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Abstract: A flexible and stretchable electrode based on polydimethylsiloxane (PDMS)-Ag nanosheet
composite with low resistance and stable properties has been investigated. Under the synergistic
effect of the excellent flexibility and stretchability of PDMS and the excellent electrical conductivity
of Ag nanosheets, the electrode possesses a resistivity as low as 4.28 Ωm, a low resistance variation
in the 0–50% strain range, a stable electrical conductivity over 1000 cycles, and a rapid recovery
ability after failure caused by destructive large stretching. Moreover, the conductive mechanism
of the flexible electrode during stretching is explained by combining experimental tests, theoretical
models of contact point-tunneling effect, and finite element simulation. This research provides a
simple and effective solution for the structure design and material selection of flexible electrodes, and
an analytical method for the conductive mechanism of stretchable electrodes, which has potential for
applications in flexible electronic devices, smart sensing, wearable devices, and other fields.

Keywords: stretchable electrodes; PDMS; Ag; contact point; tunneling effect

1. Introduction

In recent years—with the rapid development of the flexible electronics [1–3], smart
wearable devices [4–7], and smart robotics [8,9]—flexible electronic devices have been
receiving more and more attention [10–13]. As one of the components of these smart
electronic devices, stretchable and flexible electrodes are of great importance in structural
design, material selection, and electrical conductivity. In terms of structural design, some
scientific studies have fabricated stretchable electrodes using materials with poor stretch-
ing properties by specific pattern design or structure construction [14–17], which can be
stretched through the deformation of the internal structure of the electrodes, and in this
process, the conductive properties of the internal material will not change greatly. Tang et al.
developed an Ag wrinkled thin film through the method of pre-stretching and vacuum
deposition, and made it into a stretchable electrode. The electrode can maintain a stable
electrical conductivity within 100% strain value [18]. Fan et al. proposed a structural
strategy that can improve the stretching properties of the material. The research uses the
fractal design of the serpentine shapes to topologize the one-dimensional linear structures,
which is not stretchable, into loop structures and then into branch-like meshes. As a result,
the structure is capable of stretching in multiple directions [19]. Jeong et al. designed a
biocompatible metal-patterned porous polydimethylsiloxane (PDMS) electrode with high
flexibility and stretchability. In this special structure of the electrode, a large number of
pores can disperse the external stress, allowing the electrode to maintain good electrical
conductivity during the stretching process [20].

In terms of material selection, some stretchable conductive materials are used to fabri-
cate stretchable electrodes [21–24]. Wang et al. combined poly (3,4-ethylenedioxythiophene):
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poly (styrenesulfonate) (PEDOT:PSS) with ionic additives to produce a stretchable electrode.
Taking advantage of the good electrical conductivity of PEDOT:PSS and the high fracture
strain of the ionic additives, the electrode maintains good electrical conductivity under
strain [25]. Zhu et al. fabricated a stretchable fiber-shaped electrode by injecting eutectic
gallium–indium (EGaIn) into the hollow elastic yarns. Utilizing the property of EGaIn as
liquid alloy at room temperature, the composite yarn has good conductivity even when
deformation occurs [26].

In the above two kinds of strategies, conductive materials are required—such as
carbon nanotubes, graphene, and other carbon nanomaterials—as well as gold, silver, and
other metal materials. As an electrode material, the material is required to own excellent
electrical conductivity, not just the ability to conduct electricity. Moreover, the treatment
of conductive materials and structures requires some post-processing methods—such as
photolithography, ion implantation, thin film deposition, electroplating, UV treatment,
etc.—which increases the cost and difficulty of electrode preparation. As a common flexible
electrode material, Ag nanomaterials play an important role in many studies, such as
0-dimensional Ag nanoparticles [27–30], 1-dimensional Ag nanowires [31–36], etc. In some
studies related to Ag nanomaterial electrodes, it has been found that the contact resistance
at junctions between nanomaterials is one of the main issues affecting their electrical
conductivity [37]. Aiming at this issue, some post-treatment strategies have been proposed,
such as applying heat [38], pressure [39], capillary force [40], chemical reactions [41], laser
nano-welding [32,42], nano-joining at the junctions [43], etc.

