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Abstract: This article presents a thermal-switchable metamaterial absorber (TSMA) based on the
phase-change material of vanadium dioxide (VO2). VO2 thin film was deposited on sapphire substrate
by magnetron sputtering followed by vacuum annealing treatment. Then, the prepared VO2 film was
sliced into tiny chips for thermal-switchable elements. The surface structure of TSMA was realized by
loading four VO2 chips into a square metallic loop. The absorption frequency of TSMA was located
at 7.3 GHz at room temperature and switched to 6.8 GHz when the temperature was heated above
the critical phase transition temperature of VO2. A VO2-based TSMA prototype was fabricated and
measured to verify this design. The design is expected to be used in metasurface antennas, sensors,
detectors, etc.

Keywords: metamaterial absorber; thermal-switchable; vanadium dioxide

1. Introduction

Metamaterials are artificial composites that show abnormal physical properties and do
not exist in the natural environment [1], and the design and application of metamaterials
have become a research hotspot in recent years. The metasurfaces are a two-dimensional
expansion of metamaterials, which inherit the properties of metamaterials and are more
flexible in application. As a periodic metasurface with a characteristic loss structure, ab-
sorbing metasurfaces are widely used in electromagnetic stealth fields, which can absorb
electromagnetic waves through the resonance of the surface structure and the loss of the
dielectric layer [2]. Their absorption characteristics can be analyzed by an equivalent
circuit [3]. Due to the complexity of the external environment, adjustable metasurfaces are
especially used in multi-band switching and multi-functional regulation. The traditional
adjustable metasurfaces mainly make use of the adjustable characteristic of the positive
intrinsic-negative diode (PIN diode) [4], varactor diode [5], and MEMS tube to control
the electromagnetic properties of the metasurfaces and to obtain different electromagnetic
properties. However, it is still a challenge for these devices to be used at high frequencies.
In the actual design process, the parasitic parameters of active adjustable devices and the
limitation of working frequency will cause the test results of the design to be inconsistent
with simulated results.

Various regulatory materials in nature are also used in the design of adjustable meta-
surfaces, such as transparent conductive oxides, ferrites, two-dimensional materials, and
phase change materials. Under different external conditions, phase change materials have
different electromagnetic characteristics [6]. For example, vanadium oxide (VO2) [7] and
Ge2Sb2Te5 [8] are typical thermally induced phase change materials. They are usually
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used for optical device control, such as photoelectric switches [9] and smart window ma-
terials [10]. VO2 is one of the most studied switchable materials. It changes from the
insulating state to the metallic state at ~68 ◦C. The phase change temperature of VO2
can be reduced to room temperature by tungsten doping [11]. Before and after the phase
change of VO2, the change of resistivity can reach 2~5 orders of magnitude [12]. At the
same time, the speed of phase change in VO2 can reach the nanosecond level [13]. At
present, it is mainly used in optical [14] and terahertz [15] frequency bands. An infrared
metamaterial absorber is designed by using VO2 with a cross structure to realize dual-band
and single-band switchable functions [16]; a tunable reflected light metasurface is designed
to realize continuous phase modulation of reflected light in the near-infrared wavelength
range by electronic control [17]. The tunable terahertz resonator is designed by using the
hybrid cross structure of the metal patch of VO2 to realize the tuning of single and double
resonance modes [18]. A 90◦ twisted E-shaped resonator loaded with VO2 chips enables
linear polarization conversion [19].

Compared with active devices working in the microwave band, VO2 is not affected
by parasitic parameters or frequency in its working state. Moreover, VO2 can avoid the
influence of feeder lines on the design. At present, VO2 is mainly used in adjustable
antennas [20] and the switching design of some devices [21]. It is rarely used on the
metasurface in the microwave band, except for one simulation on microwave absorption at
multiple frequencies: multiple vanadium dioxide rings are used to realize multi resonance
absorption [22].

In this paper, a thermally-switchable single frequency metamaterial absorber (TSMA)
is designed based on the phase-change material of VO2. The theory of absorption is
analyzed to guide the design of TSMA, and then the influence of the square resistance of
VO2 chips and the size of the unit on the absorption effect is discussed. The simulation and
experimental results show that when VO2 chips are in the insulating state, the metasurface
realizes single frequency absorption at 6.8 GHz; after the phase change of VO2 chips, the
absorption frequency moves to 7.3 GHz. The results of this study provide a valuable
reference for the application of VO2 switchable metasurfaces in the microwave band.

