce to the following:

εxx ≈ U′ +
1
2

(
V′2 + W′2

)
= εl

xx + ε∗xx (3a)

εxy =
1
2

(
∂U
∂y

+
∂V
∂x

)
+

1
2

(
∂V
∂x

∂V
∂y

+
∂W
∂x

∂W
∂y

)
= εl

xy + ε∗xy (3b)

εxz =
1
2

(
∂U
∂z

+
∂W
∂x

)
+

1
2

(
∂V
∂x

∂V
∂z

+
∂W
∂x

∂W
∂z

)
= εl

xz + ε∗xz (3c)

By using Equations (1)–(3) and considering a tapering geometry, the non-zero linear
and nonlinear parts of the strain displacement field are defined as

εl
xx = u′ − yv′′ − zw′′ −ωθ′′ (4a)

γl
xz = 2εl

xz =

(
y− ∂ω

∂z

)
θ′ (4b)

γl
xy = 2εl

xy = −
(

z +
∂ω

∂y

)
θ′ (4c)

ε∗xx =
1
2

[
v′2 + w′2 + r2θ′2

]
+ yw′θ′ − zv′θ′ (4d)

γ∗xz = −
(
v′ + θ′z

)
θ (4e)

γ∗xy =
(
w′ + θ′y

)
θ (4f)

where r2 = y2 + z2. In this study, we consider a compressive axial load P acting at the end
of the beam along the z-direction, together with an external bending moment acting around
the major principal axis, M∗y , while assuming a null bending moment M∗z with respect to
the z-axis. The most common cases of normal and shear stress associated with the external
bending moment M∗y and shear force Vz are considered as

σ0
xx =

P
A
−

M∗y
Iy

z (5a)
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τ0
xz =

Vz

A
= −

M∗′y
A

(5b)

where τ0
xz is the mean value of the shear stress, σ0

xx stands for the initial normal stress in
the cross-section, and A and Iy are the cross-sectional area and second moment of inertia
around the y-axis, defined as follows:

A =
∫
A

dA (6a)

Iy =
∫
A

z2dA (6b)

2.2. Constitutive Relations

According to the Eringen nonlocal elasticity model [4], the stress at a point inside
a body depends not only on the strain state at that point, but also on the strain states at
all other points throughout the body. For homogenous and isotropic elastic solids, the
nonlocal stress tensor σ at point x can be defined as

σij(x) =
∫

V
α(
∣∣x′ − x

∣∣, τ)Cijklεkl(x′)dV(x′) (7)

where εkl and Cijkl denote the linear strain components and the elastic stiffness coefficients,
respectively. In addition, α(|x′ − x|, τ) is the nonlocal kernel function, |x′ − x| is the
Euclidean distance, τ = e0a/l stands for the material parameter, where a is an internal
characteristic length (e.g., lattice parameter, C–C bond length or granular distance) and l is
an external characteristic length in the nanostructures (e.g., crack length, wavelength), and
e0 is a material constant, which is determined experimentally or in an approximate form by
matching the dispersion curves of plane waves with those based on atomic lattice dynamics.

It is possible to express the integral constitutive equation presented in Equation (7) in
the following differential constitutive equation:

σij − µ∇2σij = Cijklεkl (8)

where ∇2 is the Laplacian operator and µ = (e0a)2 stands for the nonlocal parameter. For
a nonlocal AFG I-beam, the nonlocal constitutive relations can be written as

σxx − µ
∂2σxx

∂x2 = Eεl
xx (9a)

τxy − µ
∂2τxy

∂x2 = Gγl
xy (9b)

τxz − µ
∂2τxz

∂x2 = Gγl
xz (9c)

where E and G are the elastic and shear moduli, respectively, and σxx, τxy, and τxz denote
the Piola–Kirchhoff stress tensor components.

2.3. Equilibrium Equations

The principle of minimum total potential energy is applied to obtain the equilibrium
equations together with the boundary conditions. For thin-walled beams, the total potential
energy Π is expressed in its variational form by means of the elastic strain energy Ul and
the strain energy due to initial stress U0,

δΠ = δ(Ul + U0) = 0 (10)
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Note that in a linear stability context, in the absence of an external force, the external
work associated with the applied loads We is equal to zero. At the same time, the variational
form of the strain energy δUl is defined as

δUl =
∫ L

0

∫
A

(
σxxδεl

xx + τxyδγl
xy + τxzδγl

xy

)
dAdx (11)

where L and A stand for the element length and cross-sectional area, respectively, and δεl
xx,

δγl
xz and δγl

xy are the linear parts of the strain tensor in a variational form. By substituting
Equation (4a–c) into Equation (11), the virtual elastic strain energy becomes

δUl =
∫ L

0

∫
A σxx(δu′0 − yδv′′ − zδw′′ −ωδθ′′ )dAdx +

∫ L
0

∫
A τxy

(
−(z + ∂ω

∂y )δθ′
)

dAdx +
∫ L

0

∫
A τxz

(
(y− ∂ω

∂z )δθ′
)

dAdx (12)

By integration over the cross-sectional area, we get

δUl =
∫

L

(
Nδu′0 + Mzδv′′ −Myδw′′ + Bωδθ′′

)
dx +

∫ L

0

(
Msvδθ′

)
dx (13)

where N is the axial force, My and Mz denote the two bending moments, Bω is the
bi-moment, and Msv is the St. Venant torsional moment. These stress resultants in
Equation (13) are defined as

N =
∫

A
σxxdA (14a)

My =
∫

A
σxxzdA (14b)

Mz = −
∫

A
σxxydA (14c)

Bω = −
∫

A
σxxωdA (14d)

Msv =
∫
A

(
τxz(y−

∂ω

∂z
)− τxy(z +

∂ω

∂y
)

)
dA (14e)

Moreover, the variation in the strain energy due to the initial stresses can be stated as

δU0 =
∫ L

0

∫
A

(
σ0

xxδε∗xx + τ0
xyδγ∗xy + τ0

xzδγ∗xz

)
dAdx (15)

By introducing the first variation in the nonlinear strain-displacement relations, de-
fined by Equation (4d–f), and the initial stresses (5a,b) in Equation (15), we get the follow-
ing relation:

