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Abstract: Supercapacitors, as a new type of green electrical energy storage device, are a potential
solution to environmental problems created by economic development and the excessive use of fossil
energy resources. In this work, nitrogen/oxygen (N/O)-doped porous carbon materials for high-
performance supercapacitors are fabricated by calcining and activating an organic crosslinked poly-
mer prepared using polyethylene glycol, hydroxypropyl methylcellulose, and 4,4-diphenylmethane
diisocyanate. The porous carbon exhibits a large specific surface area (1589 m2·g−1) and high elec-
trochemical performance, thanks to the network structure and rich N/O content in the organic
crosslinked polymer. The optimized porous carbon material (COCLP-4.5), obtained by adjusting the
raw material ratio of the organic crosslinked polymer, exhibits a high specific capacitance (522 F·g−1 at
0.5 A·g−1), good rate capability (319 F·g−1 at 20 A·g−1), and outstanding stability (83% retention after
5000 cycles) in a three-electrode system. Furthermore, an energy density of 18.04 Wh·kg−1 is obtained
at a power density of 200.0 W·kg−1 in a two-electrode system. This study demonstrates that organic
crosslinked polymer-derived porous carbon electrode materials have good energy storage potential.

Keywords: supercapacitor; organic crosslinked polymer; porous carbon; electrochemistry

1. Introduction

Solutions to environmental problems, owing to economic development and the exces-
sive use of fossil energy resources, are urgently being sought [1]. Supercapacitors, as a new
type of green electrical energy storage device, have drawn increasing attention, owing to
their high power density, fast charging/discharging, excellent reversibility, long life cycle,
and environmental friendliness [2–4].

Theoretical research on and practical applications of supercapacitors have significantly
progressed; however, insufficient energy density and high cost are still challenges requiring
resolution [5–7]. Electrode materials, which can be divided into carbon materials [8,9], metal
oxides [10,11], and conductive polymers [12,13], play an important role as core components
in supercapacitors and are a key step in solving the existing problems. Among them, carbon
materials are the most widely used electrode materials because of their high specific surface
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area, and good electrical conductivity and chemical stability [14–16]. Studies have shown
that doping heteroatoms in a carbon-based framework increases the specific capacitance
of carbon materials. On the one hand, it can improve the infiltration area between the
electrode material and the electrolyte; on the other hand, the heterogeneous atoms can
introduce pseudocapacitance during the charging/discharging process, further enhancing
the electrochemical performance [17].

Nitrogen doping has been demonstrated to be an effective way to improve the wettabil-
ity and conductivity of carbon materials and can also provide additional pseudocapacitance
for supercapacitors. Generally, nitrogen-doped carbon materials can be prepared using two
synthetic strategies, namely by the pyrolysis of nitrogen-containing precursors, such as
biomass [18], synthetic polymers [19], small molecules [20], and ionic liquids [21], or by the
chemical or thermal modification of premade carbon materials with reagents/gases con-
taining nitrogen atoms [22]. Zhang et al. [23] used urea as a nitrogen-containing precursor
and KOH as the activator to prepare a carbon material with an appropriate amount of N
doping, which yielded a nitrogen-doped carbon material with a porous structure and large
specific surface area. They also found that the capacitance of the carbon material reached
up to 446.0 F·g−1 at 0.5 A·g−1 in a three-electrode system. The symmetrical supercapacitor
device assembled with this nitrogen-doped carbon also displayed good performance, with
an energy density of 16.3 Wh·kg−1 at a power density of 348.3 W·kg−1.

Organic crosslinked polymers are mainly composed of elements, such as carbon, nitro-
gen, oxygen, and hydrogen, which have the characteristics of a network structure. Porous
carbon materials prepared using such polymers had a high heteroatom content, specific
surface area, and outstanding electrochemical properties [24]. In particular, the structure
of organic crosslinked polymers can be adjusted by changing the ratio of raw materials
during the synthesis process. Zou et al. [25] prepared a new type of heteroatom-doped
porous carbon material with a high specific surface area by carbonizing and activating
polyphosphazenes, which exhibited a specific capacitance of 438 F·g−1 at a current density
of 0.5 A·g−1 in a three-electrode system. Chen et al. [26] prepared a porous carbon material
by calcining hypercrosslinked polymer (poly (vinylbenzyl chloride-co-divinylbenzene)),
which exhibited a specific capacitance of 455 F·g−1 at a current density of 0.5 A·g−1.