Herein, in order to fabricate a flexible and stretchable electrode, a composite conductive
structure combining Ag nanosheets and PDMS has been investigated. As a metal material
with excellent electrical conductivity, Ag is regarded as one of the candidates for electrode
material. Compared with Ag nanoparticles and Ag nanowires, Ag nanosheets show the
advantages of physical contact stability as electrode materials due to their surface-to-
surface contact with each other, which makes them superior to point-to-point and line-
to-line contacts. Using PDMS as an elastic carrier for Ag nanosheets can greatly increase
the stretchability, allowing them to retain the good conductivity during stretching. In
addition, the contact point theory and the tunneling effect theory were applied to reveal the
conductive mechanism of the composite electrode during the stretching process. Combined
with the method of finite element simulation, the relationship between the structural
parameters of the Ag nanosheets inside the electrode and its conductive properties was
explored. This study not only designs a flexible and stretchable electrode structure, but also
reveals the structure–effect relationship between PDMS-Ag composite and the conductivity,
providing a simple and effective solution for the field of flexible electrodes.

2. Experimental Section
2.1. Materials

The silver glue used in this study was purchased from the Taobao online store of
Alibaba Network Technology Co., Ltd. (Hangzhou, China). The silver glue (Model: DJ-F4)
has a silver content of 68 wt %, a sheet resistance of less than 0.01 Ω/sq, a density of
1.46–1.48 g/cm3 at 25 ◦C, a silver monomer diameter of less than 10 µm, a viscosity
of more than 20,000 CPS, and a weight dilution ratio of 1:0.7–0.8 (conductive agent to
diluent). For the preparation of the elastic substrate, a mixture of the base and curing agent
for polydimethylsiloxane (PDMS, Dow Corning Sylgard 184) with a mass ratio of 10:1
was prepared.

2.2. Fabrication of the Stretchable Electrode

For the fabrication of the stretchable electrode, the PDMS film and a mixture of PDMS
and silver glue were used as the flexible substrate and the conductive material, respectively.
The detailed preparation process is as follows. The PDMS mixed with the curing agent
in advance was dripped into a square mold, and its thickness was controlled to 1 mm,
then the air bubbles were removed in a vacuum chamber and the PDMS was dried in
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an oven at 60 ◦C for 2 h to obtain a solid PDMS film. Then, the film was cut into a size
of 2 cm × 1 cm × 1 mm to obtain a flexible substrate. In order to mix PDMS with Ag
nanosheets uniformly, the colloid in silver glue was used as a dispersion medium, thus
improving the dispersion of Ag nanosheets in PDMS. In detail, the silver glue and the
prepared PDMS were physically mixed in the mass ratios of 1:0, 1:0.3, 1:0.4, 1:0.5, 1:0.6, 1:0.7,
and 1:0.8, respectively. The composite PDMS-Ag conductor can be obtained after stirring
uniformly. After that, the composite conductor was smeared on the surface of the PDMS
substrate, and after removing the air bubbles and drying at 60 ◦C for 2 h, a composite
electrode with a size of about 1 cm × 0.5 cm × 0.2 mm was formed. The schematic of the
stretchable electrode is shown in Figure 1.
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Figure 1. Schematic of the stretchable electrode based on PDMS-Ag nanosheets.

2.3. Characterization and Measurement of the Stretchable Electrode

Optical microscopy (SemiShare SE-4, Shenzhen SemiShare Technology Co., Ltd., Shen-
zhen, China) and scanning electron microscopy (JCM-5000, JEOL Beijing Technology and
Trade Co., Ltd., Beijing, China) were used to observe the micro-structure of the stretchable
electrode. A universal material testing machine (YL-S70, Guangzhou Aipeisen Instruments
Co., Ltd., Guang Zhou, China) was used to apply a programmed stretching process. A high
precision source meter (Agilent B2902A, Agilent Technologies Co., Ltd., Santa Clara, CA,
USA) was used to measure the resistance change of the electrode.