δU0 =
∫ L

0

∫
A ( P

A −
M∗y
Iy

z)
(
v′δv′ + w′δw′ + r2θ′δθ′ + yθ′δw′+ yw′δθ′ − zθ′δv′ − zv′δθ′

)
dAdx

+
∫ L

0

∫
A (−M∗′y

A )(−θδv′ − v′δθ − zθδθ′ − zθ′δθ)dAdx
(16)

At this stage, by integrating Equation (16) over the cross-section, the variation in the
strain energy due to the initial stresses takes the following final form:

δU0 =
∫ L

0

(
P(v′δv′ + w′δw′ +

Iy + Iz

A
θ′δθ′)

)
dx +

∫ L

0

(
M∗y(θ′δv′+ v′δθ′)

)
dx +

∫ L

0

(
M∗′y (θδv′ + v′δθ)

)
dx (17)

or equivalently

δU0 =
∫ L

0

(
Pv′δv′ + Pw′δw′ + r2

Oθ′δθ′
)

dx +
∫ L

0

(
−M∗yv′′ δθ −M∗yθδv′′

)
dx (18)
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In Equation (18), Iz is the second moment of inertia around the z-axis and r0 is the
polar radius gyration around the centroid, given by

Iz =
∫
A

y2dA, ro =

√
Iy + Iz

A

By introducing Equations (13) and (18) into Equation (10) and setting the coefficients
of δu0, δv, δw, δθ, as to zero, we obtain the equilibrium equations

N′ = 0 (19a)

−M′′
y − (Pw′)′ = 0 (19b)

M′′
z − (M∗yθ)′′ − (Pv′)′ = 0 (19c)

M′′
ω −M∗yv′′ −M′sv − (Pr2

Oθ′)′ = 0 (19d)

under the following boundary conditions

N = 0 or δu0 = 0

−My = 0 or δw′ = 0

M′y + Pw′ = 0 or δw = 0

Mz −M∗yθ = 0 or δv′ = 0

−M′z + (M∗yθ)′ + Pv′ = 0 or δv = 0

−Bω = 0 or δθ′ = 0

B′ω + Msv + Pr2
Oθ′ = 0 or δθ = 0

(20)

By substituting Equation (4a–c) into Equation (9) and the subsequent results into
Equation (14), the stress resultants are obtained as

N − µ
∂2N
∂x2 = EAu0

′ (21a)

My − µ
∂2My

∂x2 = −EIyw′′ (21b)

Mz − µ
∂2Mz

∂x2 = EIzv′′ (21c)

Bω − µ
∂2Bω

∂x2 = EIωθ′′ (21d)

Msv − µ
∂2Msv

∂x2 = GJθ′ (21e)

In the previous expressions, J and Iω are the St. Venant torsion and warping constants,
defined as

Iω =
∫
A

ω2dA, (22a)

J =
∫
A

(
(y− ∂ω

∂z
)

2
+ (z +

∂ω

∂y
)

2
)

dA (22b)

This study is established in the context of small displacements and deformations.
According to the linear stability, the nonlinear terms are also disregarded in the equilib-
rium equations. Based on these assumptions, the system of equilibrium equations for
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tapered I-beams under a nonlocal theory are finally derived by placing Equation (21) into
Equation (19) (

EAu′0
)′

= 0 (23a)

(EIyw′′ )′′ + µ(Pw′)′′′ − (Pw′)′ = 0 (23b)

(EIzv′′ )′′ + µ(M∗yθ)′′′ ′ − (M∗yθ)′′ + µ(Pv′)′′′ − (Pv′)′ = 0 (23c)

(EIωθ′′ )′′ − (GJθ′)′ + µ(M∗yv′′ )′′ −M∗yv′′ + µ(Pr2
Oθ′)′′′ − (Pr2

Oθ′)′ = 0 (23d)

The related boundary conditions at the ends of the thin-walled nanobeam can be
expressed as (

EAu′0
)′

= 0 or δu0 = 0 (24)

EIyw′′ = 0 or δw′ = 0

−(EIyw′′ )′ − µ(Pw′)′′ + Pw′ = 0 or δw = 0

EIzv′′ −M∗yθ + µ(M∗yθ)′′ = 0 or δv′ = 0

−(EIzv′′ )′ − µ(M∗yθ)′′′ − µ(Pv′)′′ + (M∗yθ)′ + Pv′ = 0 or δv = 0

EIωθ′′ = 0 or δθ′ = 0

−(EIωθ′′ )′ + GJθ′ − µ(M∗yv′′ )′ + M∗yv′ − µ(Pr2
Oθ′)′′ + (Pr2

Oθ′) = 0 or δθ = 0

In the following section, a numerical solution procedure based on the DQM is applied
to solve the governing equations for the flexural–torsional buckling of AFG nanobeams
with varying I-sections, as has been successfully carried out in the literature for a large
variety of problems [96–103].

3. Numerical Solution Method

Due to the varying cross-sectional mechanical properties, the resulting flexural–
torsional stability Equation (23a–d) for I-tapered nanobeams represent a system of three-
coupled fourth-order differential equations with variable coefficients. Under these condi-
tions, it is not possible to accurately estimate a general and straightforward closed-form
solution. For such complicated problems, the DQM-based approach, as proposed for the
first time by Bellman and Casti [96], is here employed as an efficient and easy tool to solve
the coupled differential equations of the problem in a strong form. The basic concept of the
proposed method relies on the possibility of discretizing the derivatives of a function with
respect to a variable in differential equations at some fixed collocation points by means of a
weighted linear summation of the function’s values at its adjacent points. The governing
equations, together with the associated boundary conditions, are thus transformed into
a set of linear algebraic equations, which can be solved with the aid of a computational
algorithm to derive an approximate solution for continuous differential equations. To this
end, it is necessary to divide the computational region into a fixed number of grid points
spanning the solution domain. The accuracy of this numerical approach depends on the
number and types of selected sampling points, as also discussed in Refs. [97–103]. One
of the best options for the sampling points in the stability and vibration analysis is the
Chebyshev–Gauss–Lobatto points:

xi =
L
2

[
1− cos

(
i− 1
N − 1

π

)]
, if 0 ≤ x ≤ L i = 1, 2, . . . , N (25)

where N is the total number of grid points in the longitudinal direction. According to DQM,
the mth-order derivative of a function f (ξ) at a fixed grid point ξi can be approximated as

dm f
dξm

∣∣∣∣
ξ=ξi

=
N

∑
j=1

A(m)
ij f (ξ j) f or i = 1, 2, . . . , N (26)