In this work, nitrogen/oxygen(N/O)-doped carbon-based porous materials were
fabricated by carbonizing and activating an organic crosslinked polymer with a network
structure. The organic crosslinked polymer was synthesized using polyethylene glycol (PEG
6000), hydroxypropyl methylcellulose (HPMC), and 4,4-diphenylmethane diisocyanate
(MDI). The carbon material obtained by optimizing the ratio of the raw materials had a large
specific surface area (1589 m2·g−1) and a high specific capacitance of 522 F·g−1 at a current
density of 0.5 A·g−1. Furthermore, its energy density reached 18.04 Wh·kg−1 at a power
density of 200.0 W·kg−1 in a two-electrode system using 1 M Na2SO4 as the electrolyte.
Mechanistic studies showed that the high electrochemical performance of the obtained
carbon was attributed to the network structure and rich N/O content of the crosslinked
polymer. Hence, the preparation method for porous carbon materials proposed in this
study provides a new approach for the research and development of electrode materials.

2. Materials and Methods
2.1. Materials

Polyethylene glycol (PEG, Mw = 6000), 4,4-diphenylmethane diisocyanate (MDI,
analytical grade), hydroxypropyl methylcellulose (HPMC, Mw = 10,000), polytetrafluo-
roethylene (PTFE), and N, N-dimethylformamide (DMF) were purchased from Aladdin.
Analytical-grade potassium hydroxide (KOH) and acetylene black were obtained from
Xilong Science Co., Ltd. (Shantou, China). None of the purchased reagents were purified
before use. All aqueous solutions were prepared using ultrapure water (deionized water,
resistance 18 MΩ cm−1).
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2.2. Synthesis of Organic Crosslinked Polymers

The organic crosslinked polymers were prepared by a one-pot method, which is a
minor modification based on our previous report [27]. Briefly, PEG 6000 (12.0 g), MDI
(1.0 g), and a certain amount of HPMC were stirred in a three-neck flask containing DMF
(80 mL) under argon gas and an oil bath with a constant temperature of 75 ◦C. The organic
crosslinked polymer obtained after 30 h of condensation reflux is referred to as OCLP. The
mass of HPMC was 3.5, 4.5, and 5.0 g; therefore, the corresponding organic crosslinked
polymers were named as OCLP3.5, OCLP4.5 and OCLP5.0, respectively. Figure 1 presents a
flowchart of the one-pot method for the preparation of organic crosslinked polymers.
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Figure 1. Schematic illustration of the one-pot method for the preparation of organic crosslinked
polymer-derived porous carbon.

2.3. Preparation of Porous Carbon Materials

The prepared OCLPs were directly carbonized by heating them in a tube furnace at
500 ◦C for 2 h under a N2 atmosphere at a heating rate of 5 ◦C/min. The resulting carbon
precursors were homogeneously ground with KOH in a mass ratio of 1.0:3.0, then calcined
in a tube furnace at 600 ◦C under a N2 atmosphere for 2 h. The calcined products were
stirred with a 1 M hydrochloric acid solution for 2 h, followed by washing with distilled
water and anhydrous ethanol sequentially until the filtrate was neutral. The obtained
residues were dried in a blast oven at 80 ◦C for 24 h to obtain porous carbon materials,
which were named as COCLP-3.5, COCLP-4.5, and COCLP-5.0, respectively.

