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1. DFT calculations and Reaction rates

The core electrons were described by the projector augmented wave (PAW) method [1].
For the plane wave expansion, a kinetic energy cutoff of 450 eV and an energy convergence
threshold of 10−6 were used. The optimized bulk lattice constants of 3.56 Å for the PBE-D3
functional and 3.64 Å for the BEEF-vdW functional were used throughout all calculations.
The upper layers and adsorbed hydrocarbon species were relaxed with the conjugate
gradient method until the change in the total energy between two ionic relaxations was
smaller than 10−5. The Brillouin zone was sampled by a 6 × 6 × 1 and a 2 × 6 × 1 Monkhorst–
Pack k-point mesh for the 3 × 3 slab and 10 × 3 slab, respectively. Transition states were
located with the nudge elastic band (NEB) method [2]. All calculations were conducted
according to the non-spin-polarized scheme.

With respect to the reactions of small species, Li et al. [3] used a four-layer 4 × 4 slab
with a 4 × 4 × 1 Monkhorst–Pack k-point mesh where only the bottom layer was frozen.
Moreover, they employed an energy cutoff of 400 eV throughout their calculations. The
different setups had only a small influence on the found barriers with the exception of
reactions where subsurface carbon was involved, since we did not include subsurface
carbon in our calculations.

More significant changes had taken place in the part of ribbon attachments, and the
attachment of C2 (as a particle proclaimed to be the dominant feeding species) is the most
prominent case. Here, Li et al. was using a 7 × 4 slab with a 2 × 4 × 1 Monkhorst–Pack
k-point mesh. They found a barrier of 0.58 eV (2.19 eV for the detachment barrier) on the
model where two-ring-thick graphene ribbons were separated by less than 9 nm (Figure
S1).

Figure S1. Transition state for the attachment of C2 to the graphene zigzag
edges on the Cu(111) that was found by Li et al. [3].
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Figure S2. Gibbs free energy diagram of CH∗
4 → C∗ + 2H2(g) process.

Table S1. Comparison of diffusion and formation barriers (PBE-D3) in eV for carbon monomer, dimer,
and trimer. Values in brackets are taken from [4], where they were calculated with PBE.

Specie Diffusion (eV) Formation (eV)

C 0.15 [0.06]a -
C2 0.48 [0.49] 0.55 b [0.3]
C3 0.19 [0.35] 0.85 [1.15]

a Diffusion between two on-surface minima. In [4], a lot of attention is dedicated to subsurface carbons.
b With BEEF-vdW, we obtained barrier of 0.25 eV; see Table 2 of main text.

Despite the diffusion barrier of dimer (0.48 eV) being higher than kT (which under this
temperature would be around 0.11 eV), the lattice gas model is applicable for the case, as
attachment-to-edge barriers are much higher and the equilibration of the surface densities
in all points was reached faster than the reaction. Mathematically, it is shown in particular
in Equation 10 of [5]. When Ds is significantly bigger than β, one can neglect the second
term of the denominator and significantly simplify the equation. In our case, 0.73 eV (the
difference between dimer diffusion and attachment) going to the exponent results in 4-5
orders of magnitude domination of the first term and thus J becomes independent from
the diffusion.

Table S2. Equilibrium concentration ceq of C and C2.

Specie Equilibrium concentration ceq in monolayers

C 2.67 · 10−5

C2 4.87 · 10−5

2. Details of solving kinetic equations from the main text

To transform the Fokker–Planck equation with the growth rate in Eq. (7) of the main
text to the canonical form, we introduce a new variable ρ =

√
n. Its substitution gives the

following:

∂g(ρ, t)
∂t

+
1
2

v(ρ, t)
∂g(ρ, t)

∂ρ
= 0 (S1)

Additional equations required to complete the system are obtained by expressing the
rates of C and C2 production/consumption as
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dξC

dt
=

J
ceq(C)

− 2kdceq(C)(1 + ξC)
2 − 2ξC

ceq(C)t1

∫ ∞

0
ρg(ρ, t)dρ (S2)

dξC2

dt
=

kdc2
eq(C)

ceq(C2)
(1 + ξC)

2 −
2ξC2

ceq(C2)t2

∫ ∞

0
ρg(ρ, t)dρ (S3)

Note that the lower limit of integration in the last terms of these equations is set to 0
instead of

√
n∗, which corresponds to an assumption that the sizes of growing nuclei which

we are interested in (typically a few µm) are much higher than the chosen boundary n∗.
This assumption is adequate for our system and allows us to exclude the value of n∗ (the
choice of which is associated with a known uncertainty) from the solution.

Equation (12) (main text—S3) has to be solved for the functions ξC(t), ξC2(t), ξ(t), and
g(ρ, t), which can be done by introducing the operators P1,P2, and P3:

P1(φ(t)) =
d
dt

(
t1 φ(t)
ξC(t)

)
(S4)

P2(φ(t)) =
d
dt

(
t2 φ(t)
ξC2(t)

)
(S5)

P3(φ(t)) =
d
dt

(
t1 φ(t)
ξ(t)

)
(S6)

This allows us to transform integro-differential eqs. (S2-S3) into a system of two second-
order entangled differential equations for the oversaturation profiles, which can then be
solved numerically. Looking ahead, we can note, however, that for C concentration one can
fairly apply the quasistationary assumption since in our conditions it is a highly reactive
particle with a rather low production rate. This allows for a significant simplification
of the equations for the oversaturation profiles, which yields the following for effective
oversaturation:

P2
3

(
1 −

t2ceq(C2)

t1 J
ξ ′(t)