Nanomaterials 2021, 11, 1936 11 of 27

where f (ξ j) refers to the functional value at grid points ξ j (i = 1, 2, . . . , N), and A(m)
ij is

the weighting coefficient for the mth-order derivative. The first-order derivative of the
weighting coefficient A(1)

ij is computed by the following algebraic formulation based on
the Lagrangian interpolation polynomials,

A(1)
ij =


M(ξi)

(ξi−ξ j)M(ξ j)
f or i 6= j

−
N
∑

k=1,k 6=i
A(1)

ik f or i = j
i, j = 1, 2, . . . , N (27)

where

M(ξi) =
N

∏
j=1,j 6=i

(ξi − ξ j) f or i = 1, 2, . . . , N (28)

The higher-order DQM weighting coefficients can be acquired from the first-order
ones, as follows:

A(m)
ij = A(1)

ij A(m−1)
ij 2 ≤ m ≤ N − 1 (29)

In order to solve the stability equation by means of the differential quadrature ap-
proach, a dimensionless variable (ξ = x/L) is introduced. By the expansion of Equation
(23), the governing equations of the problem take the following final discrete form:

E(ξ j)Iy(ξ j)(
N
∑

j=1
A(4)

ij wj) + 2(E(ξ j)I′y(ξ j) + E′(ξ j)Iy(ξ j))(
N
∑

j=1
A(3)

ij wj)

+(E′′ (ξ j)Iy(ξ j) + 2E′(ξ j)I′y(ξ j) + E(ξ j)I ′′y (ξ j))(
N
∑

j=1
A(2)

ij wj) + µP(
N
∑

j=1
A(4)

ij wj)− L2P(
N
∑

j=1
A(2)

ij wj) = 0
(30a)

E(ξ j)Iz(ξ j)(
N
∑

j=1
A(4)

ij vj) + 2(E(ξ j)I′z(ξ j) + E′(ξ j)Iz(ξ j))(
N
∑

j=1
A(3)

ij vj)

+(E′′ (ξ j)Iz(ξ j) + 2E′(ξ j)I′z(ξ j) + E(ξ j)I ′′z (ξ j))(
N
∑

j=1
A(2)

ij vj) + µP(
N
∑

j=1
A(4)

ij vj)− L2P(
N
∑

j=1
A(2)

ij vj)

+µM∗y(ξ j)(
N
∑

j=1
A(4)

ij θj) + 4µM∗′y (ξ j)(
N
∑

j=1
A(3)

ij θj) + (6µM∗
′′

y (ξ j)− L2M∗y(ξ j))(
N
∑

j=1
A(2)

ij θj)

+(4µM∗
′′′

y (ξ j)− 2L2M∗′y (ξ j))(
N
∑

j=1
A(1)

ij θj) + (µM∗4y (ξ j)− L2M∗
′′

y (ξ j))θj = 0

(30b)

E(ξ j)Iω(ξ j)(
N
∑

j=1
A(4)

ij θj) + 2(E(ξ j)I′ω(ξ j) + E′(ξ j)Iω(ξ j))(
N
∑

j=1
A(3)

ij θj)

+(E′′ (ξ j)Iω(ξ j) + 2E′(ξ j)I′ω(ξ j) + E(ξ j)I ′′ω(ξ j)− L2G(ξ j)J(ξ j))(
N
∑

j=1
A(2)

ij θj)

−L2(G′(ξ j)J(ξ j) + G(ξ j)J′(ξ j))(
N
∑

j=1
A(1)

ij θj)

+µPRc(ξ j)(
N
∑

j=1
A(4)

ij θj) + 3µPR′o(ξ j)(
N
∑

j=1
A(3)

ij θj) + P(3µR′c(ξ j)− L2Ro(ξ j))(
N
∑

j=1
A(2)

ij θj)

+P(µR′′o (ξ j)− L2R′o(ξ j))(
N
∑

j=1
A(1)

ij θj) + µM∗y(ξ j)(
N
∑

j=1
A(4)

ij vj) + 2µM∗′y (ξ j)(
N
∑

j=1
A(3)

ij vj)

+(µM∗
′′

y (ξ j)− L2M∗y(ξ j))(
N
∑

j=1
A(2)

ij vj) = 0

(30c)

where Ro = r2
o in Equation (30c).
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By rewriting the problem in matrix form, we get the following relation,

 [Kww] [0] [0]
[0] [Kvv] [0]
[0] [0] [Kθθ ]


3N×3N

+

 [Pww] [0] [0]
[0] [Pvv] [0]
[0] [0] [Pθθ ]


3N×3N

+

 [0] [0] [0]
[0] [0] [Mvθ ]
[0] [Mθv] [0]


3N×3N

×

{w}
{v}
{θ}


3N×1

=


{0}
{0}
{0}


3N×1

(31)

where
[Kww] =

[
a1][A](4) +

[
b1][A](3) +

[
c1][A](2)

[Pww] = P(µ[A](4) − L2[A](2))
(32)

[Kvv] =
[
a2][A](4) +

[
b2][A](3) +

[
c2][A](2)

[Pvv] = P(µ[A](4) − L2[A](2))

[Mvθ ] =
[
i2
]
[A](4) +

[
j2
]
[A](3) +

[
k2][A](2) +

[
l2][A](1) +

[
m2]

[Kθθ ] =
[
a3][A](4) +

[
b3][A](3) +

[
c3][A](2) −

[
d3][A](1)

[Pθθ ] = P(
[
e3][A](4) +

[
f 3][A](3) +

[
g3][A](2) +

[
h3][A](1))

[Mθv] =
[
i3
]
[A](4) +

[
j3
]
[A](3) +

[
k3][A](2)

in which
a1

jk = (EIy
∣∣
ξ=ξ j

)δjk; b1
jk = (2(EI′y + E′ Iy)

∣∣∣
ξ=ξ j

)δjk; c1
jk = ((E′′ Iy + 2E′ I′y + EI ′′y )