2.4. Characterization

Fourier transform infrared (FTIR) spectroscopy was performed on the samples using
a Thermo Fisher (Waltham, MA, USA) Nicolet 6700 spectrometer with KBr pellets. A
powder X-ray diffractometer (XRD; D8 Advance Bruker, Billerica, MA, USA) operating
at 40 kV and 40 mA with Cu Kα radiation (λ = 0.15406 nm) in the 2θ range of 5–90◦

with 0.01◦ step increments was used to analyze the microstructure of the materials. The
chemical structure and graphitization of the samples were further characterized using
Raman spectroscopy (Horiba JY, Palaiseau, France) at an excitation wavelength of 532 nm.
The surface micromorphology of the samples was characterized using scanning electron
microscopy (SEM; SU8010, HITACHI, Tokyo, Japan) and transmission electron microscopy
(TEM; Tecnai G2 F20, FEI Company, Hillsboro, OR, USA), and elemental analysis was
performed using energy-dispersive X-ray spectroscopy (EDS). The specific surface area
and pore structure characteristics of the samples were characterized using a nitrogen
adsorption–desorption analyzer (ASIQM0002-4, Quantachrome, Boynton Beach, Florida,
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USA) at −196 ◦C. Surface element analysis was performed using X-ray photoelectron
spectroscopy (XPS; Thermo Scientific Escalab 250Xi, Waltham, MA, USA).

2.5. Electrochemical Measurements

The electrochemical performance of the samples, including galvanostatic charge–
discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance (EIS), was
measured using a CHI 660E instrument in a three-electrode system. A slurry mixture of
carbon material (COCLP), acetylene black, and PTFE in a weight ratio of 8:1:1 was applied to
nickel foam (2 cm × 2 cm) as the working electrode; platinum and Hg/HgO electrodes were
used as the counter and reference electrodes, respectively, in the three-electrode system. The
voltage was set to −1–0 V and the electrolyte was 6 M KOH. A symmetric supercapacitor
was built for a two-electrode system using the COCLP, a 1 M Na2SO4 electrolyte, and a
voltage range of 0–1.6 V.

For the three-electrode and two-electrode systems, the weight-specific capacitances
(F·g−1) of the electrode material were calculated based on the GCD curves using
Equations (1) and (2), respectively.

Cg =
I∆t

m∆V
(1)

Cg =
2I∆t
m∆V

(2)

where I (A), ∆t (s), ∆V (mV), and m (g) represent the discharge current, discharge time,
discharge voltage range, and mass of the active material of a single electrode, respectively.

The energy density (Ecell) and power density (Pcell) of the symmetrical supercapacitor
were calculated using Equations (3) and (4), respectively.

Ecell =
Cg ∆V2

8 × 3.6
(3)

Pcell =
3600 Ecell

∆t
(4)

where Cg is obtained from Equation (2), ∆V is the working voltage of the discharge, and ∆t
is the discharge time.

3. Results and Discussion
3.1. Structural and Morphological Characterization

Figure 2 shows the FTIR spectra of the samples, which indicates that the characteristic
absorption peaks for the OCLPs (OCLP3.5, OCLP4.5, and OCLP5.0) are similar. The peaks
around 3438, 1639, 1526, and 1106 cm−1 correspond to the stretching vibration absorption
peaks of the –OH, C=O, C–N, and C–O groups, respectively, which is consistent with the
organic crosslinked polymer [27]. The above results illustrate that the OCLPs are a type of
organic crosslinked polymer.

