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Abstract: Recent advances in nanoscience have opened ways of recycling substrates for nanomaterial
growth. Novel materials, such as atomically thin materials, are highly desirable for the recycling
substrates. In this work, we report recycling of monolayer graphene as a growth template for
synthesis of single crystalline ZnO nanowires. Selective nucleation of ZnO nanowires on graphene
was elucidated by scanning electron microscopy and density functional theory calculation. Growth
and subsequent separation of ZnO nanowires was repeated up to seven times on the same monolayer
graphene film. Raman analyses were also performed to investigate the quality of graphene structure
along the recycling processes. The chemical robustness of graphene enables the repetitive ZnO
nanowire growth without noticeable degradation of the graphene quality. This work presents a route
for graphene as a multifunctional growth template for diverse nanomaterials such as nanocrystals,
aligned nanowires, other two-dimensional materials, and semiconductor thin films.

Keywords: graphene; ZnO; recycling; hydrothermal synthesis; raman spectroscopy

1. Introduction

Epitaxy of thin films and nanomaterials is a crucial step for device manufacturing.
However, conventional epitaxy is preferably conducted when original substrates and
overgrown materials possess similar lattice constants and thermal expansion coefficients.
To utilize the epilayer, the substrates are mostly disposed of or used as a base substrate
in devices. Since the cost of substrates for epitaxy process takes up a significant portion
in device manufacturing, there has been an intensive research effort to recycle substrates.
Epitaxial lift-off (ELO) is a technique of recycling wafers [1], a typical process sequence
for ELO is formation of sacrificial layer, epitaxy of desired materials, and post-processing
to release the epitaxial thin films and nanomaterials. Although the ELO technique has
demonstrated the reuse of substrates for various device applications, such as thin film
photovoltaic cells, photodetectors, and light-emitting diodes [1–3], it still requires chemo-
mechanical polishing, which induces substrate material loss of ~10 µm/recycle. The
material loss results in a process cost increase comparable to ~20% of the substrate price [4].

Graphene provides novel opportunities for substrate recycling because of its self-
terminated surface without surface dangling bonds, which usually act as origins of in-
terfacial defects and strong chemical bonding between graphene and an overgrown ma-
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terial. Successful demonstrations of van der Waals epitaxy and remote epitaxy show
that graphene is a versatile substrate for epitaxial growth of elemental and compound
semiconductors [5–11]. ELO on graphene can protect the substrate underneath this 2D
graphitic structure. However, in this case, the graphene film cannot be recycled because
it delaminates from the substrate or it starts forming micro-spalling marks. As of now,
large-scale production of high-quality graphene at a low cost is still challenging, given
that the use of graphene as a sacrificial layer for the ELO process could lead in a manu-
facturing cost increase [12]. Although graphene has shown a great potential as a growth
template for nanomaterials with optimized morphologies and characteristics, recyclability
of graphene nanosheets for repetitive nanomaterial growth has rarely been investigated [13].
Furthermore, ZnO nanostructures have been studied extensively due to their stable and
uniform growth on graphene for various potential applications, such as biomedical and
optoelectronic devices [14,15]. The growth mechanism of ZnO nanostructures has also
been explored to investigate the influence of the nature of graphene layers [16].

In this work, we report a recycling process of monolayer graphene used as a growth
template for synthesis of single crystalline ZnO nanowires (NWs). The single crystalline
ZnO NWs were selectively grown on the graphene. Moreover, the selective nucleation of
ZnO on graphene was investigated by first-principles calculations based on density func-
tional theory (DFT). Hydrothermal synthesis and delamination processes using chemical
exfoliation of the ZnO wires were repeated on a same graphene layer. Raman spectroscopy
analysis demonstrates that the graphene layer remains stable after multiple NW synthesis
and delamination processes. In addition, Raman mapping analysis was performed to
investigate the quality of graphene surfaces along repetition of ZnO NW growth and
subsequent delamination. The chemical robustness of graphene enables the reuse of the
graphene layer for repeated nanomaterials growth (at least seven times) without noticeable
degradation of its quality. This work provides a route for graphene as a recyclable growth
template for various materials.

