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Abstract: This study explored the impact of double diffusive convection and inclined magnetic field
in nanofluids on the peristaltic pumping of fourth grade fluid in non-uniform channels. Firstly,
a brief mathematical model of fourth grade fluid along inclined magnetic fields and thermal and
concentration convection in nanofluids was developed. A lubrication approach was used to simplify
the highly non-linear partial differential equations. An analytical technique was then used to solve
the highly non-linear differential equations. The exact solutions for the temperature, nanoparticle
volume fraction and concentration were calculated. Numerical and graphical outcomes were also
examined to see the effects of the different physical parameters of the flow quantities. It was noted
that as the impact of Brownian motion increased, the density of the nanoparticles also increased,
which led to an increase in the nanoparticle fraction. Additionally, it could be observed that as the
effects of thermophoresis increased, the fluid viscosity decreased, which lowered the fraction of
nanoparticles that was made up of less dense particles.

Keywords: thermal and concentration convection; nanofluids; peristaltic flow; non-uniform channel;
inclined magnetic field; fourth grade fluid

1. Introduction

The phenomenon of the peristaltic transport of fluid is an eminent topic within cur-
rent research. It has gained popularity due to its practical contributions to the fields of
biomechanics, engineering, technology and industry. It is a vital process in many phys-
iological functions. The human body transports fluids from one organ to another using
this procedure. For example, food movement through the oesophagus, fluid movement
along the gastrointestinal tract, the vasomotor activity of veins, arteries and capillaries, the
excretion of waste by the kidneys and other fluid movements are all conducted by peri-
staltic occurrences. Numerous studies have been carried out to explore peristaltic transport
theoretically, experimentally and numerically. Latham was the first to incorporate viscous
fluids in the peristalsis phenomenon, both analytically and experimentally [1]. Another
classic work has formed the basis of this field, which uses the limitations of long wave-
lengths and small Reynolds numbers [2]. Non-Newtonian fluids have recently attracted
a lot of attention in scientific research due to their use in various applications, including
fabric glass production, starch suspensions, petroleum production, paper pulp produc-
tion, polymer production, cement slurry production, the polymer processing industry and
biological fluids. Non-Newtonian fluids are fluids that defy Newton’s law and change
their viscosity in response to external stimuli. A few examples of non-Newtonian fluids
are blood, shampoo, tomato ketchup, mud, honey, plastic, paint, pulp, polymer melts and
concentrated juice. Non-Newtonian fluids can be divided into two categories: those whose
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shear stress is solely dependent on the shear rate and those whose shear rate and time char-
acteristics include both elastic and viscous features. Since they are complicated fluids, they
cannot be characterised by a single model. Therefore, numerous models have been used to
describe the proposed behaviour of non-Newtonian fluids. Some other non-Newtonian
fluids include Casson fluid, viscoelastic fluid, tangent hyperbolic fluid, second grade fluid
and fourth grade fluid, which exhibit non-linear behaviour. Significant investigations can
be found in the literature [3–10].

Choi [11] used the word “nanofluid” to describe a liquid that contains very small
metallic or non-metallic particles of nanometre size and fibres, which are called nanopar-
ticles. Masuda et al. [12] further explained the essential property of nanofluids, i.e., the
amplification of thermal conductivity. This property enables the use of nanofluids in multi-
ple engineering applications [13], mostly high-level nuclear systems. Das and Choi [14]
reviewed the process of heat transfer. Similarly, Das et al. [15] further explained the mech-
anism of heat transfer in nanofluids. Moreover, Wang and Mujumdar [16] also studied
the heat transfer properties of nanofluids, while Buongiorno [17] explained the absolute
velocity of nanoparticles. He used the term “slip velocity” for the aggregate of the relative
and base fluid velocity. He also based his study on the seven slip mechanisms: gravity
settling, inertia, Brownian diffusion, Magnus effect, fluid drainage, thermophoresis and
diffusiophoresis. He summed up his analysis with the conclusion that in the absence of
tempestuous effects, thermophoresis and Brownian diffusion are significant. Based on
these effects, he derived some conservation equations. The different flow geometries in
nanofluids are the centre of attention in contemporary research. Nadeem and Akbar [18]
examined the peristaltic flow of nanofluids in relation to endoscopic effects, which was
the initial contribution to the peristaltic literature of nanofluids. Other works have since
extended the recent research on the peristaltic flow of nanofluids [19–25].