∣∣∣
ξ=ξ j

)δjk (33)

a2
jk = (EIz|ξ=ξ j

)δjk; b2
jk = (2(EI′z + E′ Iz)|ξ=ξ j

)δjk; c2
jk = ((E′′ Iz + 2E′ I′z + EI ′′z )

∣∣
ξ=ξ j

)δjk

i2jk = (µM∗y
∣∣∣
ξ=ξ j

)δjk; j2jk = (4µM∗′y
∣∣∣
ξ=ξ j

)δjk; k2
jk = ((6µM∗

′′
y − L2M∗y)

∣∣∣
ξ=ξ j

)δjk

l2
jk = ((4µM∗

′′
y − 2L2M∗′y )

∣∣∣
ξ=ξ j

)δjk; m2
jk = ((µM∗y 4 − L2M∗

′′
y )
∣∣∣
ξ=ξ j

)δjk

a3
jk = (EIω |ξ=ξ j

)δjk; b3
jk = (2(EI′ω + E′ Iω)|ξ=ξ j

)δjk; c3
jk = ((E′′ Iω + 2E′ I′ω + EI ′′ω − L2GJ)

∣∣
ξ=ξ j

)δjk;

d3
jk = (L2(G′ J + GJ′)

∣∣
ξ=ξ j

)δjk; e3
jk = P(µRo|ξ=ξ j

)δjk; f 3
jk = P(3µR′o|ξ=ξ j

)δjk;

g3
jk = P((3µR′o − L2Ro)

∣∣
ξ=ξ j

)δjk; h3
jk = P((µR′′o − L2R′′′o )

∣∣
ξ=ξ j

)δjk

i3jk = (µM∗y
∣∣∣
ξ=ξ j

)δjk; j3jk = (2µM∗′y
∣∣∣
ξ=ξ j

)δjk; k3
jk = ((µM∗

′′
y − L2M∗y)

∣∣∣
ξ=ξ j

)δjk

and δjk is the Kronecker delta, defined as

δjk =

{
0 i f j 6= k;
1 i f j = k.

(34)

In Equation (31), the displacement vectors and the torsion angle vector are defined as

{w}N×1 =
{

w1 w2 . . . wN
}T ; {v}N×1 =

{
v1 v2 . . . vN

}T ;
{θ}N×1 =

{
θ1 θ2 . . . θN

}T (35)

The simple form of the final equation, Equation (31), can be stated as

([K]− λ([P] + [M]))3N×3N{d}3N×1 = {0}3N×1 (36)

or
([K]− λ[KG]){d} = {0} (37)

in which
[KG] = [P] + [M] (38a)
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{d} =


{w}
{v}
{θ}

 (38b)

[K] and [KG] are 3N× 3N matrices, λ is the eigenvalues and {d} is the related eigenvectors.
After the implementation of the boundary conditions, we compute the flexural–torsional
buckling load from Equation (37), together with the associated vertical and lateral deflec-
tions and the twist angles of the AFG nanobeams.

4. Numerical Examples

In this section, we perform a parametric investigation to assess the sensitivity of the
linear stability of AFG thin-walled nanobeam-columns (with a variable I-section and simply
supported boundary conditions) to different material properties, as well as to different
web and flange tapering parameters, mode numbers, nonlocal parameters, and axial load
eccentricities. In what follows, we use the subscripts (•)0 and (•)1 to define the mechanical
and geometrical properties of beams in their left (x = 0, ξ = 0) and right (x = L, ξ = 1)
supports, respectively. The dimensionless buckling load parameter is determined as

Pnor =
PcrL2

E0 IZ0
(39)

which accounts for simply supported, tapered beams with I-sections subjected to a com-
pressive axial force. In this regard, it is presumed that the widths of both flanges, b0, and
the web height, d0, of the I-section on the left side increase linearly up to b1 = (1+ β)b0 and
d1 = (1 + α)d0 on the right side (Figure 2). Thus, the flanges and web tapering ratios are
defined as β = b1/b0 − 1 and α = d1/d0 − 1, respectively. Note that these two parameters
(α, β) are non-negative variables and can change simultaneously or separately. At the same
time, by equating (α, β) to zero, we revert to I-beams with a uniform cross-section. The
geometrical schemes and dimensionless parameters are depicted in Figure 2. To perform
the flexural–torsional buckling analysis, it is supposed that the compressive axial load is
applied at three different positions: the top flange (TF) of the left side (i.e., for x = 0), the
centroid, and the TF of the right side (i.e., for x = L).
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For the same benchmark, the beams feature axially varying materials, ranging between
pure ceramic on the side end and pure metal on the right side, according to a simple power-
law function. More specifically, the ceramic phase is made of alumina (Al2O3) with an
equivalent Young’s modulus E0 = 380 GPa, whereas the metal phase is aluminum (Al)
with an equivalent Young’s modulus E1 = 70 GPa, without considering the exact grain
sizes and shapes of each material constituent. This means that the modulus of elasticity at
an arbitrary coordinate is defined as

E(ξ) = E0 + (E1 − E0)ξ
m (40)

where the power-law index m assumes a positive value, and is zero only in a pure
metal member.

We carry out a preliminary study aimed at defining the appropriate number of grid
points within the domain to yield accurate results in terms of flexural–torsional buck-
ling load. In the absence of further numerical nonlocal studies on the same thin-walled
examples, the accuracy of our formulation is checked by comparing our results with
predictions based on a classical finite element method, as performed via the commercial
ANSYS code [104]. In detail, we evaluate the lowest values of the dimensionless buckling
parameter (Pnor) for the same structure made of pure alumina with three different loading
positions and different tapering ratios, α = β = 0÷ 1 by steps of 0.2 versus an increased
number of grid points N. The main results are summarized in Table 1, where it seems that
a total number of grid points N = 20 is sufficient to obtain the lowest normalized buckling
load for different axial load positions and non-uniformity parameters. Based on results
in Table 1, we can observe the good agreement between our mathematical DQM-based
formulation and predictions made via the ANSYS code [104] for each selected loading case.

Table 1. Dimensionless buckling load (Pnor) for local tapered homogenous I-beams (alumina) with
different tapering parameters and loading positions.

