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Abstract: This study aims to determine the heat transfer properties of a magnetohydrodynamic
Prandtl hybrid nanofluid over a stretched surface in the presence of bioconvection and chemical
reaction effects. This article investigates the bio-convection, inclined magnetohydrodynamic, thermal
linear radiations, and chemical reaction of hybrid nanofluid across stretching sheets. Also, the results
are compared with the nanofluid flow. Moreover, the non-Newtonian fluid named Prandtl fluid is
considered. Microfluidics, industry, transportation, the military, and medicine are just a few of the real-
world applications of hybrid nanofluids. Due to the nonlinear and convoluted nature of the governing
equations for the problem, similarity transformations are used to develop a simplified mathematical
model with all differential equations being ordinary and asymmetric. The reduced mathematical
model is computationally analyzed using the MATLAB software package’s boundary value problem
solver, Runge-Kutta-fourth-fifth Fehlberg’s order method. When compared to previously published
studies, it is observed that the acquired results exhibited a high degree of symmetry and accuracy.
The velocity profiles of basic nanofluid and hybrid nanofluid are increased by increasing the Prandtl
parameters’ values, which is consistent with prior observations. Additionally, the concentration and
temperature of simple and hybrid nanofluids increase with the magnetic parameter values.

Keywords: hybrid nanofluid; bioconvection; modified Buongiorno’s model; RK-method

1. Introduction

The behavior of boundary layers across a stretched surface is essential because it
happens in many engineering systems, such as extrusion-produced materials, paper and
glass-fiber production. Polymer is constantly extruded to a windup roller from a die in
industry, where it is used to make a variety of sheets and filaments. In these circumstances,
the rate of cooling in the process and the stretching process determine the final product’s
admirable characteristics. Researchers are currently interested in nanofluids flow across an
expanding sheet.

Sakiadis [1] presented the concept of boundary layer flow over a moving solid sheet
for the first time. Crane [2] is widely acknowledged as a pioneer in boundary layer
flow dynamics on stretched surfaces. When a flat sheet travels linearly in its plane due to
homogeneous stress, the boundary layer flow of a Newtonian fluid becomes incompressible.
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Gao et al. [3] investigated the analytical treatment of unsteady fluid flow between two
infinite parallel surfaces of nonhomogeneous nanofluids with the help of the collocation
method. Cui et al. [4] studied the influence of convection analysis of nanofluid flow over the
stretched sheet with heat production and chemical reaction. Second-grade nanofluid flow
through the porous sheet with activation energy, binary chemical reaction, and Marangoni
limitations effects were studied by Gowda et al. [5].

The importance of heat transfer in engineering and industry has piqued the interest of
researchers. In various systems, including electron devices and heat exchangers, convec-
tional fluids such as water and ethylene glycol may be used to convey heat. However, these
base liquids have low or restricted thermal conductivities. Engineers, mathematicians, and
researchers from other professions are attempting to increase the thermal conductivity
of the above-stated liquids by adding a single type of nanosized particle into a mixture
known as ’nanofluid’, which was introduced by Choi and Eastman [6]. The ability of solid
nanoparticles to boost the rate of heat transfer and thermal conductivity in convectional
base fluids has been demonstrated in prior studies. As a result, many analysts and thermal
experts have conducted numerical and experimental research to improve the heat transfer
rate of nanofluid from various directions. For example, Tiwari and Das [7] investigated
single-phase models of nanofluids. As a result, many scientists, engineers, and mathe-
maticians have given this model strong consideration [8–14]. Additionally, researchers
developed a novel kind of nanofluid that incorporates two different types of solid particles
into a single convectional base fluid to overcome the need for better heat transfer rates in
the industry and other areas. It is worth noting that in hybrid nanofluid [15], the thermal
conductivity of the ordinary base fluid is higher than in basic nanofluid.