Magnetohydrodynamics (MHD) is defined as a scientific field in which highly conduc-
tive fluid motion is studied in proximity to magnetic fields. The key aspect to be studied is
the interplay between pressure increases and MHD. The MHD flow of nanofluids through
channels via peristalsis is important, particularly with reference to certain problems that in-
volve conductive physiological nanofluid movements. Such problems include the treatment
of nuclear waste, the study of geothermal sources, the control of pollution that was caused
by underground chemicals, the design of MHD power generators, the reduction in surgical
blood loss, the treatment of tumours in stagnating hyperthermia, the selection of drug
transfer utilising magnetic particles and blood pump machines and theoretical research
on the operation of a peristaltic MHD compressor. Landeghem et al. [26] examined the
magnetic nanoparticles that are induced in tumours and then heated up by alternating mag-
netic fields. Human tissues have very low magnetic susceptibility; therefore, the impacts of
magnetic fields are not significant. However, there is a possibility that eddy currents could
be produced in any biological tissue by electromagnetic fields [27,28]. Further research on
the MHD peristaltic flow of nanofluids has also been carried out [29–35].

In the process of double diffusion, heat and mass transmissions take place simulta-
neously with the collusion of fluid motion. Double diffusion is indispensable in many
disciplines, such as biology, solid state physics, geophysics, chemical engineering, astro-
physics and oceanography [36]. Other related domains include engineering fields, such
as crystal manufacturing, storage tanks for natural gas, solar ponds and the process of
metal solidification. The double diffusive convection of peristaltic transport is a key area of
attention for researchers nowadays. In [37], a model for peristaltic pumping with double
diffusive convection in nanofluids was simulated using Mathematica software. Other
authors have studied the effects of double diffusion on nanofluids using Newtonian base
models. In [38–45], research on double diffusion was extended.

Limited work was found in our literature review on the impacts of inclined magnetic
fields with double diffusive convection on peristaltic flow. Hence, this was considered in
the current study using non-Newtonian fluids.
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From the above discussion, the impacts of heat convection and magnetic flux on double
diffusion convection cannot be neglected. The study of fourth grade fluids in the presence
of double diffusion and inclined MHD has not yet been studied. This study theoretically
expanded the previous research on the fluid models that are currently available. In the field
of medical sciences, the flows of fluids with varying densities have practical significance.
The analysis of flows in the human body during certain procedures, such as CT angiography,
thallium stress testing and other procedures with a related topic, served as the inspiration
for this study. Our first test involved injecting a dye, which was followed by an X-ray of the
coronary arteries to check for blockages. In a subsequent test, a radioactive liquid called a
radioisotope was injected into a human vein to gauge how well the blood flowed into the
heart during exercise and rest. This study involved a mixture of areas of study, including
biology, physics and material science (nanoscience).

In this study, the fundamental natural rules that regulate the operation of biological
systems were described in mathematical terms. We selected a non-Newtonian model due
to their widespread applications in technology. This work could aid in our theoretical
comprehension of several biological flows. It could be beneficial for scientists and engineers
who are engaged in the manufacture of CT and MRI devices, as well as other medical and
biotechnological technologies. The rationale of this study was to show how magnetic fields
and double diffusion convection affect peristaltic flow.