Axial
Load

Position
α = β

DQM
ANSYS

[104]
Number of Points along x-Direction

n = 5 n = 10 n = 15 n = 20 n = 30

Centroid

0 9.824 9.870 9.870 9.870 9.870 9.866

0.2 12.970 13.006 13.006 13.006 13.006 12.997

0.4 16.550 16.494 16.494 16.494 16.494 16.466

0.6 20.647 20.326 20.326 20.326 20.326 20.276

0.8 25.426 24.497 24.497 24.497 24.497 24.414

1.0 31.184 29.004 29.003 29.003 29.003 27.605

TF of left
end

section

0 9.213 9.248 9.248 9.248 9.248 9.274

0.2 11.974 11.964 11.964 11.964 11.964 12.000

0.4 15.050 14.895 14.895 14.895 14.895 14.907

0.6 18.570 18.029 18.029 18.029 18.029 18.050

0.8 22.915 21.358 21.357 21.357 21.357 21.399

1.0 29.257 24.877 24.876 24.876 24.876 24.956

TF of
right end
section

0 9.213 9.248 9.248 9.248 9.248 9.274

0.2 11.805 11.862 11.862 11.862 11.862 11.922

0.4 14.557 14.610 14.610 14.610 14.610 14.690

0.6 17.524 17.469 17.469 17.469 17.469 17.638

0.8 20.912 20.429 20.429 20.429 20.429 20.737

1.0 25.283 23.488 23.489 23.489 23.489 23.992
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After the validation phase of the model, we continue with a systematic study of the
flexural–torsional buckling of AFG nanobeams with different input parameters, such as
eccentric axial load, web and flange non-uniformity parameters, gradient index, mode
number and nonlocality parameter. In order to assess the linear stability strength of AFG
nanobeams with varying I-sections, we compute the lowest normalized flexural–torsional
buckling loads (Pnor) of AFG tapered thin-walled nanobeams subjected to simply sup-
ported end conditions, as reported in Table 2, for different tapering ratios
(α = β = 0, 0.3, 0.6, 0.9), material compositions (power-law exponent), nonlocal parame-
ters (µ = 0 and 2), and three different loading positions. The compressive axial load can
be applied on the TF of the left side (x = 0), at the centroid, and on the TF of the right side
(x = L). In Figures 3–5, we represent the variation in Pnor depending on Eringen’s nonlocal
parameters (ranging from 0 to 3) for thin-walled beams with homogenous materials or an
FG beam with different gradient indexes m = 0.6, 1.3 and 2, while varying the tapering
ratios from 0 to 0.9 and assuming three axial load positions, namely, on the TF for x = 0,
on the centroid, and the TF for x = L. In this case, we consider a non-uniform beam with
equal web height and flange width tapering ratios, α = β.

Nanomaterials 2021, 11, x FOR PEER REVIEW 16 of 28 
 

 

 
(a)          (b) 

 
(c)           (d) 

Figure 3. Variation in the flexural–torsional buckling load (Pnor) of I-tapered nanobeams with varying tapering and non-
locality parameters—Figure 2. Effect of the axial load eccentricity, material graduation and tapering parameter on the 
normalized buckling load ( )norP for simply supported thin-walled nanobeams subjected to a constant compressive load 

with two different nonlocal parameters: (a) Homogeneous (Alumina) ; (b) 0.6m = ; (c) 1.3m = ; (d) 2m = . 

 
(a)          (b) 

 
(c)                (d) 

Figure 3. Variation in the flexural–torsional buckling load (Pnor) of I-tapered nanobeams with varying tapering and
nonlocality parameters—Figure 2. Effect of the axial load eccentricity, material graduation and tapering parameter on the
normalized buckling load Pnor for simply supported thin-walled nanobeams subjected to a constant compressive load with
two different nonlocal parameters: (a)Homogeneous (Alumina); (b) m = 0.6; (c) m = 1.3; (d) m = 2.

In Tables 3–5, we list the magnitude of the normalized flexural–torsional buckling
parameter, Pnor, for various combinations of web height and flange width tapering ratio, β
and α, and nonlocal parameters (µ = 0, 1 and 3) with different non-homogenous indices
(m = 0.6, 1.2 and 1.8). The contribution of a possible axial load eccentricity at the cross-
section centroid on the buckling resistance is also taken into account. The normalized
buckling parameters are respectively illustrated in Tables 3 and 4 for load positions on the
TF at x = 0 and on the shear center, as well as in Table 5 for a load position on the TF at
x = L.



Nanomaterials 2021, 11, 1936 16 of 27

Nanomaterials 2021, 11, x FOR PEER REVIEW 16 of 28 
 

 

 
(a)          (b) 

 
(c)           (d) 

Figure 3. Variation in the flexural–torsional buckling load (Pnor) of I-tapered nanobeams with varying tapering and non-
locality parameters—Figure 2. Effect of the axial load eccentricity, material graduation and tapering parameter on the 
normalized buckling load ( )norP for simply supported thin-walled nanobeams subjected to a constant compressive load 

with two different nonlocal parameters: (a) Homogeneous (Alumina) ; (b) 0.6m = ; (c) 1.3m = ; (d) 2m = . 

 
(a)          (b) 

 
(c)                (d) 

Figure 4. Variation in the flexural buckling load Pnor of I-tapered nanobeams with variations in the tapering and nonlocality
parameters for different material indexes (axial load on the centroid) (a) Homogeneous (Alumina); (b) m = 0.6; (c) m = 1.3;
(d) m = 2.

Table 2. Effect of the axial load eccentricity, material graduation and tapering parameter on the normalized buckling
load (Pnor) for simply supported thin-walled nanobeams subjected to a constant compressive load with two different
nonlocal parameters.