In physics, chemistry, and engineering, the study of magnetic field effects is crucial.
Several metalworking procedures use the drawing of continuous filaments or strips through
a quiescent fluid to cool and stretch metal strips. The techniques referred to are drawing,
annealing, and thinning copper wire. Consequently, the quality of the final product is highly
reliant on the rate at which these strips are dragged through an electrically conducting
fluid subjected to a magnetic field and the desired feature in each of these conditions.
Ali et al. [16] and Hamad [17] investigated the flow of water-based nanofluids across a
stretched sheet affected by a magnetic field. Ali et al. [18] examined free convection
MHD flow of viscous fluid in a vertical circular tube using damped shear and heat flux.
Awan et al. [19] examined the MHD oblique stagnation point flow of second-grade fluid
across an oscillating expanding sheet.

Radiation heat transfer flow is crucial for the efficient design of nuclear power plants,
gas turbines, and other propulsion engines used in airplanes, missiles, satellites, and space-
craft. Consequently, Wang et al. [20] examined thermal radiation for Darcy-Forchheimer
nanofluid flow using entropy. Ali et al. [21] examined the melting influence on Cattaneo-
Christov and thermal radiation characteristics for aligned MHD nanofluid flows, including
microorganisms across the leading edge through the FEM technique. Xiong et al. [22] in-
vestigated 2D Darcy-Forchheimer flow for hybrid nanofluids with heat sink-source and
unbalanced thermal radiation effects. According to Hasona et al. [23], radiotherapy for
cancer thermotherapy mainly depends on thermal radiation.

Bioconvection is a natural phenomenon that results from microorganisms’ random
movement in single-cell or colony-like forms. Numerous bioconvection systems are based
on the movement of microorganisms in two specific directions. For instance, when there is
no movement, gyrotactic bacteria can travel in the opposite direction of gravity. Microor-
ganisms move in a direction determined by bioconvection’s asymmetric mass distribution
balance. Bioconvection is required for various bio-micro systems, including biotechnol-
ogy and enzyme biosensors. A floating algae solution was introduced to demonstrate
the bioconvection mechanism [24]. Plesset and Winet [25] developed the first theoretical
model of bioconvection that included a diverse variety of mobile microorganisms. As a
consequence of this study, Kuznetsov [26] developed a computer model to illustrate how
cell deposition facilitates bioconvection growth. Waqas et al. [27] studied microorganisms
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in an electrically conductive viscous nanofluid on a porous stretched disc. Khan and
Shehzad [28] investigated the Carreau nanofluid bioconvection flow across an expanding
surface. Balla et al. [29] explored the bioconvection of oxytactic bacteria in a porous square
enclosure using thermal radiation. Bioconvection is used in various fields, including phar-
maceuticals, biological polymer synthesis, ecologically friendly applications, sustainable
fuel cell technologies, microbial improved oil recovery, biosensors and biotechnology, and
mathematical modeling enhancements.

We observed no study on bio-convective Prandtl hybrid nanofluid flow in the literature.
The aim of the current article is to boost the heat transfer rate. The novelties of our
research are: (i) Prandtl non-Newtonian fluid is considered, (ii) how effect inclined MHD,
Brownian motion and thermophoresis diffusion, and motile microorganism on fluid flow,
(iii) convective boundary effect is also considered, and (iv) nanofluid and hybrid nanofluid
flow results are compared.

In this investigation, the following scientific research questions are answered:

1. What is the impact of multi-buoyancy forces, inclined magnetic field, and Prandtl
parameters on the fluid velocity subject to mono and hybrid nanofluids flow?

2. What is the effect of the magnetic field, Prandtl parameters, Brownian motion, and
thermophoresis on the temperature and heat transfer rate for mono and hybrid
nanofluid flow?

3. How is the concentration affected by the magnetic field, Lewis number, chemical
reaction parameter, Brownian motion, and thermophoresis for mono and hybrid
nanofluid flow?

4. Determine how bio-convection influences motile dispersion and mass transfer of
motile microbe density?

2. Mathematical Formulation

Considered Prandtl hybrid nanofluid with two-dimensional incompressible steady
flow due to an expanding sheet with motile microorganisms. The coordinate system (x, y)
is chosen that is perpendicular and flow is assumed at y > 0. An inclined magnetic field
is applied to the fluid flow, which makes an angle α with the x-axis and ûw(x) = ax (a is
constant) is the velocity with which the plate is expanded along the x-axis as shown in
Figure 1.

Figure 1. Problem’s geometry.