2. The Theory of the Material Absorber

The traditional metamaterial absorbers generally consist of three layers: the top layer
is a surface structure layer made of metal materials, showing periodic characteristics; the
middle dielectric layer is mainly used as the loss layer; and the bottom layer is a metal
ground to prevent the electromagnetic wave from penetrating. The metamaterial absorbers
can be regarded as a dual-port network, as shown in Figure 1.
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The reflection coefficient can be calculated as

|S11| =
∣∣∣ Zin−Z0

Zin+Z0

∣∣∣ (1)

where Zin is the input impedance of this network, Z0 is the characteristic impedance of
the air.

The input impedance can be regarded as the parallel connection between the surface
equivalent impedance ZR = R + jX = R + jωL + 1/jωC and the equivalent impedance of
the dielectric layer with the metal ground Zd, which can be expressed as

Zin = ZR
Zd

(2)

When the thickness of the dielectric layer is d and the relative permittivity constant of
the dielectric layer is εr = ε′r + jε′′r , then Zd = jZ0tan(βd)/

√
εr.

Therefore, the absorption rate can be expressed as

A(ω) = 1−
∣∣∣ Zin−Z0

Zin+Z0

∣∣∣2 (3)

In order to achieve a good absorption, a low reflection coefficient should be reasonably
designed by optimizing the shape of the surface structure, the material of the dielectric
layer, or the other parameters of the metasurface. The resonance and the equivalent surface
impedance can be adjusted by changing the surface structure to improve the impedance
matching effect between the absorber and free space. At the same time, the high dielectric
loss can be realized by choosing an appropriate material with a specific thickness and the
relative permittivity constant of the dielectric layer. In brief, to obtain a perfect material
absorber, both the surface structure and the dielectric layer need to be designed reasonably.

3. The Design of the Metamaterial Absorber

The structure of the absorber is shown in Figure 2a. The surface structure consists of
a square ring and four metal patches connected by four VO2 chips. The material of the
dielectric layer is FR-4, with a dielectric constant of 4.3 and a loss tangent angle of 0.02.
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The equivalent circuit model of the metasurface unit cell is shown in Figure 2b. The
value of the equivalent capacitance Cr in the metal ring is very small and can be ignored.
When VO2 chips are in the low resistance state, there is an LC series resonance in the
circuit, and the resonance frequency is f = 1/

(
2π
√

LC
)

. When VO2 chips are in the high
resistance state, it is in the disconnected state between the metal ring and the metal patch.
The capacitance effect between the metal ring and the metal patches reduces the equivalent
capacitance of the whole model. Compared with the low resistance state of VO2 chips,
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the resonant frequency will move to a high frequency. Therefore, this design can realize
the reconfigurable function of switching the absorption frequency. The equivalent circuit
simulation is carried out by the software ADS, and the full wave simulation results and
circuit fitting results are shown in Figure 3 as follows. It can be observed that the circuit
simulation results are in good agreement with the simulation results. The equivalent circuit
parameters in the metal state are R = 4.36 Ω, L = 0.5 nH, C = 317.48 fF. The equivalent
circuit parameters in the insulating state are R = 3.17 Ω, L = 0.57 nH, C = 350.85 fF.
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3.1. The Preparation of Vanadium Dioxide

Full-wave simulation results are obtained using the commercial software package CST
Microwave Studio 2020. Keeping the other conditions fixed, the relationship between the
absorption performance of the absorber and the square resistance of VO2 chips is simulated,
as shown in Figure 4. With the increase in the square resistance, the reflection coefficient
becomes worse until it shows a total reflection state. Therefore, the smaller the square
resistance after the phase change of the VO2 chips, the better the absorption effect.
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VO2 thin film with expected resistance can be obtained by adjusting the material
parameters. The square resistance of the thin film material R� is related to thickness, size,
and resistivity. It can be calculated as

R� = ρ
h = R w

d (4)

where ρ, h, d, and w are the resistivity, thickness, length, and width of the thin film material.
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VO2 thin film was deposited on sapphire substrate by magnetron sputtering followed
by vacuum annealing treatment. Before being put into the deposition chamber, the C-plane
sapphire wafers were degreased ultrasonically using acetone and ethanol to remove the
organic matter and other impurity ions that adhered to the surface of the substrates and
were finally blown dry by nitrogen gas. The metal V target (purity: 99.99%) with a diameter
of 3 inches was used as sputtering source material, and the distance between the target and
substrate was about 200 mm.