2. Mathematical Formulation

We considered the incompressible hydromagnetic flow of an electrically conductive
fourth grade fluid in a non-uniform channel. The x-axis was drawn along the wave
propagation and the y-axis was normal to it. We additionally regarded the magnetic fields
as being slanted at an angle of φ. The lower wall of the channel was kept at a temperature of
T1, a solute concentration of C1 and a nanoparticle concentration of Θ1, whereas the upper
wall had a temperature of T0, a solute concentration of C0 and a nanoparticle concentration
of Θ0.

The geometrical shape of the surface wall is depicted in Figure 1 and is mathematically
described in [5] as:

H(X, t) = ã(X) + b̃sin
(

2π

λ
(X− ct)

)
, (1)

where ã(X) = b0 + b1 X, λ is the wavelength, ã denotes the channel half width at the axial
distance X, b0 is the half width at the inlet, (b1 << 1) is a constant, b̃ represents the wave
amplitude and c and t denote wave speed and time, respectively.
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The stress tensor for fourth grade fluids was defined in [9] as:

S = µÃ1 + α̃1 Ã2 + α̃2 Ã2
1 + β̃1 Ã3 + β̃2

(
Ã1 Ã2 + Ã2 Ã1

)
+ β̃3

(
tracÃ2

1

)
Ã1 + γ̃1 Ã4

+γ̃2

(
Ã3 Ã1 + Ã1 Ã3

)
+ γ̃3 Ã2

2 + γ̃4

(
Ã2

1 Ã2 + Ã2 Ã2
1

)
+ γ̃5trac

(
Ã2

)
Ã2 + γ̃6trac

(
Ã2

)
Ã2

1

+
(

γ̃7tracÃ3 + γ̃8tracÃ2 Ã1

)
Ã1,

(2)

Ã1 = (∇V) + (∇V)T̃ , (3)

Ãi =
dÃi−1

dt
+ Ãi−1(∇V) + (∇V)T̃ Ãi−1, (4)

where µ represents the constant viscosity, α̃1, α̃2, β̃1 − β̃3 and γ̃1 − γ̃8 stand for the material
constants, T̃ represents the transpose and Ãi are Rivlin–Ericksen tensors.

The velocity field for a 2-dimensional and 2-directional flow was V = (U(X, Y, t),
V(X, Y, t), 0).

Within a laboratory framework (X, Y), the equations of motion for nanofluids and
inclined magnetic fields for 2-dimensional incompressible flows were described in [37] as:

∂U
∂X

+
∂V
∂Y

= 0, (5)

ρ f

(
∂
∂t + U ∂

∂X + V ∂
∂Y

)
U = − ∂P

∂X + ∂
∂X (SXX) +

∂
∂Y (SXY)− σB2

0cosφ(Ucosφ−Vsinφ)

+g
{
(1−Θ0)ρ f 0 {βT(T − T0) + βC(C− C0)}−

(
ρp − ρ f 0

)
(Θ−Θ0)

}
,

(6)

ρ f

(
∂
∂t + U ∂

∂X + V ∂
∂Y

)
V = − ∂P

∂Y + ∂
∂X (SYX) +

∂
∂Y (SYY)

+σB2
0sinφ(Ucosφ−Vsinφ),

(7)

(ρc) f

(
∂
∂t + U ∂

∂X + V ∂
∂Y

)
T = ε

(
∂2T
∂X2 +

∂2T
∂Y2

)
+ (ρc)p

{
DB

(
∂Θ
∂X

∂T
∂X + ∂Θ

∂Y
∂T
∂Y

)
(

DT
T0

)[(
∂T
∂X

)2
+
(

∂T
∂Y

)2
]}

+ DTC

(
∂2C
∂X2 +

∂2C
∂Y2

)
,

(8)

(
∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

)
C = Ds

(
∂2C
∂X2 +

∂2C
∂Y2

)
+ DTC

(
∂2T
∂X2 +

∂2T
∂Y2

)
, (9)(

∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

)
Θ = DB

(
∂2Θ

∂X2 +
∂2Θ

∂Y2

)
+

(
DT
T0

)(
∂2T
∂X2 +

∂2T
∂Y2

)
, (10)