The COCLPs obtained from the OCLPs were characterized using XRD and Raman spec-
troscopy. Figure 3a summarizes the XRD spectra of the COCLP-3.5, COCLP-4.5, and COCLP-5.0,
showing that all the COCLPs exhibit obvious diffraction peaks at 43◦, corresponding to the
(100) crystal planes of the graphite structure. The results indicate that COCLP-3.5, COCLP-4.5,
and COCLP-5.0 have amorphous graphite structures [28,29]. The diffraction peak intensity
of the (100) lattice plane for COCLP-4.5 is the weakest, demonstrating that COCLP-4.5 has the
highest structural disorder [30]. Figure 3b shows that there are two characteristic peaks
at 1343 and 1594 cm−1, corresponding to the D and G peaks of graphite, respectively. The
ratio of the areas of the D peak to the G peak (AD/AG) reflects the order degree of the
COCLP structure [31]. The calculated ratios for COCLP-3.5, COCLP-4.5, and COCLP-5.0 are 1.15:
1, 1.18: 1, and 1.13: 1, respectively. This result also illustrates that COCLP-4.5 has more defects
because the D peak represents a defect peak caused by the low symmetry or irregularity of
the carbon material [32].
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The surface morphologies of COCLP-3.5, COCLP-4.5, and COCLP-5.0 were characterized
using SEM, as shown in Figure 4. Figure 4 indicates that the three COCLPs are all porous and
present a three-dimensional network structure. The number of pores in the COCLP increases
with an increase in the amount of HPMC; however, when the HPMC content is increased
to 5.0 g, the pore structure is only partially formed, and the number of pores decreases.
The result demonstrates that the pore structure of COCLP-4.5 was excellent. Generally, an
abundant number of pores can significantly increase the specific surface area of COCLPs,
thereby providing more storage sites and transport channels for electrolyte ions. This is
beneficial for improving the electrochemical performance [33].
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Additionally, Figure 5a further demonstrates that COCLP-4.5 is a porous COCLP. When
COCLP-4.5 is used as the electrode material, these disordered microporous structures can
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provide sufficient active sites for charge storage [34]. Figure 5b–e are element distribution
diagrams obtained from the EDS analysis of COCLP-4.5, showing that carbon, nitrogen, and
oxygen were uniformly distributed in the carbon framework. Abundant nitrogen and
oxygen can introduce pseudocapacitance and enhance the capacitance performance of the
electrode material.
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The COCLPs were subjected to N2 adsorption–desorption measurements to explore the
pore characteristics. Figure 6 shows that all the COCLPs exhibit obvious type I isotherm
characteristics, indicating that these samples are rich in micropores [35]. Table 1 summarizes
the pore structure characteristics of the COCLPs, showing that the specific surface area and
pore volume of these samples are mainly provided by the micropores and mesopores.
Among the three samples, COCLP-4.5 has the largest specific surface area (1589 m2·g−1)
and the highest pore volume (0.657 cm3·g−1), which further confirm that COCLP-4.5 has the
best pore structure. Numerous studies have demonstrated that the large specific surface
area and rich pore structure of porous carbon material can greatly promote the storage
and rapid migration of ions, resulting in the excellent specific capacitance performance
of supercapacitors [36,37]. The aqueous electrolytes currently used in supercapacitors are
mainly sulfuric acid (H2SO4, acidic), KOH (alkaline), and sodium sulfate (Na2SO4, neutral).
The electrolyte ions in these electrolytes mainly exist as hydrated ions (H+, K+, OH−,
Na+, and SO2−

4 ). Based on Table 1, it can be found that the COCLPs obtained can meet the
fast migration requirements of these electrolyte ions, thereby significantly improving the
conductivity of carbon-based electrodes and enhancing their electrochemical performance.

Table 1. Channel structure parameters of the COCLPs.

Samples
Specific Surface Area (m2·g−1) Pore Volume (cm3·g−1)

Total Microporous Mesoporous Total Microporous Mesoporous

COCLP-3.5 942 894 48 0.399 0.353 0.046

COCLP-4.5 1589 1509 80 0.657 0.592 0.065

COCLP-5.0 1102 1040 62 0.482 0.407 0.075
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Further analysis of the surface electronic states and elemental compositions of the
COCLPs samples was performed using XPS. Figure 7a shows that there are three peaks in
the spectra of all the samples. The binding energies of the three peaks are 285, 400, and
532 eV, corresponding to C 1s, N 1s, and O 1s, respectively. The results also prove that
carbon, nitrogen, and oxygen are present in the three samples. Table 2 lists the surface
element contents of the three samples. These samples are mainly a carbon-based framework
with oxygen and nitrogen. Fine analyses of the C 1s, N 1s, and O 1s spectra of COCLP-4.5
are performed using the peak differentiation fitting method, as shown in Figure 7b–d.
The C 1s spectrum (Figure 7b) can be matched by four peaks at 284.8, 285.7, 286.8, and
289.0 eV, corresponding to the C–C, C–N, C–O, and COOR groups, respectively [38]. The
N 1s spectrum, shown in Figure 7c, is deconvoluted into four peaks of 398.8, 400.3, 400.8,
and 402.4 eV, corresponding to pyridinic-N (N-6) (11.70%), pyrrolic-N (N-5) (52.13%),
quaternary-N (N–Q) (29.79%), and oxidized N (N–X) (6.38%), respectively. In particular,
the pyridinic-N and pyrrolic-N contents reach 63.83%. A high content of N-6 and N-5
is beneficial for introducing pseudo-capacitance and providing electrochemically active
sites and quaternary nitrogen (N–Q) can effectively improve the conductivity of COCLPs
and promote electron transfer in the carbon matrix [35,39]. The deconvoluted O 1s peak
displayed four peaks at 531.2, 532.3, 533.3, and 534.2 eV, representing the oxygen atoms in
the C=O, C–O/C–OH, COOR, and N–O groups, respectively (shown in Figure 7d) [35,39].
According to a previous report [40], the oxygen groups are evenly distributed in the carbon
framework, which can improve the interfacial tension between the carbon-based porous
material and electrolyte to reduce the interfacial resistance.

