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Abstract: Continued development of lithium-ion batteries is limited by the shortage of Li element. In
this situation, the exploration of high-performance sodium-ion batteries is attracting much attention.
In this experimental work, Na2/3Ni1/4Mn34O2 film cathode materials were fabricated by excimer laser
deposition at different oxygen partial pressures. X-ray diffraction studies and field emission scanning
electron microscopy revealed high c-axis orientation and uniform grain distribution, respectively, in the
deposited films. Furthermore, after 30 cycles under a current density of 13 mA g−1, the film samples
deposited at an oxygen partial pressure of 65 Pa exhibited a high capacity-retention of 91%. The film
structure also had a large-current discharge performance, which makes practical applications possible.

Keywords: sodium-ion battery; Na2/3Ni1/4Mn3/4O2; discharge capacity; cycling performance

1. Introduction

Lithium-ion secondary batteries have the advantages of high energy density, high working
voltage, long cycle life, low self-discharge rate, no memory effect, etc., and have been widely
used in portable electronic equipment, communication equipment and other devices [1–5].
However, because lithium resources are limited (its abundance on the Earth is only 0.006%),
the sustainable application of lithium-ion batteries is restricted. Sodium, which belongs to
the first main group with lithium, is abundant and can be easily refined, and the two have
similar physical and chemical properties [6,7]. Compared to the lithium-ion battery, the sodium-
ion battery has many advantages. First, the standard potential of sodium is 0.3–0.4 V higher
than that of lithium; hence, sodium can decompose solvents and electrolyte salts with low
potential, and a wider range of electrolyte systems are available for the sodium-ion battery.
Second, sodium is more abundant in the Earth’s crust and more evenly distributed. Third,
the electrochemical properties of sodium-ion batteries are more stable and safer [8]. Hence,
high-performance sodium-ion batteries have important application prospects in low-cost energy
storage systems, especially micro batteries, in the future.

The open circuit voltage, discharge-specific capacity and long cycle life of sodium-
ion batteries are important indicators of their performance, and cathode materials play
an important role in determining these indicators. The cathode material is generally a
sodium-containing material that is stable in air and has a high potential. Examples of such
materials are the transition metal oxide structure NaMO2 (M=Co, Mn, Fe, Ni and other
transition metal elements) [9–11]. The advantage of the NaMO2 structure lies in not only
the rich resources and environmental-friendliness of the Mn element but also the multiple
crystal forms of the NaMO2 structure [12,13]. Among these crystal forms, P2 and O3 are
the most typical two-phase structures, and the difference between them is mainly that the
sodium ions in the P2 phase are located in a triangular void, whereas those in the O3 phase
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are located in the oxygen octahedral position. The different positions of Na+ results in
different reaction mechanisms in the electrochemistry of the two structures [14].

Lee and others found that Na+ migrates rapidly in the P2 structure, exhibiting higher
reversible capacity and magnification performance than the O3 phase [15]. By introducing
the Ni element, both the valence state of Mn and the voltage platform of the material
can be improved [16,17]. In 2013, Wang and others prepared P2-Na2/3Ni1/3Mn2/3O2 by
combining spray drying and solid opposite method and studied its charge and discharge
characteristics in different voltage windows [18]. In 2014, Zhao and coworkers were the
first to report that the powder electrode of P2-Na2/3Ni1/3Mn2/3O2 had a discharge-specific
capacity of 150 mAh g−1, and the retention rate was 70% after 30 cycles [19].

At present, the cathode material of the Na2/3NixMn1−xO2 (x < 1) system has attracted
the attention of researchers, and many issues need to be tackled: for example, the change
in Ni and Mn atom ratios during performance regulation (previous studies examined
Ni and Mn atomic ratios of 1:2), relative to the powder electrode, performance of the
Na2/3NixMn1−xO2 thin film electrode, and stability of Mn valence state during charging
and discharging. In the experiment in this study, Na2/3Ni1/4Mn3/4O2 (NNMO) films with a
Ni/Mn atomic ratio of 1:3 were grown by a laser deposition method under different oxygen
partial pressures, and the structures and morphological characteristics of the thin films
prepared under different deposition conditions were compared. Based on this comparison,
the Na2/3Ni1/4Mn3/4O2 thin film electrodes were designed and their charge–discharge
characteristics were discussed.

2. Experimental Process
2.1. NNMO Target Preparation

The NNMO target was prepared by the traditional solid-phase reaction method,
and the raw materials Sodium hydroxide (99.99%), Nickel oxide (99.9%) and Manganese
Dioxide (99.9%) were weighed and mixed according to the stoichiometric ratios, with a 50%
excess of sodium hydroxide to compensate for the loss of sodium in the subsequent heat
treatment process. The raw materials, agate pellets and deionized water were matched
according to the mass ratio of 1:3:1.5, and put into the ball mill tank for ball grinding. The
ball milling mixture was put into the oven at 80 ◦C to dry, and ground with a mortar for
1 h to obtain a uniformly mixed raw material. The resulting raw material mixture powder
was pre-calcined in a muffle furnace for 24 h and then ground for 1 h, and then calcined for
12 h at 1000 ◦C.