2.4. Simulation Methods

In order to investigate the electrical conductivity of the composite electrode containing
different ratios of Ag and PDMS to help understand the conductive mechanism, the simula-
tion of finite element analysis was performed using the software of COMSOL Multiphysics
(version 5.4). Specifically, the potential distribution and current distribution inside the
electrodes with different ratios were simulated by constructing a random distribution
model of Ag nanosheets.

3. Results and Discussion
3.1. Morphology Characterization and Basic Electrical Properties of the Stretchable Electrodes

In this study, six stretchable electrodes with different mass ratios of silver glue and
PDMS were selected as the research objects, under the premise that the mass of silver



Nanomaterials 2022, 12, 2628 4 of 14

glue was fixed at 30 mg, and the mass ratios between silver glue and PDMS were set as
1:0, 1:0.3, 1:0.4, 1:0.5, 1:0.6, and 1:0.8, respectively. The morphology characterization of
the six stretchable electrodes were observed by SEM (Figure 2) and optical microscopy
(Figure S1). It can be seen that the Ag nanosheets are uniformly dispersed in the PDMS.
With the gradual increase in the PDMS content, the density of the Ag nanosheets gradually
decreases, and the phenomenon that the Ag nanosheets are separated from each other by
the gully-like PDMS becomes more and more obvious.
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with different mass ratios.

According to the statistics of the size of PDMS-Ag composite electrode (Table S1) and
the measurement of the initial resistance (Figure 3a), the resistivity of the electrodes with
different mass ratios can be calculated, as shown in Figure 3b. It is observed that when
the mass ratio of silver glue to PDMS varies from 1:0 to 1:0.6, the initial resistances are
all within 6 Ω, and the resistivity increases linearly. When the mass ratio of silver glue to
PDMS is 1:0.8, the initial resistance can reach 21.2 Ω, and the resistivity produces a sudden
change to 21.3 × 10−4 Ω·m. It indicates that with the increase in the PDMS content, PDMS
causes a negative effect on the silver conductive pathway, which hinders the conductivity
of Ag nanosheets.
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3.2. Conductive Performance Test of PDMS-Ag Electrodes during Stretching

The conductive performance of the PDMS-Ag electrodes with different mass ratios
during stretching is shown in Figure 4. It is observed that the resistance of all these
electrodes increases with the strain variable. By comparing the conductive performances
of different electrodes during the stretching process, it can be found that the maximum
strain value of the electrodes with a mass ratio of silver glue to PDMS of 1:0 and 1:0.8 is
less than 15%, and the resistance shows a rapidly increasing trend. This is because when
the mass ratio of silver glue to PDMS is 1:0, the electrode is completely composed of Ag
nanosheets, and a large number of Ag nanosheets form an Ag nanosheet film, whose
mechanical properties are similar to that of the Ag thin film, and the stretchability is very
poor. Therefore, the conductivity of the electrode can be greatly influenced by a small strain.
When the mass ratio of silver glue to PDMS is 1:0.8, the PDMS content inside the composite
electrode is very high, and the large amount of PDMS separates the limited number of Ag
nanosheets from each other, so that the number of initial conductive pathways is very small.
When the strain occurs, the original limited number of conductive pathways are further
damaged, resulting in the loss of conductivity within 15% of the strain value. Similarly, low
contents of PDMS cause the composite electrode to behave Ag film-like property, resulting
in the process from integrity to destruction within a relatively small strain range. High
contents of PDMS makes for poor conductive ability of the composite electrode, resulting
in an easily damaged conductive ability when subjected to a small strain. Importantly,
when the mass ratio of silver glue to PDMS is 1:0.4, the conductive performance during
stretching is the most stable, and the resistance change is controlled to about 20 Ω within
a strain range of more than 50%. Therefore, the composite electrode with this ratio is the
optimal electrode under this structural system.
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glue and PDMS during stretching.