Table 2. Surface element content of the COCLPs.

Samples
Element Content

Carbon (%) Nitrogen (%) Oxygen (%)

COCLP-3.5 92.83 1.98 5.19

COCLP-4.5 85.75 1.68 12.75

COCLP-5.0 84.51 2.65 12.84
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3.2. Electrochemistry Measurements

The electrochemical performances of the electrode materials were evaluated using a
three-electrode system. Figure 8a shows the CV plots of the different COCLPs (COCLP-3.5,
COCLP-4.5, and COCLP-5.0) at a sweep rate of 5 mV·s−1. All the samples display a typical
rectangular shape, indicating that the capacitive behavior of these materials is mainly
electric double-layer capacitance. Concurrently, these curves have a broad peak in the
voltage window of −0.8 to −0.3 V, which is caused by the oxidation–reduction reaction of
nitrogen and oxygen atoms contained in these samples during the charge and discharge
process. Moreover, the pseudo-capacitance introduced by the redox reaction can signifi-
cantly increase the specific capacitance of carbon electrodes. The COCLP-4.5 sample exhibits
the largest encircled area of the CV curve among the three samples, which also illustrates
that COCLP-4.5 has the highest specific capacitance. Figure 8b shows the constant GCD
curves for the COCLPs at a current density of 1 A·g−1. The GCD curves for the three samples
are all quasi-isosceles triangle shapes, indicating that the capacitance is mainly electric
double-layer capacitance (EDLC), and the slight deformation is attributed to the existence
of pseudo-capacitance. According to Equation (1), the specific capacitances of COCLP-3.5,
COCLP-4.5, and COCLP-5.0 at a current density of 1 A·g−1 are 302, 503, and 330 F·g−1, respec-
tively. This result shows that the specific capacitance of COCLP-4.5 is the largest, owing to
its large specific surface area (1589 m2·g−1) and pore volume (0.657 cm3·g−1). Figure 8c
presents the CV curves for COCLP-4.5 at different scanning rates. It reveals that the COCLP-4.5
still maintains a quasi-rectangular shape at scan rates of 5–50 mV·s−1, indicating that the
good pore structure of COCLP-4.5 enables the rapid migration of electrolyte ions to result
in its good rate capability. Figure 8d presents the GCD curves for COCLP-4.5 at current
densities of 0.5–20 A g−1, showing that the GCD curve does not exhibit a significant IR
drop at a high current density of 20 A·g−1. Therefore, it demonstrates that the COCLP-4.5
has a high conductivity, good rate capability, and electrochemical reversibility. The specific
capacitances are calculated as 522, 503, 432, 396, 363, and 319 F·g−1 at current densities of
0.5, 1, 2, 5, 10, and 20 A·g−1, respectively. Comparing the electrochemical performance of
COCLP-4.5 with that of the references, the result is listed in Table 3. According to Table 3, the
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electrochemical performance of COCLP-4.5 is better than that of other electroactive materials
reported in the literature. This is attributed to the unique network structure and rich N/O
content of the crosslinked polymer fabricated in this study.

Table 3. Comparison of the specific capacitances of the COCLP-4.5 electroactive material to recently
reported carbonaceous materials.