The governing equations of Prandtl hybrid nanofluid are given as ([30,31]):

Continuity Equation:
∂ṽ
∂y

+
∂ũ
∂x

= 0, (1)
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Momentum Equation: ṽ
∂ũ
∂y

+ ũ
∂ũ
∂x

= νhn f
A
C

∂2ũ
∂y2 + νhn f

A
2C3

(
∂ũ
∂y

)2 ∂2ũ
∂y2 −

σhn f B2
0 ũ

ρhn f
sin2(α)

+
1

ρhn f
[ǵ(T − T∞)ρ f β́(1− C∞) + ǵ(C∞ − C)(ρp + ρ f )− (ρm − ρp)(N∞ − N)ǵγ∗], (2)

Energy Equation: ṽ
∂T
∂y

+ ũ
∂T
∂x

= ᾱhn f
∂2T
∂y2 + τ

[(
∂T
∂y

)2 DT
T∞

+
∂T
∂y

DB
∂C
∂y

]
, (3)

Concentration Equation: ṽ
∂C
∂y

+ ũ
∂C
∂x

=
∂2C
∂y2 DB +

(
∂2T
∂y2

)
DT
T∞

+ Kr(C∞ − C), (4)

Motile Microorganism Equation: ṽ
∂N
∂y

+ ũ
∂N
∂x

= Dm
∂2N
∂y2 +

bwc

(C∞ − Cw)

∂

∂y

(
N

∂C
∂y

)
. (5)

All the involved terms in these equations are defined in nomenclature. The following
are the suitable boundary limits [32]:

when y = 0, ṽ = 0, ũw = ũ = ax,
∂T
∂y

= −(Tw − T)
h

khn f
, Cw = C, Nw = N, (6)

when y→ ∞ C∞ = C, ũ = 0, N∞ = N, T∞ = T. (7)

By utilizing the similarity relations given below, the above PDEs can be transformed
into ODEs [33]

η =

√
a

ν f
y, θ(η) =

T − T∞

Tw − T∞
, φ(η) =

C∞ − C
C∞ − Cw

, χ(η) =
N − N∞

Nw − N∞
, ψ† = f (η)

√
aν f x, (8)

where

ũ =
∂ψ†

∂y
, ṽ = −∂ψ†

∂x
.

By the above similarity relations Equation (1) is justified identically and Equations (2)–(5)
are rewritten as:

f ′′′(α1 + α2 f ′′)− B2 f ′M sin2 α + B1( f f ′′ − f ′2) + B2(θ − Nrφ− Ncχ)λ = 0, (9)

1
PrB3B4

θ′′ + θ′φ′Nb + f θ′ + θ′2Nt = 0, (10)

φ′′ + f Leφ′ +
Nt
Nb

θ′′ − γφ = 0, (11)

χ′′ + f Lbχ′ − (χ′φ′ + (v + χ)φ′′)Pe = 0, (12)

and Equations (6) and (7) become

when η = 0; f ′ = 1, f = 0, χ = 1, θ′ =
k f

khn f
Bi(θ − 1), φ = 1. (13)

when η → ∞; φ→ 0, θ → 0, χ→ 0, f ′ → 0, (14)

where φ, f , θ, and χ are functions of η. Moreover, prime stands for differentiation, M =
σf B2

0
ρ f a

denotes the magnetic parameter, α1 = A
C is Prandtl fluid parameter, α2 = a3x2 A

2ν f C3 denotes

elastic parameter, the buoyancy ratio parameter is expressed as Nr =
(ρp−ρ f )(Cw−C∞)

ρ f β́(1−C∞)(Tw−T∞)
,

Nt = (Tw−T∞)τDT
ν f T∞

is the parameter of thermophoresis, Bi = h
k f

√
ν f
a is thermal Biot number,



Nanomaterials 2022, 12, 2174 5 of 19

Nb = τDB(Cw−C∞)
ν f

shows the Brownian motion parameter, λ = (1−C∞)β́ǵ(Tw−T∞)
ax2 indicates

mixed convection parameter,
ν f
DB

= Le signifies the Lewis number, Nc =
γ∗(ρm−ρ f )(N∞−Nw)

(C∞−1)ρ f β́(Tw−T∞)

indicates Rayleigh number of bioconvection, γ = k0
a Le is a chemical reaction parame-

ter, Lb =
ν f
Dm

denotes bioconvection Lewis number, v = N∞
Nw−N∞

indicates bioconvection

constant, Pr =
ν f (ρCp) f

k f
shows the Prandtl number, and Pe = bwc

Dm
be Peclet number.