µ
(nm2) α = β

Axial Load on the TF at x = 0 Axial Load on the Centroid Axial Load on the TF at x = L

Homoge
neous m = 0.8 m = 1.6 m = 2.4 Homoge

neous m = 0.8 m = 1.6 m = 2.4 Homoge
neous m = 0.8 m = 1.6 m = 2.4

0

0.0 9.248 4.602 6.165 7.151 9.870 4.816 6.489 7.571 9.248 4.383 5.863 6.843

0.3 13.416 7.140 9.516 10.879 14.711 7.641 10.272 11.833 13.232 6.596 8.804 10.165

0.6 18.070 10.143 13.401 15.154 20.338 11.104 14.836 16.929 17.506 9.086 12.071 13.839

0.9 23.186 13.578 17.787 19.927 26.738 15.194 20.169 22.823 22.029 11.827 15.648 17.827

2.0

0.0 7.453 3.595 4.836 5.684 7.936 3.756 5.088 6.028 7.453 3.389 4.714 5.705

0.3 10.646 5.744 7.658 8.754 11.750 6.102 8.204 9.471 10.679 5.180 6.899 8.010

0.6 14.010 8.171 10.752 12.080 15.996 8.922 11.902 13.547 14.110 7.261 9.655 11.113

0.9 17.488 10.850 14.071 15.572 20.591 12.178 16.080 18.061 17.713 9.558 12.662 14.450
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and nonlocality parameters for different material indexes (axial load on the TF at x = L): (a) Homogeneous (Alumina);
(b) m = 0.6; (c) m = 1.3; (d) m = 2.

Table 3. Effect of the power-law exponent and tapering parameter on the normalized flexural–torsional buckling load (Pnor)

of simply supported thin-walled nanobeams with different nonlocal parameters (axial load applied on the TF at x = 0).

µ
(nm2) α

m = 0.6 m = 1.2 m = 1.8

β = 0 β = 0.2 β = 0.5 β = 0.8 β = 0 β = 0.2 β = 0.5 β = 0.8 β = 0 β = 0.2 β = 0.5 β = 0.8

0

0.0 4.057 5.488 7.943 10.725 5.483 7.413 10.693 14.373 6.462 8.685 12.418 16.559

0.2 4.065 5.503 7.973 10.778 5.496 7.435 10.739 14.454 6.479 8.713 12.475 16.658

0.5 4.077 5.524 8.015 10.852 5.514 7.467 10.802 14.565 6.502 8.754 12.554 16.793

0.8 4.089 5.543 8.053 10.919 5.531 7.496 10.859 14.664 6.524 8.790 12.625 16.914

1.0

0.0 3.588 4.886 7.089 9.543 4.842 6.598 9.539 12.765 5.715 7.735 11.062 14.650

0.2 3.595 4.899 7.115 9.590 4.852 6.617 9.578 12.835 5.729 7.760 11.111 14.736

0.5 3.605 4.916 7.151 9.654 4.868 6.643 9.632 12.932 5.748 7.793 11.179 14.854

0.8 3.614 4.933 7.184 9.713 4.881 6.668 9.682 13.020 5.765 7.824 11.242 14.962

3.0

0.0 2.899 4.008 5.853 7.848 3.886 5.405 7.871 10.461 4.586 6.346 9.109 11.916

0.2 2.904 4.017 5.873 7.885 3.893 5.418 7.901 10.516 4.594 6.363 9.147 11.985

0.5 2.911 4.030 5.901 7.936 3.902 5.437 7.943 10.594 4.605 6.387 9.200 12.083

0.8 2.917 4.042 5.927 7.985 3.910 5.454 7.982 10.667 4.615 6.409 9.250 12.173
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Table 4. Effect of the power-law exponent and tapering parameter on the normalized flexural–torsional buckling load (Pnor)

of simply supported thin-walled nanobeams with different nonlocal parameters (axial load applied on the centroid).

µ
(nm2) α

m = 0.6 m = 1.2 m = 1.8

β = 0 β = 0.2 β = 0.5 β = 0.8 β = 0 β = 0.2 β = 0.5 β = 0.8 β = 0 β = 0.2 β = 0.5 β = 0.8

0

0.0 4.243 5.837 8.689 12.096 5.756 7.928 11.796 16.392 6.815 9.345 13.814 19.077

0.2 4.244 5.838 8.690 12.097 5.757 7.929 11.797 16.392 6.816 9.346 13.815 19.078

0.5 4.245 5.839 8.691 12.098 5.759 7.930 11.798 16.394 6.817 9.348 13.817 19.079

0.8 4.246 5.840 8.692 12.099 5.760 7.931 11.800 16.395 6.819 9.349 13.818 19.081

1.0

0.0 3.736 5.177 7.741 10.775 5.054 7.023 10.504 14.589 5.989 8.287 12.299 16.949

0.2 3.736 5.178 7.742 10.776 5.055 7.024 10.505 14.589 5.990 8.288 12.300 16.950

0.5 3.737 5.179 7.743 10.777 5.056 7.026 10.506 14.590 5.992 8.289 12.302 16.951

0.8 3.738 5.180 7.744 10.777 5.058 7.027 10.507 14.592 5.993 8.291 12.303 16.953

3.0

0.0 2.990 4.210 6.353 8.840 4.000 5.688 8.610 11.945 4.725 6.716 10.077 13.823

0.2 2.990 4.210 6.353 8.840 4.001 5.689 8.611 11.946 4.726 6.717 10.078 13.823

0.5 2.991 4.211 6.354 8.841 4.002 5.690 8.612 11.947 4.727 6.718 10.079 13.824

0.8 2.992 4.212 6.355 8.842 4.003 5.691 8.613 11.948 4.729 6.719 10.080 13.826

Table 5. Effect of the power-law exponent and tapering parameter on the normalized flexural–torsional buckling load (Pnor)

of simply supported thin-walled nanobeams with different nonlocal parameters (axial load applied on the TF at x = l).