For the optimal electrode with a mass ratio of silver glue to PDMS of 1:0.4, the related
tests on the stability of the conductivity during the stretching process were performed, as
shown in Figure 5. Figure 5a demonstrates the resistance of this electrode at a sustained
strain of 20%. It can be seen that the resistance of the electrode increases by only about 4 Ω
under a 20% strain, and the resistance is stable and remains about 10 Ω during the process
of holding it under the strain of 20% for 25 s. When it stops stretching, the resistance returns
to the initial state. It indicates that the electrode ensures stable conductivity under constant
static stretching. Figure 5b shows the resistance of the electrode under cyclic stretching.
The stress–strain curve in Figure S2 illustrates that the stretching and releasing process of
the composite electrode during cyclic stretching is very stable, which provides a guarantee
for the resistance measurement during the cyclic test. During 1000 cycles of stretching, the
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resistance of this electrode consistently varied between 5 and 10 Ω. In addition, the inset
shows that the resistance change caused by each stretching is stable. It reflects that the
electrode has an excellent fatigue durability to withstand repeated stretching. Figure 5c
shows the resistance of the same electrode under intermittent stretching. During the first to
fifth stretching tests, the strain was 20% for each stretching process, and the time interval
between each test was 4 h. It is illustrated that the resistance change is about 4 Ω during
the whole stretching process in each test. In the same stretching test at a fixed interval time,
the behavior of the resistance change caused by each stretch is similar. It indicates that the
long periods of non-use state do not affect the performance of this electrode, which has
excellent stability and reliability in a single stretching test.
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cyclic stretching test, and (c) intermittent stretching test. (d) Destructive stretching-releasing test
under a strain of 200%.

It is observed from Figure 5a–c that when a tolerable strain occurs, a small change in
resistance appears with the strain. This small resistance change is supposed to originate
from the slippage between adjacent Ag nanosheets and a small amount of separation.
The slippage and the degree of separation are related to the density and size of the Ag
nanosheets. The detailed information will be described later in the finite element analysis.

Figure 5d shows the influence of a destructive large strain on the performance of this
electrode. Before the destructive stretching begins, the initial resistance of the electrode
is 6 Ω. During the time period of 8–16 s, the electrode undergoes a destructive stretching
process with a large strain of 200%, during which the conductive path inside the electrode
is completely destroyed, resulting in an open-circuit state of the electrode. After 16 s, the
electrode was fully released and the resistance is restored to 6 Ω, ensuring that the electrode
could continue to operate normally. The destructive stretching and releasing process under
an optical microscopy is shown in Figure S3. The inset of Figure 5d shows the resistance
change in a period of time before the start and after the end of the destructive stretching,
from which it can be clearly observed that the resistance increases rapidly at the initial
state of destructive stretching and decreases rapidly after the electrode is fully released.
These results show that this electrode has good robustness and will not permanently fail
as a result of a destructive stretch. Furthermore, as a practical flexible sheet, the stability
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for bending and temperature variation is important. Therefore, the stability tests for the
situations of bending operation and temperature variation were performed, as shown in
Figure S4. It is observed that the electrode has low resistance both in bending operation
and temperature variation, and its resistance changes are small (4 Ω for bending, 2 Ω for
temperature variation), confirming the possibility that the electrode can be used under a
variety of external stimuli.

3.3. Conductive Mechanism Analysis of PDMS-Ag Electrodes

In order to explain the conductive mechanism of the PDMS-Ag electrodes, the number
of Ag nanosheets was counted according to the SEM images in Figure S5 and the statistical
results are listed in Table S2. Based on above results, the density of the Ag nanosheets
and the conductivity of the electrodes with different ratios of Ag and PDMS are shown in
Figure 6. It is observed that, with the increase in PDMS content, the conductivity of the
electrode and the density of Ag nanosheets inside it gradually decrease. This is because
the higher the PDMS content is, the more the Ag nanosheets are separated from each
other, resulting in a decrease in the number of Ag conductive paths and a decrease in the
conductivity. Moreover, the decreasing trends of conductivity and Ag nanosheet density
are similar, indicating a positive correlation between them.
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different ratios of silver glue and PDMS.

According to the above analysis, it is clear that the conductivity of the electrode is
directly related to the number of contact points between Ag nanosheets. Therefore, the
relationship between the conductivity of electrode and Ag nanosheets can be expressed by
the contact point theory as shown in the Supplementary Information [44,45]. After a series
of theoretical derivations, the relationship between the resistance and the density of Ag
nanosheets can be obtained as

ln
R
R0

= α′
D
D0

+ b′ (1)

where D and D0 are the density and initial density of Ag nanosheets, respectively. Thus,
the contact point theory suggests a linear relationship between the relative density (D/D0)
of the Ag nanosheets and the logarithm of the relative resistance (R/R0) of the electrode.