2. Experimental Details

Monolayer graphene was synthesized on a 0.1 mm thick Cu foil (CAS# 7440-50-8,
purchased from Alfa Aesar) using a low-pressure chemical vapor deposition which was
previously reported [17]. The Cu foil was annealed at 950 ◦C for 1 h under Ar/H2 atmo-
sphere. Next, methane (CH4, 15 sccm) are introduced in the system while the temperature
was increased to 1020 ◦C for 20 min. Lastly, the sample was rapidly cooled down to room
temperature. The synthesized graphene sheet with a surface area of 1.5 cm × 1.5 cm
was transferred onto a SiO2/Si substrate using a PMMA-free transfer method [18]. The
transfer technique utilizes formvar (polyvinyl formal), a chemically stable and easy to
remove polymer, for a rapid, clean and reliable transfer of large-area graphene sheets over
a desired substrate.

E-beam lithography (EBL) was employed to define the nucleation sites of ZnO NWs
on the graphene sheet. A 300 nm-thick poly (methyl methacrylate) (PMMA, MicroChem®

495 K C3, Newton, MA, USA) layer was deposited by spin coating. The EBL was performed
using the JEOL 6300 FS instrument (JEOL Ltd, Akishima, Tokyo, Japan). The e-beam
exposed PMMA regions defined as dot patterns were removed by development in methyl
isobutyl ketone (MIBK):isopropyl alcohol (IPA) solution. The remaining PMMA layer acted
as mask of selective growth of ZnO NWs on the exposed graphene.

ZnO NWs were grown using hydrothermal method on the graphene/SiO2/Si sub-
strate. The monolayer graphene/SiO2/Si template was placed upside-down in a Teflon-
lined autoclave with the nutrient solution. The nutrient solution was prepared by dissolving
zinc nitrate hexahydrate (25 mM, ZnO(NO3)2·6H2O), hexamethylenetetramine (25 mM,
C6H12N4, HMTA), and polyethylenimine (5 mM, PEI) in deionized water. Zinc nitrate
hexahydrate and HMTA were employed as precursors to form ZnO. PEI was used to
induce growth along one principal direction by adsorbing onto nonpolar sidewalls of ZnO



Nanomaterials 2021, 11, 2093 3 of 11

crystal. The synthesis was performed at 95 ◦C for 4 h. Details of the hydrothermal growth
procedure are reported elsewhere [19].

Raman analyses for point spectra and mapping were taken by a homebuilt system,
which was calibrated using a Si wafer. A frequency doubled 532 nm Nd:YAG laser was
used to probe the nanostructures and the Raman signal was collected via a liquid nitro-
gen cooled CCD detector (Princeton Instruments, Inc., Trenton, NJ, USA). For the micro-
photoluminescence (PL), a frequency quadrupled Nd:YAG laser with the wavelength of
266 nm, a pulse width of 400 ps, and a repetition rate of 10 kHz was employed as the
excitation source.

3. Results and Discussions

The surface morphology and the microstructures of the ZnO NWs were investigated by
scanning electron microscopy (SEM, FEI Quanta 400 F, 10 kV, FEI Company, Hillsboro, OR,
USA) and transmission electron microscopy (TEM, FEI Tecnai F20, 200 kV, FEI Company,
Hillsboro, OR, USA). Figure 1a shows a selective growth of the ZnO NWs on graphene,
while Figure 1b presents a tilted-view SEM image of ZnO NWs grown on graphene. The
ZnO NWs were preferably grown on graphene, while no growth was observed on the
SiO2 surface. Position-controlled hydrothermal growth of ZnO micro/nanostructures on
graphene has been reported by several research groups [20–23]. Earlier, ZnO seed layers
were employed to promote the growth of ZnO structures. However, direct growth of ZnO
NWs on graphene without any seed layer has not been fully understood. Nucleation of
ZnO crystallites by hydrothermal growth is explained by either homogeneous nucleation
in a nutrient solution or heterogeneous nucleation on hydrophilic surfaces [19]. Our
observation of selective nucleation of ZnO on graphene layer is incomprehensible by the
conventional interpretations, since pristine graphene is not hydrophilic without undergoing
additional chemical treatments for introduction of surface functional groups. To elucidate
on the observation, the selective nucleation of ZnO on graphene was investigated by
DFT calculations. Figure 1c shows the model systems for the DFT calculations. The
super cells consisting of the ZnO structure bonded to commensurate supercells of SiO2 or
graphene were formed to reduce required computational resource and approximate the
binding energies between ZnO and the substrates without consideration of edge-effects.
The total energies of supercells of ZnO, SiO2, and graphene were calculated based on
DFT as implemented in the Vienna Ab-initio Simulation Package (VASP). All calculations
were conducted with projector augmented-wave (PAW) potentials using the generalized
gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE). Each model system
was relaxed along the z-direction using preconditioned residual-minimization until the
force on the atoms was less than 0.01 eV/Å. In these calculations, no edge or vacuum
effects were considered.