µ
(nm2) α

m = 0.6 m = 1.2 m = 1.8

β = 0 β = 0.2 β = 0.5 β = 0.8 β = 0 β = 0.2 β = 0.5 β = 0.8 β = 0 β = 0.2 β = 0.5 β = 0.8

0

0.0 3.881 5.299 7.808 10.770 5.218 7.133 10.513 14.484 6.160 8.392 12.304 16.869

0.2 3.785 5.158 7.585 10.447 5.080 6.934 10.200 14.037 5.995 8.156 11.939 16.352

0.5 3.648 4.961 7.277 10.005 4.889 6.658 9.775 13.434 5.766 7.830 11.441 15.652

0.8 3.526 4.785 7.005 9.621 4.719 6.416 9.404 12.912 5.564 7.544 11.007 15.046

1.0

0.0 3.378 4.661 6.928 9.595 4.509 6.250 9.312 12.894 5.320 7.358 10.909 15.020

0.2 3.288 4.531 6.726 9.308 4.382 6.066 9.030 12.498 5.168 7.141 10.581 14.566

0.5 3.164 4.352 6.450 8.917 4.209 5.819 8.650 11.965 4.963 6.849 10.138 13.953

0.8 3.054 4.195 6.209 8.577 4.060 5.605 8.323 11.507 4.787 6.598 9.756 13.423

3.0

0.0 2.659 3.748 5.668 7.908 3.465 4.968 7.585 10.607 4.038 5.832 8.891 12.354

0.2 2.584 3.640 5.501 7.678 3.365 4.818 7.354 10.292 3.924 5.656 8.624 12.000

0.5 2.484 3.494 5.276 7.364 3.235 4.621 7.047 9.868 3.779 5.429 8.270 11.519

0.8 2.400 3.370 5.082 7.093 3.128 4.457 6.787 9.505 3.658 5.239 7.968 11.103

Under the first assumed load position, Figure 6 illustrates the variation in the nor-
malized buckling load with respect to the web tapering ratio α and the flange tapering
parameter β for different nonlocal parameters and material compositions, i.e., for a pure
ceramic and AFG with m = 1. The same analysis is repeated for an axial load located at
x = L, whose results are plotted in Figure 7, where the reduction in the buckling load is
observable with increasing values of µ and decreased tapering ratios of α and β. Moreover,
in Figures 8–10 we plot the lowest buckling load Pnor versus the tapering ratio for different
values of gradient indexes, m, and nonlocal parameters (µ = 0, 1, 2 and 3), while assum-
ing α = β, and three different positions of compressive load, as in the previous cases. Note
that a beam subjected to a compressive axial force on the centroid can buckle in a pure
torsional buckling mode. In this context, Table 6 addresses the influence of web and flange
tapering ratios, material composition (power-law exponent), and nonlocal parameters
(µ = 0, 0.5 and 1) on the normalized torsional buckling load of the tapered nanobeam.
Based on the results for both local and nonlocal beams and all non-uniformity ratios, the
stability strength improves as the non-homogeneity parameter increases. In other words,
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a higher flexural–torsional buckling capacity is obtained with an increased power index,
m, due to the increased content of ceramic phase and increased gradient index, under a
fixed ratio of α = β. As also visible in Figures 8–10, the rate of increase in the critical load
with α, β is gradual for increased values of m. Based on a comparative evaluation of the
results in Figures 8–10, with the same assumptions for α, β, m and µ, it seems that the
load position has a significant effect on the stability strength of nanobeams with varying
doubly symmetric I-sections, especially for higher values of the web tapering ratio. As
also expected, the highest buckling capacity is obtained when the axial load is located
exactly on the centroid, whereas the worst response corresponds to a compressive load
applied on the TF owing to the compression of an initial bending moment resulting from a
load eccentricity.
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Figure 6. Variation in normalized buckling load (Pnor) of local and nonlocal beams with a tapered I-section for various
webs. Effect of the power-law exponent and tapering parameter on the normalized torsional buckling load (Pnor) of simply
supported thin-walled nanobeams with different nonlocal parameters (axial load applied on the Centroid): (a) pure ceramic,
(b) AFG (m = 1).
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Figure 7. Variation in the normalized buckling load (Pnor) of local and nonlocal beams with a tapered I-section for various
web and flange tapering ratios and four different Eringen’s parameters (axial load on the TF at x = L): (a) pure ceramic,
(b) AFG (m = 1).

Both tables and figures clearly show that the non-uniformity parameter has a re-
markable influence on the flexural–torsional buckling load. For each selected power-law
exponent, nonlocal parameter and loading position, the stability values of prismatic beams
with α = β = 0 and of double-tapered ones with α = β = 1 are the lowest and highest, re-
spectively. By consulting Tables 3–5 and Figures 6 and 7, one can also note that the response
is much more affected by the flange tapering parameter β than the web non-uniformity
ratio α, since the lowest flexural–torsional buckling modes usually occur with the lowest
axis moment of inertia.

For beam-columns subjected to an axial load on the centroid and on the TF for x = 0,
it is found that the buckling parameter increases with increasing values of both α and β,
due to the enhancement of the cross-section’s geometrical properties along with an overall
increase in flexural and torsional stiffness in the elastic member (see Tables 3 and 4). The
sensitivity of the mechanical response is slightly different for I-beams with an axial load
applied on the TF at x = L. As shown in Table 5 and Figure 7, the linear stability strength
of beams with a constant flange width tends to reduce with increasing values of α. This is
mainly related to the fact that the initial bending moment M∗y due to axial load eccentricity
is enhanced by increasing the web tapering ratio α. The effect of this phenomenon on the
buckling resistance of web and flange tapered beams is quite negligible when all the section
walls have the same non-uniformity ratio (i.e., for α = β).
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Figure 10. Variation in the flexural–torsional buckling load of I-tapered nanobeams with the tapering ratio and power-law
exponent, for different nonlocality parameters (axial load on the TF at x = L): (a) µ = 0; (b) µ = 1; (c) µ = 2; (d) µ = 3.

Table 6. Effect of the power-law exponent and tapering parameter on the normalized torsional buckling load (Pnor) of
simply supported thin-walled nanobeams with different nonlocal parameters (axial load applied on the Centroid).