It is known that flows are unsteady in a fixed frame (X, Y) but motion is steady in a
wave frame (x, y), so the relationship between a fixed frame (X, Y) and wave frame was
defined as:

y = Y, x = X− ct, v = V, u = U − c, p(x, y) = P(X, Y, t). (11)

We then defined the following dimensionless quantities:

y = y
b0

, x = x
λ , v = v

c , u = u
c , δ = b0

λ , p =
b2

0 p
µcλ , t = ct

λ , Re =
ρ f cb0

µ , θ = T−T0
T1−T0

, h = h
b0

,

γ = C−C0
C1−C0

, Pr =
(ρc) f υ

ε , u = ∂Ψ
∂y , v = −δ ∂Ψ

∂x , Le = υ
Ds

, Ω = Θ−Θ0
Θ1−Θ0

, M =
√

σ
µ B0b0,

NCT = DCT(T1−T0)
(C1−C0)Ds

, NTC = DCT(C1−C0)
ς(T1−T0)

, Grt =
gb2

0(1−Θ0)(T1−T0)ρ f βT
µ0c , Ln = υ

DB
,

Grc =
g(1−Θ0)ρ f βc(C1−C0)b2

0
µ0c , Nb =

(ρc)pDB(Θ1−Θ0)

ς , Nt =
(ρc)pDT(T1−T0)

T0ς ,

GrF =
g(ρp−ρ f )(Θ1−Θ0)

µ0c b2
0 , λ̃n = α̃nc

µb0
(n = 1, 2), ξ̃n = β̃nc2

µb2
0
(n = 1, 2, 3),

η̃n = γ̃nc3

µb3
0
(n = 1− 8),

(12)
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In the above dimensionless quantities, g, ρ f0 , ρp, δ, Pr, Re, Grc, GrT , GrF, Le, Ln, Nb,
Nt, M, NCT , NTC, θ, Ω, γ, βC, βT , ε, (ρc)p and (ρc) f represent acceleration due to gravity,
the density of the fluid at T0, the density of the particles, wave number, Prandtl num-
ber, Reynolds number, solute Grashof number, thermal Grashof number, nanoparticle
Grashof number, Lewis number, nanofluid Lewis number, the Brownian motion parameter,
thermophoresis parameter, Hartmann number, Soret parameter, Dufour parameter, dimen-
sionless temperature, solute (species) concentration, nanoparticle fraction, the volumetric
solute expansion coefficient of the fluid, the volumetric thermal expansion coefficient of a
fluid, thermal conductivity, nanoparticle heat capacity and fluid heat capacity, respectively.

Equation (10) in dimensionless form became:

h = 1 + mx + βsin(2πx), (13)

where β = b
b0

is the amplitude ratio or occlusion and m = b1
b0

.
By means of Equations (11) and (12), Equation (5) was automatically satisfied and

Equations (6)–(10) were transformed for stream function Ψ, temperature θ, nanoparticle
fraction γ and solute concentration Ω in a wave frame (after dropping bars):

Reδ
(
ΨyΨxy −ΨxΨyy

)
= − ∂p

∂x + δ ∂Sxx
∂x +

∂Sxy
∂y −M2cosφ

((
Ψy + 1

)
cosφ + Ψxδsinφ

)
+Grtθ + Grcγ− GrFΩ,

(14)

Reδ3(ΨxΨxy −ΨyΨxx
)
= − ∂p

∂y + δ2 ∂Syx
∂x + δ

∂Syy
∂y

+M2δsinφ
((

Ψy + 1
)
cosφ + Ψxδsinφ

)
,

(15)

RePrδ
(
Ψyθx −Ψxθy

)
=
(
θyy + δ2θxx

)
+ NTC

(
δ2γxx + γyy

)
+ Nb

(
δ2Ωxθx + θyΩy

)
+Nt

(
δ2(θx)