The resistance of the electrode is the smallest when the mass ratio of silver glue to
PDMS is 1:0, and the resistance increases gradually with the increasing mass ratio of PDMS,
which is consistent with the phenomenon that the resistance increases gradually with the
increasing strain during the stretching process. Therefore, the density of Ag nanosheets
and the resistance of electrode with a mass ratio of silver glue and PDMS of 1:0 are selected
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as the initial parameters, and the relative density and the relative resistance of electrodes
with different mass ratios are calculated. Based on the above analysis, a relationship
between relative resistance and relative density is statistically obtained for the electrodes
with different mass ratios, as shown in Figure 7a. It can be seen that relative density and
relative resistance are consistent with the fitting result (red line) of contact point theory. It
indicates that the number of contact points between Ag nanosheets gradually decreases
with the increasing of PDMS content, which reflects the conductive state of the electrodes
with different mass ratios.
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When the stretching process is in progress, the change of electrode resistance not
only comes from the change of the contact resistance, but also from the change of the
tunneling resistance between the incompletely contacted Ag nanosheets. Therefore, taking
the change of tunneling resistance into account, the conductive mechanism of the electrode
during stretching can be explained. According to the tunneling theoretical model [46–49],
combined with the actual situation in this study, after a series of theoretical derivations
(Supplementary Information), the relationship between tunneling resistance and strain can
be obtained as

ln(
Rt

R0
) = aε2 + bε (2)

Different from the contact point theory, which reflects the state quantity of resistance,
the tunneling effect theory reflects the resistance change during the stretching process. In
Equation (2), aε2 represents the tunneling resistance term during stretching process, and
bε represents the contact resistance term of the electrode. Therefore, the total resistance of
the electrode can reflect both the contact state inside the electrode and the change process
of resistance. The ratio of a/b can reflect the influence degree of contact resistance and
tunneling resistance on the change of electrode resistance, so as to judge the dominant role
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of them in the contribution of resistance change. When the ratio of a/b is small, the contact
resistance is dominant. Conversely, the tunneling resistance is dominant.

Based on this conclusion, the tunneling effect theory is used to fit the resistance changes
of electrodes with a mass ratio of silver glue and PDMS of 1:0.3, 1:0.4, and 1:0.6 during the
stretching process within the strain range of 0–30%. The results are shown in Figure 7b.
After fitting, the fitting degree (R2) of the above three electrodes all reach 0.99, indicating
that the tunneling theory is in good agreement with the experimental data. According to
the fitting results, the proportional coefficients a/b of the tunneling theoretical equations
for these three electrodes are 0.85, 1.46, and 1.22, respectively, as shown in Figure 7d. It
indicates that the contact resistance dominates in the electrode with the mass ratio of silver
glue to PDMS of 1:0.3. This is because the PDMS content in the electrode is relatively small,
and the overall stretchability of the electrode is poor, a small strain can undergo the process
from complete to destruction of the internal conductive network of the electrode. Therefore,
the resistance change of this electrode is mainly manifested by the contact resistance. The
proportional coefficients a/b of the electrodes with the mass ratio of silver glue to PDMS
of 1:0.4 and 1:0.6 are larger than that of 1:0.3, indicating that the tunneling effect on the
resistance gradually increases with the decrease in the density of Ag nanosheets.

