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Germanium (Ge) chalcogenides are characterized by unique properties which make
these materials interesting for a very wide range of applications, from phase change
memories to ovonic threshold switches, from photonics to thermoelectric and photovoltaic
devices. In many cases, physical properties can be finely tuned by doping or by changing
the Ge amount, which can thus play a key role in determining the applications, performance,
and even the reliability of the devices. In this Special Issue, we include 11 articles, mainly
focusing on applications of Ge chalcogenides for nonvolatile memories.

Most of the papers were produced with funding received from the European Union’s
Horizon 2020 Research and Innovation program under grant agreement n. 824957 for
the project “BeforeHand: Boosting Performance of phase change Devices by Hetero- and
Nanostructure Material Design”.

Two contributions [1,2] are related to the prototypical Ge2Sb2Te5 compound, which is
a widely studied composition and is already integrated in many devices such as optical
and electronic memories. In [1], M. Bertelli at al. report on the structural and electrical
properties of GST225 grown on polyimide, a flexible substrate whose use could enable
novel applications in the market of electronics, for example, flexible nonvolatile memories
for the IoT, or smart sensors for food and drug monitoring. The paper reports information
about the layer evolution during amorphous-to-cubic and cubic-to-trigonal transitions, and
the related electrical contrast.

In [2], M. A. Luong et al. investigate the atomistic mechanisms related to nitrogen
doping, which is known to improve some key characteristics of the materials, such as the
amorphous stability and the resistance drift. These effects are ascribed to the increased
viscosity of the N-doped amorphous state and to the reduced diffusivity resulting from the
formation of N-Ge bonds, demonstrating that the origin of the effect of N on crystallization
is attributed to the ability of N to bind to Ge in the amorphous and crystalline phases and
to unbind and rebind with Ge along the diffusion path during annealing.

Another approach to improve the thermal stability of the amorphous phase is pre-
sented in [3], where starting from the GeTe alloy, X. Wang and coauthors incorporate
indium, obtaining three typical compositions in the InTe-GeTe tie line, and propose a
chemical composition with both improved thermal stability and sizable optical contrast for
photonic applications.

Ge-rich GeSbTe (GST) alloys are currently explored for embedded memory applica-
tions, with the aim to increase the crystallization temperature, therefore improving the
amorphous phase stability. However, deposited homogenous alloys are thermodynamically
unstable and undergo phase separation upon annealing.

Five articles of this Special Issue focus on Ge-rich GST alloys, exploring their elec-
tronic and electrical properties [4–7] as well as decomposition pathways, including from a
theoretical point of view [8].

In [4], S. Cecchi et al. identify some possible routes to limit Ge segregation, inves-
tigating Ge-GST compositions deposited by molecular beam epitaxy in the amorphous
phase with low or high (>40%) amounts of Ge. Electrical resistance and phase formation
are studied upon annealing up to 300 ◦C.
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In [5], A. Diaz Fattorini and coauthors deposit Ge-rich GST with a composition of
Ge29Sb20Te28 via physical vapour deposition (PVD). They study the electronic properties
and phase formation and report the electrical characterization of a single memory cell,
showing the possibility to enhance the thermal stability up to 230 ◦C while maintaining
a fair alignment of electrical parameters with the current state of the art of conventional
GST alloys.

The contribution of D. Tadesse Yimam et al. [6] investigates the phase separation of
GST523 into multiple phases in melt quenched bulk and annealed thin films, identifying
the formation of GST123 and GST324 alloys in all length scales.

The alloy compositions and the observed phase separation pathways reported in [4,6]
agree to a large extent with the theoretical results from the density functional theory
calculations, as presented in [8], where O. Abou El Kheir and M. Bernasconi perform
high-throughput calculations to uncover the most favorable decomposition pathways of
Ge-rich GST alloys. They also construct a map of decomposition propensity, suggesting a
possible strategy to minimize phase separation while still maintaining a high crystalliza-
tion temperature.

In [7], A. Kumar and coauthors investigate the effect of Ge-rich GST in nanowires
self-assembled through the vapor–liquid–solid mechanism. Both Ge-rich GST core and
Ge-rich GST/Sb2Te3 core shells are extensively characterized with several techniques to
analyze the surface morphology, crystalline structure, vibrational properties and elemen-
tal composition.

Other tree contributions [9–11] are focused on the effect of the interfaces, since in
nanomaterials, element interdiffusion at the interfaces represents a crucial factor.

In [9], V. Bragaglia et al. investigate this aspect in projected phase change memories,
in which the storage mechanism is decoupled from the information retrieval process via a
projection liner. The interface resistance between the phase change chalcogenide material
and the projection liner is an important parameter, and therefore a metrology framework is
established to assess the quality of the interfaces through X-ray reflectivity, X-ray diffraction,
and transmission electron microscopy.

As another important case in which interfaces play a significant role, article [10] by
C. Chèze and coauthors reports the full characterization of the electronic properties of
double-layered heterostructures made by Ge-rich GST deposited by PVD on Sb2Te3 and
on Ge2Sb2Te5. Information on interdiffusion and on the evolution of the composition
across the interface was obtained; it was found that, in both heterostructures, the final
composition was GST212, which is a thermodynamically favorable off-stoichiometry alloy
in the Sb-GeTe pseudo-binary line.

The interdiffusion at the interface of core–shell nanowires with a Sb2Te3 shell over
GeTe and a Ge-rich GST core is studied in [11] by Kumar et al. by examining the morpho-
logical and structural characteristics. No elemental interdiffusion between core and shell
is revealed, suggesting that their structural phases can change independently based on
alloy compositions, thus demonstrating a straightforward method to provide core–shell
nanowire heterostructures formed by two-phase chalcogenide materials with different
crystallization temperatures and switching speeds.
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