The thermo-physical attributes are given in Tables 1 and 2.

Table 1. Thermo-physical attributes of hybrid nanofluid.

Properties Nanofluid Hybrid Nanofluid

Viscosity µn f =
µ f

(1−φ)2.5 µhn f =
µ f

(1−φ1)2.5(1−φ2)2.5

Density ρn f =
(

φ(
ρs
ρ f
) + (1− φ)

)
ρ f ρhn f = (1− φ2)

(
φ1(

ρs1
ρ f
) + (1− φ1)

)
ρ f

+φ2ρs2

Heat Capacity (ρcp)n f =
(
(1− φ) + φ

(
(ρcp)s

(ρcp) f

))
(ρcp) f (ρcp)hn f = (ρcp) f (1− φ2)

(
(1− φ1) + φ1

(
(ρcp)s1

(ρcp) f

))
+φ2(ρcp)s2

Thermal conductivity kn f
k f

=
−(m−1)φ(k f−ks)+ks+(m−1)k f

φ(k f−ks)+ks+(m−1)k f

khn f
kb f

=
ks2+(m−1)kb f−(m−1)φ2(kb f−ks2)

ks2+(m−1)kb f +φ2(kb f−ks2)

where, kb f
k f

=
ks1+(m−1)k f−(m−1)φ1(k f−ks1)

ks1+(m−1)k f +φ1(k f−ks1)

Table 2. Thermo-physical attributes of two nanoparticles and water.

Nanoparticles/Base
Fluid Cu TiO2 H2O

ρ (kg·m−3) 8933 4250 997.1
Cp (J·kg−1·K−1) 385 686.2 4179
k (W·m−1·K−1) 401 8.9538 0.613

σ (Ω−1·m−1) 59.6 0.125 5.5

Also

B1 =

[(
(1− φ1) + φ1

ρs1

ρ f

)
(1− φ2) + φ2

ρs2

ρ f

]
(1− φ2)

2.5(1− φ1)
2.5, (15)

B2 = (1− φ2)
2.5(1− φ1)

2.5, (16)

B3 =

(
(1− φ1) + φ1

(ρcp)s1

(ρcp) f

)
(1− φ2) +

(ρcp)s2

(ρcp) f
φ2, (17)

B4 =
(kb f − ks2)φ2 + ks2 + (m− 1)kb f

(m− 1)kb f + ks2 − (m− 1)φ2(kb f − ks2)
.

ks1 + (m− 1)k f + φ1(k f − ks1)

−(m− 1)(k f − ks1)φ1 + ks1 + (m− 1)k f
. (18)

The following are the definitions for the physical quantities [32]:

C̃ f x =
τw

ρ f ũ2
w

, Ñux =
xq∗w

k f (Tw − T∞)
. (19)

At the surface τw = µhn f (
A
C

∂ũ
∂y + A

2C3 (
∂ũ
∂y )

3) is shear stress and q∗w = −khn f (
∂T
∂y )y=0 is

heat flux.
Utilizing the predefined similarity relations, expressions (19) become

C̃ f x =
1
B2

Re−0.5
x

(
α1 + α2 f ′′(0)2

)
f ′′(0), (20)
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Ñux = −
khn f

k f
Re0.5

x θ′(0), (21)

here, Rex = ũwx
ν f

pertains Reynolds number.