Material Electrolyte Current Density
(A·g−1)

Capacitance
(F·g−1) Reference

Grape marc 6 M KOH 0.5 446 [23]

Polyphosphazene 6 M KOH 0.5 438 [25]

Polypyrrole/Polythiophene KOH 0.5 455 [41]

Cotton stalk 1 M H2SO4 0.2 338 [42]

L-tyrosine KOH 0.3 512 [43]

Coal tar pitch 6 M KOH 0.5 298 [44]

CNTs@Gr-CNF 6 M KOH 0.25 521 [45]

CTAB 6 M KOH 1.0 241 [46]

3-aminophenol-formaldehyde resin 6 M KOH 0.5 381 [47]

Organic crosslinked polymer 6 M KOH 0.5 522 This work

Figure 8e presents the EIS curves for COCLPs and the equivalent circuit model (the
inset of Figure 8e), showing that COCLP-4.5 has the lowest Rct (internal charge transfer
resistance) and Rs (contact resistance with the electrolyte) among the three materials. That
is, in the high-frequency region, the Rct of COCLP-4.5 is 0.042 Ω, lower than those of COCLP-3.5
(0.152 Ω) and COCLP-5.0 (0.183 Ω). The low Rs demonstrates that the electrolyte ions are
readily transferred to the surface of the COCLP-4.5 electrode [48]. Additionally, the linear
curve of COCLP-4.5 is almost vertical in the low-frequency region. The EIS results illustrate
that the structure of COCLP-4.5 is beneficial for charge transfer and the efficient diffusion
of electrolyte ions. For supercapacitors, the cycling stability is a significant parameter to
estimate their practical application. Figure 8f shows that COCLP-4.5 retains 83% of its initial
specific capacitance value after 5000 cycles at a current density of 5 A g−1. The surface
morphology of COCLP-4.5 after cycling was characterized by SEM, as shown in Figure 9.
Compared with the COCLP-4.5, before (Figure 4b) shows that the pore structure of COCLP-4.5
has some damage and collapses after 5000 cycles.

A symmetric supercapacitor was constructed using COCLP-4.5 to evaluate its practical
application. Figure 10a shows the CV curves for the symmetric supercapacitor at different
scan rates. The curves maintained a quasi-rectangular shape at a scan rate of 50 mV·s−1.
A slight deformation indicates that the electrochemical behavior of a symmetric super-
capacitor is a combination of the EDLC and pseudocapacitance. Figure 10b shows that
the GCD curves for the symmetric supercapacitor increased with an increasing current
density from 1 to 20 A·g−1. Based on Equation (2), the specific capacitance of COCLP-4.5 is
203 F·g−1 at 1 A·g−1 and its specific capacitance remains 150 F·g−1 at 10 A·g−1, demonstrat-
ing a good rate capability even at high current densities for the symmetric supercapacitor.
Figure 10c shows the cycle stability curve at a current density of 10 A·g−1. It displays that
the capacitance retention of the device is 84.0% after 5000 cycles, reflecting good cycling
stability. Figure 10d indicates that the symmetric capacitor obtains an energy density of
18.04 Wh·kg−1 at a power density of 200.0 W·kg−1 based on Equations (3) and (4), signifi-
cantly higher than those reported in recent years (13. [25], 10.83 [49], 13.60 [50], 7.00 [51],
13.86 [52], 10.60 [53], and 15.50 Wh·kg−1 [54]). Specifically, the symmetric supercapacitor
device successfully powers up a light-emitting diode (the inset of Figure 10d). As shown in
the video (see Supplementary Materials File S1), the light-emitting diode can last for a while.
Obviously, the N/O-doped porous COCLPs are expected to be used in supercapacitors.
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4. Conclusions

In this study, a network-structured organic crosslinked polymer was used as a carbon
source to obtain N/O-doped porous COCLPs. The results indicated that the COCLP-4.5 ob-
tained by optimizing the raw materials exhibited an excellent electrochemical performance.
For instance, the specific capacitance of COCLP-4.5 was as high as 522 F·g−1 at a current
density of 0.5 A·g−1, and still exhibited 309 F·g−1 at 20 A·g−1 in a three-electrode system.
Furthermore, the symmetric capacitor achieved an energy density of 18.04 Wh·kg−1 at a
power density of 200.0 W·kg−1. The COCLPs benefitted from the net structure of organic
crosslinked polymers to form hierarchical porous carbon and the pseudocapacitance intro-
duced by heteroatoms. Therefore, the method for fabricating carbon material proposed in
this study provides a new strategy for the development of electrode materials with high
electrochemical performance.
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