)
=

2I(ξ(t))
J

(S7)

3. Derivation of expressions for the rate constants
3.1. Carbon adatoms production rate

Let us consider the step-wise catalytic decomposition of methane on the metal surface
following the scheme

CH4(g) ⇌ CH∗
4 (rads, rdes)

CH∗
4 → CH∗

3 + H∗
(

r(1)dis

)
CH∗

3 → CH∗
2 + H∗

(
r(2)dis

)
CH∗

2 → CH∗ + H∗
(

r(3)dis

)
CH∗ → C∗ + H∗

(
r(4)dis

)
where rads and rdes are methane adsorption and desorption rates, r(i)dis are the dissociation
rates of the surface CH∗

x particles, and ∗ marks the particles adsorbed on the surface.
As it was discussed in the main text, the proposed model concentrates on the roles of C

and C2 in nucleation and growth processes, while CH∗
x (x = 1 . . . 3) particles’ impact is ne-
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Figure S3. C concentrations as functions of time: left—on the initial stage; right—in the general
timescale of the process.

glected and their concentrations are assumed to satisfy the quasistationary approximation.
The latter assumption is supported by KMC calculations (Figure S4 of [3]), where it was
shown that CH∗

x concentration profiles reach a stationary regime during graphene growth.
From the quasistationary approximation (dc(CH∗

x)/dt ≈ 0), one obtains the following
relations between dissociation rates: r(1)dis ≈ r(2)dis ≈ r(3)dis ≈ r(4)dis . Therefore, the rate of C
adatoms production can be calculated as

J =
dc(C∗)

dt
≈ r(1)dis = ν0 exp

(
−Edis

RT

)
c(CH∗

4) (S8)

where Edis is the methane dissociation barrier and ν0 is the standard frequency. The surface
concentration of methane adparticles (c

(
CH∗

4
)
), entering this expression, has to be related

to methane pressure in the gas phase usually known and controlled in experiment. This
can be accomplished if we assume Henry’s law for methane adsorption, which implies
dynamic equilibrium between adsorption and desorption rates (rads = rdes).

The rate of methane adsorption can be calculated as

rads = NA

√
1

2πRTMCH4

p(CH4) exp
(
−Eads

RT

)
(S9)

where Eads is the adsorption barrier and the pre-exponential factor corresponds to the
number of methane molecules hitting the surface of unit area per second. This factor
follows from the kinetic theory of ideal gases.

The desorption of methane can be considered as a first-order reaction and its rate can
be therefore calculated as

rdes = ν0 exp
(
−Edes

RT

)
c(CH∗

4) (S10)

where Edes is the desorption barrier. From the equilibrium condition, one obtains the surface
concentration of methane:
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c(CH∗
4) =

NA
ν0

√
1

2πRTMCH4

p(CH4) exp
(
−Eads − Edes

RT

)
(S11)

Finally, the rate of carbon adatoms production may be expressed as follows:

J =
dc(C∗)

dt
≈ NA

√
1

2πRTMCH4

exp
(
−Eads + Edis − Edes

RT

)
p(CH4) (S12)

A combination of the barriers entering the exponent equals the barrier of dissociative
adsorption:

E1 = Eads + Edis − Edes = ETS(CH∗
3 − H∗)− E

(
CH4(g)

)
(S13)

From Eq. (S12), one can easily obtain the expression used in the main text:

J = k1 p(CH4) (S14)

where k1 satisfies Eq. (A1) of the main text.

3.2. Attachment rates

To derive rate constants kat(i), we consider the 2D ideal gas of i-th particles. Applying
the kinetic theory of ideal gases for the case of two dimensions, one obtains that the number
of particles hitting the flake’s perimeter P per second can be expressed as follows:

j(i) =
P
4

√
2RT
πMi

c(i) (S15)

Since we consider ideal hexagonal flakes of graphene, the perimeter may be expressed
through the number of C atoms in the flake as

P = 4

√√
3n

2ρs
(S16)

Taking into account that the energy of the hitting particle should exceed the corre-
sponding attachment barrier for a successful attachment, one finds

rat(i) =

√√
3RT

πρs Mi
exp

(
−Eat(i)

RT

)
c(i)

√
n (S17)

which explains Eqs. (3,A3) for rat(i) and kat(i) presented in the main text.
The dimerization rate constant kd is derived in an analogous way as kat(i) because

the number of binary C-C collisions may be calculated by considering the flow of C atoms
through the circle of radius r ̸=d centered on another C atom. Additionally, we note that, in
contrast with the gas phase kinetics, where binary elastic collisions of atoms of the same
kind cannot lead to dimerization, in this case it is possible, since the excess of kinetic energy
can be effectively “absorbed” by the vibrational modes of the metal surface (in the gas
phase, it requires the participation of the third particle in the collision).

3.3. Detachment rates

Let us consider a hexagonal flake of graphene consisting of n atoms. The total number
of C atoms or C2 fragments on the edges of this flake can be calculated as:

Nedge(i) =
P

δ(i)
=

4
δ(i)

√√
3n

2ρs
(S18)
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where δC and δC2 are the lengths of the zigzag edge occupied by a single atom or by a C2
fragment. Their values following from simple geometric considerations are presented in
the main text.

The detachment rate of the i-th fragment (C or C2) from the edge may be considered
as a first-order reaction, which yields

rdet(i) = ν0 exp
(
−Edet(i)

RT

)
Nedge(i) =

4ν0

δ(i)

√√
3

2ρs
exp

(
−Edet(i)

RT

)√
n (S19)

This explains Eqs. (4,A4) of the main text.
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