α

µ = 0 µ = 0.5 µ = 1.0

β = 0 β =
0.25

β =
0.5

β =
0.75

β =
1.0 β = 0 β =

0.25
β =
0.5

β =
0.75

β =
1.0 β = 0 β =

0.25
β =
0.5

β =
0.75

β =
1.0

m = 1

0.0 26.399 31.400 36.266 41.068 45.851 23.116 28.587 33.610 38.395 43.059 19.151 25.731 31.080 35.936 40.536

0.25 23.264 28.179 33.116 38.108 43.174 20.578 25.743 30.737 35.666 40.588 17.772 23.395 28.526 33.445 38.266

0.5 21.048 25.814 30.706 35.739 40.919 18.770 23.667 28.555 33.493 38.514 16.526 21.651 26.582 31.464 36.362

0.75 19.410 24.025 28.831 33.836 39.040 17.424 22.099 26.863 31.755 36.793 15.526 20.319 25.074 29.885 34.787

1.0 18.155 22.633 27.343 32.291 37.476 16.386 20.881 25.526 30.351 35.365 14.726 19.276 23.882 28.610 33.484

m = 2

0.0 32.917 39.157 45.200 51.149 57.068 28.810 35.822 42.067 47.952 53.660 22.425 32.135 39.040 45.017 50.590

0.25 29.212 35.391 41.552 47.747 54.009 25.880 32.480 38.722 44.811 50.846 21.761 29.544 36.068 42.145 48.015

0.5 26.565 32.587 38.713 44.971 51.374 23.745 30.005 36.136 42.258 48.427 20.660 27.504 33.757 39.811 45.799

0.75 24.596 30.445 36.477 42.709 49.145 22.138 28.118 34.109 40.187 46.387 19.612 25.915 31.943 37.923 43.935

1.0 23.080 28.767 34.688 40.853 47.264 20.890 26.642 32.492 38.494 44.671 18.718 24.658 30.496 36.382 42.371

m = 3

0.0 36.991 43.765 50.277 56.664 63.005 32.637 40.321 46.990 53.227 59.259 24.922 36.356 43.842 50.097 55.888

0.25 32.952 39.692 46.349 53.002 59.699 29.420 36.657 43.364 49.843 56.229 24.530 33.542 40.580 46.993 53.131

0.5 30.034 36.619 43.249 49.973 56.819 27.038 33.908 40.519 47.052 53.592 23.509 31.257 38.008 44.432 50.724

0.75 27.845 34.249 40.783 47.482 54.361 25.229 31.794 38.266 44.764 51.346 22.406 29.456 35.971 42.336 48.675

1.0 26.151 32.379 38.794 45.421 52.272 23.816 30.130 36.454 42.879 49.441 21.420 28.021 34.335 40.613 46.942

Homog
eneous

0.0 55.172 61.392 67.658 73.998 80.419 52.003 57.786 63.516 69.265 75.059 49.179 54.536 59.728 64.886 70.053

0.25 49.161 55.583 62.099 68.739 75.511 46.296 52.418 58.496 64.612 70.798 43.724 49.607 55.278 60.896 66.524

0.5 44.446 50.894 57.492 64.265 71.217 41.822 48.036 54.265 60.575 66.994 39.462 45.506 51.410 57.301 63.234

0.75 40.765 47.145 53.724 60.521 67.539 38.353 44.530 50.784 57.168 63.700 36.189 42.219 48.196 54.216 60.321

1.0 37.852 44.126 50.635 57.395 64.408 35.627 41.713 47.927 54.311 60.880 33.635 39.582 45.549 51.611 57.798
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As was also expected, the nonlocal parameter shows a stiffness-softening effect and
reduces the buckling strength for all the selected loading positions. Based on the plots in
Figures 3–7, it seems that the effect of the Eringen’s nonlocal parameter on the buckling
response is more pronounced at higher tapering ratios and gradient indexes, especially
for beams made of pure ceramic. For example, the normalized buckling load of prismatic
members in Table 5 with m = 1.2 decreases by 36.5% when µ increases from 0 to 3. This
can be explained by the fact that the flexural and torsional stiffness of simply supported
tapered I-beams in a nonlocal theoretical context is inversely proportional to the Eringen’s
parameter. Usually, the introduction of a nonlocal effect increases the deflection response,
or this increase is equivalent to the stiffness reduction in the structural member. Since the
linear buckling resistance of beams is directly proportional to their stiffness, a meaningful
decrease in the critical load is expected. In Figure 11, we represent the effect of the
nonlocality parameter on the first four flexural–torsional buckling loads of nonlocal thin-
walled beams with an I-section. In this way, we account for a compressive axial load
applied at the TF for x = 0, while considering both an AFG prismatic beam with m = 1
and a homogeneous tapered beam with α = β = 0.5. Based on the plots in Figure 11, it is
clear that the nonlocal parameter has more pronounced effects on higher flexural–torsional
buckling modes when compared with the lowest ones. It can also be stated that it is
necessary to rely on nonlocal theories for an accurate estimation of the flexural–torsional
stability limit of nanosized thin-walled beams at higher buckling modes. In addition, it is
clearly observable that the nonlocal parameter effect increases when the µ ranges between
0 and 0.9.
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5. Conclusions

In this paper, we explore the flexural–torsional buckling of AFG nanobeams with
a varying I-section by resorting to the Vlasov model and Eringen’s nonlocal elasticity
theory. The material properties vary in the axial direction of structural elements according
to the power-law distribution of the material constituents. The principle of minimum
potential energy is applied to determine the governing equilibrium equations and boundary
conditions for AFG tapered thin-walled nanobeams subjected to eccentric axial loads. The
governing equations of the problem are implemented and solved numerically by means of
the DQM in order to determine the flexural–torsional buckling load. A broad systematic
investigation checks for the influence of some important parameters, including the web and
flange tapering ratios, the nonlocal parameter, the mode number, the axial load eccentricity
and the non-homogeneity index, on the overall response of doubly symmetric tapered
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nanobeams subjected to simply supported boundary conditions. For all the selected loading
positions, it is found that the flexural–torsional buckling capacity of nanobeams with a
tapered I-section decreases as the nonlocal parameter increases, whereas the buckling load
increases as the flange tapering ratio and ceramic phase, Al2O3, increase. The effect of
the flange tapering parameter β on the buckling capacity is more pronounced than that
related to the web tapering ratio, α. As expected, the buckling capacity reaches its highest
value in the absence of all possible eccentricity. In addition, the elastic buckling capacity
of homogeneous double-tapered beams decreases as the nonlocal parameter increases,
especially when compared to AFG prismatic I-beams. The small-scale effects become even
more pronounced at higher buckling modes, such that they cannot be clearly disregarded
when accurately defining the problem. In its present state, the formulation does not
consider the grain sizes or the shapes of the alumina or aluminum components, but this
will be considered in a more extended formulation that will include possible material
anisotropies. A further extension of the proposed formulation will include the nonlinear
effects on the coupled thermo-mechanical stability of tapered micro/nanosized systems,
accounting for the possible presence of porosities and defects, together with different
boundary and environmental conditions.
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