Since the maximum strain value of electrode with a mass ratio of silver glue and PDMS
of 1:0.3 is only 20%, the tunneling theory is fitted for the electrodes with a mass ratio of
1:0.4 and 1:0.6 in the wider range of 0–50%, and the fitting results and the statistics of the
proportional coefficients a/b of the tunneling theoretical equation are shown in Figure 7c,e
respectively. It is observed that in the strain range of 0–50%, the resistance changes of
both electrodes during stretching are consistent with the tunneling effect theory, and the
proportional coefficients a/b of the tunneling theoretical equation of the two electrodes are
10.74 and 93.16, respectively. In the stretching process from small to large, the proportional
coefficients a/b of the electrode with a mass ratio of 1:0.6 increases from 1.22 to 93.16,
which is much larger than that of the electrode with a mass ratio of 1:0.4 from 1.46 to
10.74. It indicates that, with the further increase in the strain, the influence of tunneling
resistance becomes more obvious, which is caused by the separation of a large number of
Ag nanosheets from each other under large strains. For the proportional coefficients a/b of
the tunneling theoretical equation, the electrode with a mass ratio of 1:0.6 is significantly
more than that with a mass ratio of 1:0.4. This is because the electrode with a mass ratio of
1:0.6 has a high PDMS content, resulting in a low number of initial conductive pathways.
The separation between Ag nanosheets caused by stretching is obvious, leading to a high
tunneling resistance. However, the electrode with a mass ratio of 1:0.4 keeps a large number
of Ag nanosheets in contact with each other during the stretching process, thus maintaining
a relatively stable conductivity under a large strain. Therefore, the electrode with a mass
ratio of 1:0.4 is the optimal ratio for the PDMS-Ag electrode.

3.4. Finite Element Analysis of the PDMS-Ag Electrodes

In order to obtain a deeper and comprehensive understanding of the conductive
mechanism and the influence factors, the PDMS-Ag electrode is modeled by the method of
finite element analysis. Due to the fact that the thickness of the electrodes is much smaller
than the size of the surface region, it can be considered that the Ag nanosheets are less
distributed in the direction perpendicular to the plane and mainly concentrated in the
surface region. Moreover, in the direction perpendicular to the surface, the Ag nanosheets
in contact with each other can be regarded as a whole. Therefore, for the purpose of
simplifying the model, the three-dimensional conductive model can be replaced by the
two-dimensional in-plane conductive model, which plays a dominant role. Firstly, the size
of the Ag nanosheets in the SEM image of the electrode is counted, as shown in Figure S6.
According to the statistical results, the average radius of the Ag nanosheets is 3.912 µm.
Therefore, the radius of the Ag nanosheet is set to 4 µm during modeling. Then, the physical
model of the PDMS-Ag composite film is established by combining the statistics of the
density and size of the Ag nanosheets in the electrode, and an electric potential of 0.1 V is
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applied to the model, the potential distribution is shown in Figure S7. Based on this model,
the current density distribution inside the composite electrode was simulated under the
mass ratios of Ag nanosheets to PDMS of 1:0.3, 1:0.4, 1:0.5, and 1:0.6, respectively, as shown
in Figure 8a. It is clear that the current density decreases gradually with the increase in the
PDMS content, this trend is consistent with the experimental phenomenon. The simulation
data under different relative densities of Ag nanosheets are fitted using the contact point
theory, and the fitting results are found to be consistent with the theory, as shown in
Figure 8b. Comparing the simulation result with the experimental data (Figure 8c), it is
found that the relative resistance change of the simulation result is large than that of the
experimental result, and the fitting slope of the simulation result is 4.58, which is larger than
that of the experimental data of 1.44. The reason for the difference between the simulation
and experimental results may come from the fact that some measured Ag nanosheets are
covered by other adjacent Ag nanosheets during the counting process, resulting in a smaller
measured value of the Ag nanosheets than the actual value.
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Considering the deviation in the measurement process of Ag nanosheet size, the
conductivity of the electrode with different Ag nanosheet sizes was simulated to modify
the model based on the contact point theory. Therefore, the radius of the Ag nanosheets
was increased from the initial 4 µm to 5 µm and 6 µm, respectively, and the current density
distribution was simulated, as shown in Figure 9a. It can be seen from the simulation
results that with the increase in the Ag nanosheet size, the current density and conductive
pathways in the electrodes with the same mass ratio increase gradually, and correspond-
ingly, the resistance gradually decreases. Contact point theory was used to fit the Ag
nanosheets with a radius of 5 µm and 6 µm, and the fitting results are shown in Figure 9b,c.
According to the fitting results of these two situations, the fitting slopes are 2.34 and 0.82,
the logarithm of the relative resistances are 1.26 and 0.42, respectively. This is because with
the increase in the Ag nanosheet size, the contact area between the mutually stacked Ag
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nanosheets becomes larger. During the stretching process, Ag nanosheets are more difficult
to separate from each other, resulting in a decrease in the change rate of the number of
conductive pathways and a smaller resistance change in the electrode. Therefore, a large
Ag nanosheet size is beneficial to improve the conductive stability of the electrode during
stretching. From the above discussion and the experimental results in Figure 8c, it can be
seen that the fitting slope of the contact point theory of the experimental data is 1.44, and
the change of logarithm of relative resistance is 0.77. Comparing the experimental results
in Figure 8c with the simulation results in Figure 9b,c, it can be seen that both the fitting
slope and the change of logarithm of relative resistance of the experimental results are
between the fitting results for the Ag nanosheet radius of 5 µm and 6 µm. Following this
trend, an Ag nanosheet radius between 5 and 6 µm would exist. Under this radius, the
slope and the change of logarithm of relative resistance fitted by the contact point theory
are similar to the experimental results in Figure 8c. By simulating and fitting different Ag
nanosheet radii between 5 and 6 µm, it is found that when the Ag nanosheet radius is
5.5 µm, the fitting slope and the change of logarithm of relative resistance are 1.39 and 0.75,
respectively, which are very close to the experimental results. Therefore, the average radius
of the Ag nanosheets used in the experiment can be inferred to be around 5.5 µm through
this method. The simulation results modify the measured values of the Ag nanosheet size
based on SEM images.
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Therefore, the flexible and stretchable electrodes can be fabricated by mixing PDMS
with Ag nanosheets, and the conductive stability of the composite electrodes during
stretching can be regulated by adjusting the density and size of the Ag nanosheets.