The relative binding energy per Zn atom is defined as

EB = (Esubstrate + EZnO − EZnO/substrate)/n, (1)

where Esubstrate is the total energy of the substrate, SiO2 or Graphene, EZnO is the total en-
ergy of the ZnO nanorod, EZnO/substrate is the total energy of the combined nanorod/substrate
system, and n is number of Zn or O atoms at the surface of the substrate. The binding
energies were calculated to be 0.3654 and 1.7864 eV for the ZnO/SiO2 and ZnO/graphene
structures, respectively. The higher binding energy for ZnO/graphene compared to
ZnO/SiO2 indicates that the growth of ZnO nanostructures is energetically more favorable
on graphene than on SiO2 [24].
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The formation mechanism of sharp tips of the ZnO NWs can be attributed to surface en-
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The optical properties of the ZnO NWs were investigated using micro-photolumi-
nescence (µ–PL) spectroscopy at room temperature (RT). The strong PL emission centered 
at 3.25 eV on the graphene, shown in Figure 2d, corresponds to the free excitonic emission 
of ZnO [26]. Moreover, there was no noticeable emission in visible wavelengths, of which 
origins are corresponding to oxygen vacancies and zinc interstitials [27]. The lumines-
cence from the SiO2 region was negligible. High crystallinity and dominant free excitonic 
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Figure 1. (a) Top-view and (b) tilted-view SEM images of ZnO wires grown on graphene. (c) The supercells composed of
ZnO, SiO2, and graphene for the DFT calculations.

TEM was used to investigate the structural characteristics of the ZnO NWs on
graphene. Figure 2a shows a low magnification TEM image of a ZnO NW with a sharp tip.
The tapered shape with sharp tips is commonly observed for ZnO NWs prepared by hy-
drothermal method under alkaline conditions and non-catalyzed growth via metal-organic
CVD [5,15]. Figure 2b,c indicate that the c-oriented ZnO NW is single crystalline. The
formation mechanism of sharp tips of the ZnO NWs can be attributed to surface energy
anisotropy that (0001) c-plane has the highest surface energy in wurtzite ZnO. Hence,
reduction of the surface area of (0001) plane is energetically favorable [25].

The optical properties of the ZnO NWs were investigated using micro-photoluminescence
(µ–PL) spectroscopy at room temperature (RT). The strong PL emission centered at 3.25 eV
on the graphene, shown in Figure 2d, corresponds to the free excitonic emission of ZnO [26].
Moreover, there was no noticeable emission in visible wavelengths, of which origins are
corresponding to oxygen vacancies and zinc interstitials [27]. The luminescence from the
SiO2 region was negligible. High crystallinity and dominant free excitonic emission in RT
µ–PL spectrum of the ZnO NWs demonstrate that graphene can be employed as a growth
template for high-quality ZnO nanostructures.
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Figure 2. (a) Low magnification, (b) high-resolution TEM images, and (c) electron diffraction pattern of an individual
ZnO NW grown on CVD-graphene via hydrothermal method. (d) Room temperature µ–PL spectra of ZnO NWs and SiO2

outside graphene.