2.2. NNMO Film Growth

Excimer pulsed laser deposition was used to grow NNMO films. The deposition
system mainly includes three parts: KrF excimer laser, vacuum chamber and control
system. The deposition process is divided into three stages: the target material absorbing
the laser energy; the formation of plasma with high-temperature and high-pressure; and
expanding of the plasma onto the surface of the substrates. Here the KrF excimer laser has
a central wavelength of 248 nm, a pulse width of 25 ns, and a maximum frequency of 50 Hz,
so that the laser energy density on the surface of the target is 1.5–3 J·cm−2 by adjusting the
position of the focusing mirror. Polished stainless steel (SS) is used as the substrate, and
the distance between the target and the substrate is fixed at 50 mm. Before deposition, the
background vacuum is pumped to 1 × 10−3 Pa, and a certain pressure of oxygen (35 Pa,
50 Pa, 65 Pa) is filled when it is deposited; at the time of deposition, the stainless steel
substrate is maintained at 750 ◦C by a temperature controller. Figure 1a shows the plasma
feather glow produced by the laser focusing on the surface of the target.
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Figure 1. (a) Plasma plume generated by laser sputtering target; (b) Assembly diagram of cathode.

2.3. Sodium-Ion Battery Design and Assembly

The thin film grown by laser deposition can be used directly as a working electrode.
Sodium sheets (small round slices cut into sodium sheets) are negative electrodes, glass fibers
are separators, and 1 M NaClO4 (Ethylene carbonate: Propylene carbonate = 2:1 volume
ratio) is the electrolyte, assembled into a CR2032 coin cell battery. The entire battery assembly
process is done in a glove box filled with argon, and the water and oxygen content is controlled
to less than 1 ppm. The battery encapsulation process is shown in Figure 1b: the positive
electrode shell is placed in a thin film positive electrode piece, the electrolyte is dripped, the
separator soaked in the electrolyte is spread above the positive electrode sheet, and a metal
sodium sheet is put in, and then a piece of foam nickel is added as a filler, and the negative
electrode shell is pressed tightly.

2.4. Sample Performance Characterization

X-ray diffraction (XRD) is used to test the structure, crystallinity, and growth orienta-
tion of the prepared NNMO powder and film; Field Emission Scanning Electron Microscopy
(FESEM) is used to observe the surface morphology of the sample and the cross-sectional
morphology of the thin film sample. The charge–discharge characteristics of the sample
are measured by a battery tester (BTS-5V1mA), including magnification characteristics and
cycle characteristics.

3. Experimental Results and Analysis

Figure 2 is XRD diffractograms of the crystal structure of NNMO films under different
oxygen partial pressures. It can be seen that in addition to the peak of the stainless steel
substrate, there are only two peaks in the direction of (00l): (002) and (004), indicating that
the height along the c-axis along the film is in merit-based orientation. At lower oxygen
partial pressures, the diffraction peak is weaker, indicating low crystallinity. This may be
due to the low partial pressure of oxygen, which introduces oxygen vacancies. As the
partial pressure of oxygen gradually increases, the diffraction peak becomes sharper and
sharper, and the crystallinity increases. When the partial pressure of oxygen gradually
increases to 65 Pa, the oxygen vacancy is suppressed, the defect is reduced accordingly, and
the crystallinity of the film is significantly improved.

Figure 3 shows the surface and cross-sectional FSEM diagram of the NNMO film
under different oxygen partial pressures. When the partial pressure of oxygen is 35 Pa,
the surface flatness of the film is poor, and a few crystalline particles appear. This may be
because the lack of oxygen atoms hinders the growth of the film under low oxygen. As
the partial pressure of oxygen rises to 50 Pa, more and more irregular crystalline particles
appear, and the boundary between particles is not clear; when the partial pressure of
oxygen continues to rise to 65 Pa, the grain size further increases, about 100 nm, showing a
relatively uniform nanocrystalline particle. Figure 3d is an FSEM image of the deposited
NNMO film cross-section on a SiO2/Si substrate. It can be seen that a layer of NNMO film
composed of uniformly densely arranged grains is deposited on the surface of the SiO2/Si
substrate, and the thickness of the film is about 550 nm.
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Figure 3. Surface FSEM morphology of NNMO films deposited at different oxygen pressures (a) 35 Pa,
(b) 50 Pa, (c) 65 Pa, (d) cross-sectional view of the films deposited on SiO2/Si substrates.