3. Numerical Solution

Due of the nonlinear nature of the DEs (9–12), with the limits (13, 14), these are
unable to be solved analytically. We use Runge-Kutta approach to solve the given problem
numerically. The problem presented here illustrates ODEs with boundary conditions. At
the start of the process, the coupled nonlinear ODEs (9–12) are simplified into first order
DEs utilizing the following procedure:

f ′ = z2, f = z1, f ′′ = z3, f ′′′ = zz1, θ = z4, θ′ = z5, θ′′ = zz2, φ = z6, φ′ = z7, φ′′ = zz3, χ = z8, χ′ = z9, χ′′ = zz4

zz1 =
1

(α1 + α2z3)

(
B2z2M sin2 α− B1(z1z3 − z2

2)− B2λ(z4 − Nrz5 − Ncz8)
)

, (22)

zz2 = −PrB3B4(Nbz5z7 + z1z5 + Ntz2
5), (23)

zz3 = −Lez1z7 −
Nt
Nb

zz2 + γz6, (24)

zz4 = −Lbz1z9 + Pe(zz3(z8 + v) + z7z9), (25)

along with the boundary conditions:

z2 = 0, z1 = 0, z5 =
k f

khn f
Bi(z4 − 1), z6 = 1, z8 = 1 at η = 0, (26)

z8 → 0, z6 → 0, z4 → 0, z2 → 0 at η → ∞. (27)

The Runge-Kutta (RK) method is used to predict omitted initial conditions. This
method helps in determining the missing initial conditions, such that conditions at η → ∞
are satisfied. Finally, the required numerical solutions are found utilizing the fourth-order
RK technique given below:

sk+1 = sk + h
(

25
216

k1 +
1408
2565

k2 +
2197
4104

k3 −
1
5

k4

)
, (28)

where
k0 = g(tk, sk), (29)

k1 = g
(

tk +
h
4

, sk +
hk0

4

)
, (30)

k2 = g
(

tk +
3h
8

, sk + h(
3k0

32
+

9k1

32
)

)
, (31)

k3 = g
(

tk +
12h
13

, sk + h(
1932k0

2197
− 7200k1

2197
+

7296k2

2197
)

)
, (32)

k4 = g
(

tk + h, sk + h(
439k0

216
− 8k1 +

3860k2

513
+

845k3

4104
)

)
. (33)

A solution for Prandtl hybrid nanofluid over an expanding surface is produced by
running the mathematical coding described earlier via a Matlab script. The numerical
findings of physical parameters such as the Nusselt number −θ

′
(0) and the skin friction

factor − f ′′(0) are analyzed here. The computational results of the suggested technique
(RK-5) are compared with those obtained by various researchers [34–40] under limiting
circumstances. Tables 3 and 4 reveal that the current results are compatible.



Nanomaterials 2022, 12, 2174 7 of 19

Table 3. Comparison of − f ′′(0) for different values of M, α1 = 1, α = 900 and the remaining
parameters are zero.

M Gireesha et al. [34] Jalil et al. [35] Ali et al. [36] Our Outcomes

0.0 1.000 1.000000 1.0000080 1.00000837
0.2 1.095 1.095445 1.0954458 1.09544603
0.5 1.224 1.224745 1.2247446 1.22474492
1.0 1.414 1.414214 1.4142132 1.41421356
1.2 1.483 1.483240 1.4832393 1.48323970
1.5 1.581 1.581139 1.5811384 1.58113883
2.0 1.732 1.732051 1.7320504 1.73205081

Table 4. Comparison of−θ
′
(0) for defferent values of Pr, α1 = 1, Bi→ ∞ and set all other parameters

equal to zero.

Pr Wang [37] Khan and Pop [38] Srinivasulu and Goud [40] Our Outcomes

0.7 0.4539 0.4539 0.4539 0.4544473
2.0 0.9114 0.9113 0.9113 0.9113528
7.0 1.8954 1.8954 1.8954 1.8954004