To recycle graphene layers and repeatedly synthesize ZnO NWs, repetitive detachment
processes of ZnO NWs are required. Mechanical exfoliation is an alternative way to separate
the semiconducting materials from graphene surface. However, the mechanical exfoliation
method easily damages either ZnO or graphene layer. Hence, we developed a wet chemical
delamination process to simultaneously preserve the original structure of the ZnO NWs
and that of the graphene layer. The slanted ZnO NWs (Figure 1b) result in an areal density
gradient of the projected NWs region. While the roots of ZnO NWs are dense, the tips
of the NWs are sparse. The ZnO NWs grown on the graphene layer were covered with
PMMA via spin coating. PMMA solution (PMMA 950 K) was dropped on the ZnO NWs
grown on graphene and baked at 180 ◦C on a hot plate for 3 min. To cover the tips of
the NWs, the PMMA coating process was repeated three times. Because the radius of
gyration of PMMA 950 K is 26 nm, the PMMA solution cannot permeate into a space
narrower than the radius of gyration of 26 nm [28]. Hence, the bottom parts of the ZnO
NW bundles were not covered with PMMA even after repetition of the PMMA coating.
The PMMA/ZnO/graphene sample was immersed in 0.01 M hydrochloric (HCl) acid
solution for 24 h to etch only the bottom parts of the ZnO NWs where PMMA was not
covering. Figure 3a shows the PMMA coating and subsequent PARTIAL etching process
of the ZnO NWs grown on the graphene layer. Figure 3b shows the separated ZnO NWs
coated with the PMMA after the partial etching of ZnO with HCl. As the HCl solution
at this particular molarity does not introduce any significant damage on graphene, SiO2,
and Si, the repetitive growth and etch process can be successfully utilized to recycle the
growth templates.
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Figure 3. (a) A schematic of the process to separate ZnO wires from CVD-graphene by PMMA
coating and partial wet etching processes. (b) Tilted-view SEM image of ZnO wires embedded in
PMMA after separation from graphene.

4. Raman Spectroscopy Analyses

Raman spectroscopy is a non-destructive technique commonly used to probe various
carbon nanostructures [29–31]. The position and intensity ratios of the characteristic Raman
bands (D, G, and 2D band) of graphene are used to characterize crystallinity, number of
layers, doping level, presence of defects and the type of functional groups, etc. A frequency
doubled 532 nm Nd:YAG laser was employed to generate the Raman scattering on the
graphene sheets before and after the removal of ZnO NWs via the wet etching. In order
to characterize the same position on the graphene surface, the locations of ZnO NWs on
graphene were defined by e-beam lithography. The graphene area was patterned to check
the quality of the graphene layer on a defined spot during repetition of the cycle consisting
of growth and separation of ZnO NWs. Figure 4a shows the SEM image of hydrothermally
grown ZnO NWs on a hole patterned PMMA/monolayer graphene/SiO2/Si substrate. The
observation of selective growth of ZnO NWs on the exposed graphene areas is consistent
with the result shown in Figure 1. The area marked with the ‘Red’ circle in Figure 4b
indicates the position where Raman spectra of graphene were acquired before and after
growth of ZnO NWs. Raman spectra were also acquired after growth of ZnO NWs
and before the partial etching of ZnO NWs. Figure 4b shows three distinct peaks at
~1420 (D), ~1650 (G), and ~2740 (2D) cm−1, which can be assigned to an A1g breathing
mode originating from disorders, to the high frequency E2g, and to the second order of the
D, respectively [32]. Raman analyses were employed to monitor band intensities and ratios,
hence providing information on graphene structural integrity. Raman spectroscopy is also
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a well-defined method to measure the number of graphene layers [32,33]. The Raman
spectrum of the transferred graphene before the ZnO growth indicates the presence of a
crystalline sheet [29]. To maintain the quality of the graphene during transfer, we used our
newly developed PMMA-free transfer method while minimizing introduction of defects
and avoiding impurities [18,34].
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Figure 4. Top-view SEM (a) image of hydrothermally grown ZnO NWs on a hole patterned monolayer
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on monolayer graphene/SiO2/Si and SiO2/Si. (b) The room temperature Raman spectra of the
monolayer graphene, obtained at the ‘red’ circle in (a), before (black, dashed) and after (red, solid)
growth of ZnO NWs.