The deposition chamber was evacuated to a vacuum better than 5.0× 10−8 Torr before
the sputtering gas was introduced. High purity Ar (99.999%) and O2 (99.999%) were used
as working and reacting gas, respectively. The total gas pressure during reactive sputtering
was changed from 0.1 to 0.5 Pa with the substrate kept at about 350, 425, and 475 ◦C during
sputtering. After deposition, the films were annealed at 500~525 ◦C in a vacuum furnace of
~2 Pa. The detailed sputtering parameters can be found in Table 1.

Table 1. The conditions and result of magnetron sputtering.

Substrate
Temperature

Sputtering
Time

Annealing
Time

Thickness
The Square Resistance

Normal
Temperature

Phase
Change

475 ◦C
45 min 150 min 180 nm 0.5 MΩ/� 50 Ω/�

60 min
150 min 210 nm 0.7 MΩ/� 2.8 kΩ/�

180 min 210 nm 0.4 MΩ/� 190 Ω/�

425 ◦C 50 min
150 min 210 nm 0.5 MΩ/� 1 kΩ/�

180 min 260 nm 0.2 MΩ/� 56 Ω/�

350 ◦C 40 min 150 min 330 nm 0.4 MΩ/� 150 Ω/�

According to Table 1, the thickness of the VO2 film increases with the increase in
sputtering time. The annealing time has a great influence on the quality of the final film,
and the annealing time required for the film produced under different conditions is not the
same. After exploring the preparation conditions many times, the following preparation
conditions were obtained: magnetron sputtering technology was used to sputter on a
0.2-mm-thick 2-inch sapphire substrate, which was heated to 425 ◦C, and the film was
formed after 50 min of continuous sputtering. Next, after annealing at 525 ◦C for 3 h, the
film thickness was measured with a step profiler, and the test result was 260 nm.

The crystalline structure was characterized by grazing angle X-ray diffraction (XRD)
measurement achieved with a Philips X’Pert Pro MPD diffractometer, using Cu–Ka radia-
tion with a wavelength of 1.5406 Å. The atomic force microscope (AFM, ParkSystemsNX10)
was used to measure the surface roughness (Ra) of the VO2 film.

The surface morphology was characterized by the SEM, and the representative graph
is shown in Figure 5a. Obviously, the VO2 films are composed of uniform nanoparticles
less than 100 nm except for a few larger worm-like particles. As shown in Figure 5b, the
XRD peaks are in accordance with the VO2 standard XRD spectrum (JCPDF Card 43-1051),
indicating a high purity characteristic of VO2, and the surface roughness Ra of 8.6 nm was
measured (the inset).

The multi-functional digital four-probe tester (FPT) is used to test the square resistance
of VO2 thin film. The square resistance is 0.3 MΩ/� under normal temperature and 56 Ω/�
after the phase change. The magnitude of the square resistance change of the VO2 film
before and after phase change is about 3.73 orders of magnitude. Figure 6 shows the test
environment and the change law of the square resistance. The phase change between the
metal state and the insulating state of VO2 can be clearly seen in Figure 6. The temperature
of the phase change is about 70 ◦C, and the width of the thermal hysteresis loop is about
15 ◦C.
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Figure 5. (a) SEM micrographs of the VO2 film deposited on the sapphire substrate; (b) XRD patterns
of VO2 film (thickness: 260 nm), and the inset AFM image shows Ra = 8.6 nm measured by the
software XEI Analysis with a scanning area of 5 µm × 5 µm.
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3.2. The Design of the Material Absorber