20.0 3.3539 3.3539 3.3539 3.3539018
70.0 6.4622 6.4621 6.4621 6.4621975

4. Results and Discussion

Numerical results of physical parameters for two cases of fluid flow are determined as
follows: a = TiO2/Water (simple nanofluid) and b = Cu + TiO2/Water (hybrid nanofluid).
The above results are verified when compared with previous Pr results in limiting cases, as
shown in Table 4. Each physical parameter such as velocity, temperature, concentration,
and microorganism are evaluated numerically by giving predetermined values to all of the
other factors involved. All figs. presented results of two type flows such as single nanofluid
(TiO2/Water) flow and hybrid nanofluid (Cu + TiO2/Water) flow. Figures 2 and 3 illustrate
the impact of Prandtl fluid parameter (α1) and elastic parameter (α2) on velocity profile.
The velocity profile of simple nanofluid and hybrid nanofluid increase by increasing the
value of (α1) and (α2). This occurs because boosting the Prandtl fluid parameter reduces
fluid viscosity. As a result of higher Prandtl fluid values, fluid becomes less viscous, and
velocity profiles increase. Figures 4–8 show the effects of M, λ, α, Nr and Rb on the velocity
of simple nanofluid and hybrid nanofluid flow. The velocity profiles for simple and hybrid
nanofluid flow decline by boosting the values of all parameters. By boosting M, the Lorentz
forces slowdown the fluid motion.

The impacts of (α1) and (α2) on temperature is illustrated in Figures 9 and 10. It has been
observed that by growing the values of both parameters, temperature curves of nanofluid and
hybrid nanofluid declined. Moreover, temperature curves are enhanced while boosting the
values of Nb, M, Nt and Bi as shown in Figures 11–14. This type of behaviour is explained
by the fact that enhancing the Brownian motion parameter causes an increase in the random
motion of fluid particles. This increase in random motion raises the mean kinetic energy of fluid
particles, which raises the temperature of the simple nanofluid and hybrid nanofluid. Physical,
thermal Biot number proves that an increase in the energy gradient toward the surface results
in a reduction in the thickness of the thermal boundary layer.

Figures 15 and 16 display the impacts of magnetic parameter and Lewis number on
concentration profiles of TiO2/Water and Cu + TiO2/Water. From these figures it has
been visualized that concentration of both fluids enhanced with the increment in M while
opposite behavior is observed for higher values of Le. Figures 17–19 demonstrate the
concentration of simple nanofluid and hybrid nanofluid flow for parameters Nt, Nb, and γ,
respectively. Figure 17 shows increasing behavior of TiO2/Water and Cu + TiO2/Water
concentration profiles for boosting values of Nt whereas decreasing behavior has been
observed for growing values of Nb and γ as shown in Figures 18 and 19. In reality, when
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Nt increases, the fluid particles accelerate rapidly, resulting in an increase in kinetic energy
that causes the boundary layer to grow. Physically, the random acceleration decreases as
the quantity of Nb grows, the flow of fluid particles from peak areas to bottom regions
improves fast.

Figures 20–23 portray behavior of motile microbe profiles (χ(η)) by varying parame-
ters for both fluids. The impacts of the bio-convected Peclet number (Pe) and the magnetic
parameter (M) has been illustrated in Figures 20 and 21. It is observed that the microorgan-
isms boosts along with M, but it declines with the increase in Pe. Figures 22 and 23 depict
the profiles of microbes for Lb and v. It is noted that the profiles of microbes decrease for
the boosted values of Lb and v. Table 5 signifies the numerical values of Nusselt number
and local skin friction coefficient versus different values of parameters.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
(

)

---- Cu+TiO
2
/Water

TiO
2
/Water

1
 = 0.5, 1.0, 1.5, 2.0

Figure 2. Variations of f ′ versus α1.
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0.7

0.8

0.9

1

f
(

)

Cu+TiO
2
/Water----

TiO
2
/Water
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Figure 3. Variations of f ′ versus α2.
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Table 5. Numerical values of skin friction coefficient and Nusselt number of mono and hybrid
nanofluid for different values of parameters.

M α1 α2 α Nb Nt Bi Re0.5
x C̃ f x Re0.5

x C̃ f x Re−0.5
x Ñhx Re−0.5

x Ñhx
Mono Case Hybrid Case Mono Case Hybrid Case

1.0 0.5 0.5 30.0 0.2 0.2 0.5 −1.6989 −1.7846 0.4146 0.4119
1.2 −1.7437 −1.8288 0.4141 0.4115
1.4 −1.7882 −1.8727 0.4137 0.4110
1.0 0.4 −1.7298 −1.8182 0.4124 0.4096

0.6 −1.6813 −1.7645 0.4164 0.4138
0.8 −1.6752 −1.7546 0.4192 0.4167
0.5 0.6 −1.7894 −1.8803 0.4155 0.4129