4. Conclusions

In summary, a PDMS-Ag-based composite electrode was prepared. Taking advantage
of the properties of good flexibility and stretchability of PDMS and good conductivity
of Ag, the electrode has the ability to maintain good conductivity during stretching. By
comparing the conductivity of different electrodes, it is found that the electrode with a
mass ratio of PDMS and silver glue of 1:0.4 has the best stability during stretching. The
electrode has an initial resistance of only about 5 Ω, a maximum strain value of over 50% in
normal operation, and a limited resistance change within 20 Ω during the whole stretching
process. In addition, it can maintain stable conductivity during constant stretching process;
withstand more than 1000 cycles of stretching tests; and under the state of the electrode
failure caused by destructive large stretching, the conductivity can be rapidly recovered
after the stress is released. The conductive mechanism of the electrode is explained by
combining the contact point theory and the tunneling theory. The change rule of the
conductivity under different Ag nanosheet densities and the conductivity of the electrodes
under different mass ratios during stretching process are investigated. The dominant role
of contact resistance and tunneling resistance is judged by the value of the proportional
coefficients a/b of the tunneling theoretical equations. Moreover, the simulation method is
used to explain the effect of Ag nanosheet size on the conductivity, and the average radius
of the Ag nanosheet inside the electrode is inferred to be 5.5 µm by simulation. This study
provides a simple and effective method to fabricate a flexible and stretchable electrode, and
has potential in flexible electronics, wearable devices, and other fields.
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https://www.mdpi.com/article/10.3390/nano12152628/s1, Figure S1: optical microscopy obser-
vation of the stretchable electrodes with different mass ratios silver glue and PDMS; Table S1: The
statistics of the size of PDMS-Ag composite electrodes; Figure S2: The stress-strain curves of 100 con-
tinuous cyclic stretching-releasing test; Figure S3: The surface morphology of the composite electrode
during the process of destructive stretching and releasing under an optical microscopy; Figure S4: The
stability of the electrode under different external stimuli, (a) bending test, (b) temperature variation
test; Figure S5: The statistics on the number of Ag nanosheets by counting method; Table S2: The
statistics on the density of Ag nanosheets; Figure S6: The statistical size of the Ag nanosheet. (a) SEM
image of the statistical area. (b) The statistical results of the Ag nanosheet radii; Figure S7: Modeling
process of the electrode through the finite element simulation. The schematic of (a) model building
and (b) potential distribution.
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