The reflection coefficient of the absorber with different thicknesses of the dielectric
layer is shown in Figure 7. When VO2 chips are in a metal state, the absorption effect
increases with the increase in thickness. When VO2 chips are in the insulating state, the
absorption effect decreases with the increase in thickness. For VO2 chips in different states,
the designed absorber can be considered to have different surface structures. The thickness
of the dielectric layer is set at 0.8 mm in consideration of absorption.
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After optimization, the size of the unit cell is finally determined to be 9 mm. The
outer length of the square ring in the surface structure is 6.5 mm, and the line width is
0.5 mm. The size of the metal patch around the square ring is 0.5 mm × 0.5 mm. The
dimensions of the VO2 chip are 0.5 mm × 0.5 mm. We carried out modeling and simulation
in the full-wave simulation software, and the absorption performances of the absorber
under oblique incidence and different polarization were studied, as shown in Figure 8. In
TE mode, the reflection coefficient decreases with the increase in the angle of the oblique
incidence when the VO2 chips are in the metal state and is basically unchanged when the
VO2 chips are in the insulation state. In TM mode, the reflection coefficient decreases with
the increase in the angle of the oblique incidence when the VO2 chips are in the metal state
and is basically unchanged when the VO2 chips are in the insulation state.
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4. The Experimental Measure

In order to verify the correctness of the theoretical analysis and simulation results,
we processed an absorber sample and tested it in the parallel plate waveguide. The
sample contains 2 × 12 units with a size of 108 mm × 18 mm. The VO2 film is cut into
1.5 mm × 0.5 mm small chips by invisible cutting, which can be conducive to processing
and manufacturing. The chips are bonded to the sample by silver paste, and the heating
plates of the same size are bonded to the back of the sample to control the phase change of
the VO2 chips.

When the upper plate of the parallel plate waveguide is uncovered, the upper plate
contains two conical discs, which can generate vertically polarized transverse electromag-
netic waves. Foam absorbers are filled around the waveguide to reduce multiple reflections
at the edge of the waveguide. The test environment is shown in Figure 9. The test results of
the parallel plate waveguide are recorded by a vector network analyzer (PNA Network
Analyzer N5224B, KEYSIGHT), and the frequency test range is set to 6–8 GHz. We tested
the samples at normal temperature and 100 ◦C.

Due to the limitation of experimental conditions, the absorption of the absorber is
tested only in the case of vertical incidence. The test results are shown in Figure 10. The
sample exhibits absorption of 16 dB at 7.1 GHz at room temperature; after the VO2 phase
transition, the sample exhibits absorption of 8 dB at 6.3 GHz. The test results show that the
sample has the function of frequency reconfigurability. Comparing the simulation results
with the measured results, the difference between them is mainly due to the diffusion of
silver paste on the surface of the VO2 chips during the process of bonding, which will
cause the resistance of VO2 connected to the structure to change. According to the above
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simulation results, the different resistances between the sample square ring and the metal
patch lead to different absorption depths. At the same time, during the processing, the
silver paste also diffuses around the surface structure of the metasurface, which leads to
the difference in the surface structure, resulting in the increase in the equivalent inductance.
The increase in inductance can well explain the phenomenon that the resonant frequency
shifts to low frequencies in the test results. Finally, the error of the metasurface size and the
error of the parallel plate waveguide test system also lead to errors in the measurement. All
of the above factors lead to the difference between the numerical results and experimental
results.
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5. Conclusions

In summary, a TSMA based on the phase change material of VO2 was proposed and
investigated. The dual-frequency point of absorption was achieved by introducing four
VO2 chips as active elements into the metal structure. The VO2 pieces were fabricated by
magnetron sputtering and stealth cutting technology. The square resistance of the prepared
VO2 thin film was 56 Ω/� after the phase change, which was 3.65 orders of magnitude
lower than that before the phase change. The high resistance ratio enabled VO2 to be
used as a switchable thermal element. The TSMA showed different absorption frequencies
in two states: the absorption located at 6.8 GHz and 7.3 GHz before and after the phase
change of VO2, respectively. The test results are consistent with the simulation results,
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which verified that VO2 can be used in the metamaterial absorber in the microwave band.
The design is expected to be used in metasurface antennas, sensors, detectors, etc.
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