The Raman spectra shown in Figure 4b of the same graphene area before and after
ZnO NWs growth exhibits similar spectral features. Across a series of point scans there was
no change in the relative intensities of the D, G, and 2D peaks, nor was there a consistent
shift in peak positions. Additionally, regions of graphene (with and without NWs) probed
over a series of 50 scans did not show any significant difference in their corresponding
Raman spectra (Figure S1). This was also confirmed by a detailed Raman mapping analysis
of these characteristic bands collected in the graphene regions before and after NWs growth
(Figure S2). These observations imply that the hydrothermal growth of ZnO NWs induce
neither noticeable incorporation of new disorders in graphene nor alteration of chemical
characteristics of graphene. The ZnO NWs cause some scattering of the beam, but their
Raman spectral features are not within the key spectral range of graphene [35,36].

Raman mapping clearly reveals that ZnO NWs were grown on graphene as shown in
Figure 5. Figure 5 exhibits a growth boundary for the NWs, which can be seen along the
edge of graphene that bisects the patterned region. Raman intensity mappings (G and 2D
band spectral maps) in Figure 5B show the strong signal response from the graphene where
ZnO NWs were grown. The point spectra in Figure 5C indicate the graphene presence in
the growth regions and the lack of it in other areas.

A key feature of recycling graphene for semiconducting nanomaterial growth is the
remarkable properties that this 2D material continues to possess without degradation when
repetitively used as a substrate. Thorough Raman spectroscopy analyses including point
spectra and Raman mapping were performed over the growth area to characterize the
quality of graphene along the repetition of ZnO NWs growth and subsequent delamination.
The process of growth and delamination of ZnO NWs was repeated additional seven times
on the same graphene. The overlays of all eight spectra of the graphene after each recycling
process are shown in Figure 6a. The slight peak shift of ±15 cm−1 and no change in the
relative intensities of the three major bands (D, G, 2D) were observed. The slight shift
in values of ±15 cm−1 is likely due to environmental or equipment differences on the
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collection days instead of changes to the graphene structure [37]. Raman shifts have been
reported to be affected by numerous environmental factors such as temperature, laser
power, and excitation energy [38,39].
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To further characterize the graphene structure after each growth and removal of
nanowires, Raman mapping in a graphene area of 150 µm2 was conducted. Raman maps of
G, and 2D bands in Figure 6b,c indicate no changes in any of the three band intensities after
recycling the graphene seven times. The characterization was performed in other areas
of graphene, probed after repeated hydrothermal growth and wet etching of ZnO NWs,
yielding similar results (Figure S3). The graphene sheet was not deteriorated even after
repeated growth and etching cycles of ZnO NWs over its surface, making it an attractive
substrate for semiconducting nanomaterial growth.
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Structural and optical properties of the ZnO NWs grown at the different cycles of
the growth-etching process were also characterized. Figure 7a shows the RTPL spectrum
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of ZnO NWs after the 4th cycle of the recycling process. The weak emission in visible
wavelengths indicates low concentration of unintentional defects, such as oxygen vacancies
and zinc interstitials. Figure 7b exhibits that the ZnO NWs maintained the identical
morphology with same diameter and length after the 7th cycle of the recycling. In addition,
ZnO NWs were not grown on SiO2 layer, as shown in the inset of Figure 7b, after repetition
of the recycling process.

No noticeable degradation of materials quality in both recycled graphene and ZnO
wires region shows that the recycling graphene process in this study is applicable to
production of nanomaterials without concern of process-dependent material degradation.
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5. Conclusions

Recycling of graphene as a growth template for single crystalline ZnO NWs was
demonstrated by hydrothermal synthesis and chemical wet etching processes. The crys-
tallinity and position-controlled growth of ZnO NWs were investigated by the SEM, and
TEM analyses and interpreted by theoretical calculations. Raman analyses demonstrate
that the graphene template was very stable and reliable after the repetitive growth and
detachment processes. Our developed strategy for template-assisted synthesis of nanoma-
terials based on CVD graphene and recycling of the templates opens up a path forward for
this graphitic material as an exciting growth substrate not only the research field, but also
manufacturing and industrial fields.
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