Figure 4 shows the room temperature electrochemical properties of the NNMO film as
a sodium-ion battery cathode material under constant current 13 mAg−1, voltage window
1.5–4.3 V test conditions. Figure 4a is a constant current cycle curve of the thin film
deposited under different oxygen partial pressures. The first discharge-specific capacities
of the 35 Pa, 50 Pa, and 65 Pa thin film electrodes were 163.9 mAh g−1, 171.1 mAh g−1,
and 175.3 mAh g−1, respectively. It can be seen that, for the samples grown under 35 Pa
and 50 Pa, the discharge-specific capacitance decreases rapidly when the number of cycles
increases. After 30 cycles, the capacity retention rate was only 48% (78.2 mAh g−1) and
63% (108.0 mAh g−1) of the initial values, respectively. It may be that under the lower
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oxygen pressure, the crystallinity of the film is not perfect, oxygen deficiency can form
structural defects, the particles are irregular, and the interface is blurred, resulting in slow
sodium ion kinetics. When the oxygen pressure gradually increases to 65 Pa, the oxygen
defect is inhibited, the crystallinity is enhanced, the crystal plane spacing is increased, and
the thickness of the sodium ion layer is also increased, which can enhance the deblocking
kinetics of sodium ions. The specific capacity retention rate of the 65 Pa thin film electrode
is 91%, which is much higher than that of the 35 Pa and 50 Pa thin film electrodes, showing
excellent cycle stability.
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The first charge–discharge curve of the NNMO thin film electrode is shown in Figure 4b.
When the partial pressure of oxygen is 35 Pa and 50 Pa, the curve is smooth and sloped, and
the voltage platform is almost invisible. It may be that the hypoxia and incomplete crystalline
state of the thin film material under low oxygen pressure make it difficult to react redox or
phase change during charge–discharge so that no charge–discharge platform appears. With
the increase of oxygen partial pressure, it can replenish the oxygen content that is missing due
to high temperature sputtering during film growth, and the crystallinity is also improved.
When the partial pressure of oxygen is increased to 65 Pa, three obvious voltage platforms
appear on the charge–discharge curve, located around 4.0 V, 3.5 V, and 2.0 V, respectively.
The voltage platform at 4.0 V here is caused by the P2-O2 phase transition, and the voltage
platform at 3.5 V and 2.0 indicates that the two pairs of redox reactions12 have occurred,
Ni2+/Ni4+ and Mn3+/Mn4+, respectively [20,21].

Figure 5 compares the discharge rate characteristics of the NNMO thin film electrode
under different oxygen partial pressures, and the charge and discharge voltage range and
charging current density are the same as the previous parameter settings. Obviously, in a lower
oxygen partial pressure environment (35 Pa and 50 Pa), the thin film material is in a mixed
state of crystalline and amorphous state, and this incomplete crystallization during charge–
discharge will hinder the diffusion and migration rate of sodium ions and electrons, so the
first discharge specific capacity is low, and the decay is faster with the increase of discharge
current density. When the partial pressure of oxygen is increased to 65 Pa, the crystallinity
of the thin film material is improved, the particle size is uniform, and the discharge-specific
capacity and capacity retention rate are improved. Although it also shows rapid decay at higher
current densities above 520 mA g−1, when the current density is restored to 130 mA g−1, its
discharge-specific capacity can be maintained at about 70%, indicating that the thin film cathode
material can withstand high current charge and discharge.
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The above experimental results show that the NNMO thin film cathode material with
oxygen partial pressure deposited at 65 Pa shows better battery characteristics. Based on
the X-ray diffraction and SEM analysis, this enhancement can be ascribed to the following
reasons. First, the thin film with better crystallinity can improve the electron conductivity
of the active material as well as the transfer rate of charge. Second, the uniform-distributed
grains with less defects are more conducive to the migration of ions and electrons, which
can shorten the transmission distance and improve the circulation stability of the electrode.

4. Conclusions

In summary, the NNMO target was sintered by the traditional solid-phase reaction
method, and NNMO films with high c-axis optimization orientation and uniform grain
distribution were obtained on the surface of stainless-steel substrates by excimer laser
deposition technology. When the partial pressure of oxygen was 65 Pa, the NNMO thin
film samples exhibited greatly improved sodium storage performance and had the higher
discharge-specific capacity and better cycle characteristics and magnification performance;
after 30 cycles, the discharge-specific capacity was maintained at 91% of the first discharge-
specific capacity at a current density of 13 mA g−1, reaching 159.5 mAh g−1. After applying
a high current density (e.g., above 520 mA g−1) and then restoring it to a lower value (e.g.,
130 mA g−1), its discharge-specific capacity was still maintained at about 70%, with a strong
ability to quickly de-embed. Through the optimization of doped elements, atomic ratios
and film growth parameters, the performance of the NNMO thin film cathode materials
can be further improved.
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