0.7 −1.8708 −1.9662 0.4163 0.4137
0.8 −1.9449 −2.0444 0.4169 0.4144
0.5 45.0 −1.9200 −2.0027 0.4123 0.4097

60.0 −2.1341 −2.2145 0.4101 0.4075
75.0 −2.2872 −2.3660 0.4086 0.4060
30.0 0.4 −1.6414 −1.7267 0.3275 0.3261

0.6 −1.5777 −1.6625 0.2337 0.2335
0.8 −1.5138 −1.5980 0.1494 0.1498
0.2 0.1 −1.6973 −1.7829 0.4256 0.4228

0.3 −1.7001 −1.7859 0.4027 0.4002
0.4 −1.7008 −1.7867 0.3898 0.3876
0.2 1.0 −1.6568 −1.7420 0.5619 0.5588

1.5 −1.6342 −1.7190 0.6331 0.6299
2.0 −1.6203 −1.7049 0.6745 0.6713

5. Conclusions

The hybrid nanofluid flow has been studied with bioconvection and chemical reaction
over an expanding surface. This paper solves the PDEs system through similarity transfor-
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mation and obtains ordinary differential equations. The numerical method RKF-45 package
built-in MATLAB is applied to solve these ODEs. The significant findings are summarized
as follows:

• The velocity profile of both fluids has positive behavior for large values of Prandtl fluid
parameters and opposite behavior for the angle of inclination, magnetic parameter,
and bioconvection Rayleigh number.

• The boosting valuation of Prandtl fluid parameters, simple nanofluid, and hybrid
nanofluid temperature profiles are declined.

• Temperature profiles are enhanced for the large values of the magnetic parameter, ther-
mophoresis parameter, Brownian motion parameter, and Biot number. Also, the tempera-
ture profiles of hybrid nanofluids are more significant than those of simple nanofluids.

• The behavior of concentration of simple nanofluid and hybrid nanofluid is negative for
the increasing values of Brownian motion, chemical reaction, and Lewis parameters.

• The volumetric concentration of simple and hybrid nanofluids has positive nature for
a higher valuation of magnetic and thermophoresis parameters.

• The negative feature of microorganisms of simple and hybrid nanofluids is observed
for Peclet and bioconvection numbers.

• Hybrid nanofluid results are more prominent than the nanofluid flow.
• The skin friction coefficient of both fluids has a decreasing trend for boosted inputs of

α2, α, Nt while an increasing trend for α1, Nb, Bi.
• The Nusselt number rises for α1, α2, Bi, and the decreasing trend is observed for

M, α, Nt, Nb.
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Nomenclature
The following Nomenclature are used in this manuscript:

T dimensionless temperature
Tw fluid temperature at wall
C dimensionless concentration
Cw concentration at wall
T∞ temperature far from the sheet
λ mixed conviction parameter
N density of the motile microorganisms
Nw motile microorganisms’ density at wall
C∞ concentration away from the surface
α1 Prandtl fluid parameter
C̃ fx skin friction at x-direction
(ũ, ṽ) components of velocity
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α2 elastic parameter
ũw velocity of stretching sheet
Nr buoyancy ratio parameter
v bio convection constant
α inclination angle
Dm microorganism coefficient
ν f kinematic viscosity of nanofluid
Lb bioconvection Lewis number
Nt parameter of thermophoresis
Kr thermal conductance
DT coefficient of thermophoretic diffusion
DB Brownian diffusion coefficient
wc maximum cell swimming speed
γ chemical reaction parameter
b chemotaxis constant
Pr Prandtl number
Ñux Nusselt number
Nc bioconvection Rayleigh number
Bi thermal Biot number
λ mixed convection parameter
Le Lewis number
ρ f nanofluid density
η dimensionless variable
Nb Brownian motion parameter
M magnetic parameter
Rex Reynold’s number
Pe Peclet number
g′ acceleration due to gravity
B2

0 uniform magnetic field strength
νhn f kinematic viscosity of hybrid nanofluid
ρp nanofluid density
ρm motile microorganism density
ᾱhn f thermal diffusivity of hybrid nanofluid
N∞ ambient density of the motile microorganisms
τ ratio of the specific heat capacities
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