2 +
(
θy
)2
)

,
(16)

ReδLe
(
Ψyγx −Ψxγy

)
=
(

δ2γxx + γyy

)
+ NCT

(
δ2θxx + θyy

)
, (17)

ReδLn
(
ΨyΩx −ΨxΩy

)
=
(

δ2Ωxx + Ωyy

)
+

Nt

Nb

(
δ2θxx + θyy

)
, (18)

Then, by employing the presumption of long wavelengths and low Reynolds numbers,
Equations (14)–(18) became:

0 = −∂p
∂x

+
∂Sxy

∂y
−M2cos2φ

(
Ψy + 1

)
+ Grtθ + Grcγ− GrFΩ, (19)

0 = −∂p
∂y

, (20)

∂2θ

∂y2 + NTC
∂2γ

∂y2 + Nb

(
∂θ

∂y
∂Ω

∂y

)
+ Nt

(
∂θ

∂y

)2
= 0, (21)

∂2γ

∂y2 + NCT
∂2θ

∂y2 = 0, (22)

∂2Ω

∂y2 +
Nt

Nb

∂2θ

∂y2 = 0, (23)

By eliminating the pressure from Equations (19) and (20), we yielded:

∂2Sxy

∂y2 −M2cos2φ
∂2Ψ

∂y2 + Grt
∂θ

∂y
+ Grc

∂γ

∂y
− GrF

∂Ω

∂y
= 0, (24)

where:

Sxy =
∂2Ψ

∂y2 + 2Γ

(
∂2Ψ

∂y2

)3

, (25)
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and Γ = ξ̃2 + ξ̃3 stands for the Deborah number.
The boundary conditions in the wave frame that related to the stream function Ψ, tem-

perature Θ, nanoparticle fraction Ω and solute concentration γ were defined as follows [5]:

Ψ = 0, ∂2Ψ
∂y2 = 0 on y = 0,

Ψ = F, ∂Ψ
∂y = −1 on y = h(x) = 1 + mx + βsin(2πx),

(26)

θ = 0 on y = 0 and θ = 1 on y = h(x), (27)

Ω = 0 on y = 0 and Ω = 1 on y = h(x), (28)

γ = 0 on y = 0 and γ = 1 on y = h(x), (29)

where F is the mean flow rate in the wave frame (dimensionless form), which could be
related to the mean flow Q using Q = F + 1 and F =

∫ h
0

∂Ψ
∂y ·dy .

3. Different Wave Forms

The expressions for the considered wave forms (in dimensionless form) were defined
as follows [5]:

(1) Multi-sinusoidal wave:

h(x) = 1 + mx + βsin(2lπx)

(2) Trapezoidal wave:

h(x) = 1 + mx + β

(
32
π2

∞

∑
l=1

sin(2π(2l − 1)x)

(2l − 1)2 sin
(π

8
(2l − 1)

))
,

(3) Triangular wave:

h(x) = 1 + mx + β

(
8

π3

∞

∑
l=1

(−1)l+1sin(2π(2l − 1)x)

(2l − 1)2

)
(4) Square wave:

h(x) = 1 + mx + β

(
4
π

∞

∑
l=1

(−1)l+1cos(2(2l − 1)πx)
(2l − 1)

)

4. Solution to the Problem
4.1. Exact Solution

The exact solution for the nanoparticle volume fraction that satisfied Boundary Condi-
tion (28) was defined as:

Ω =
Nt(e−ωy − 1)
Nb
(
1− e−hω

) + y
h

(
Nt

Nb
+ 1
)

, (30)

The exact solution for the solute (species) concentration that satisfied Boundary Con-
dition (29) was defined as:

γ =
NCT(e−ωy − 1)

1− e−hω
+

y(1 + NCT)

h
, (31)

The exact solution for the temperature that satisfied Boundary Condition (27) was
defined as:

θ =
e−ωy − 1
e−hω − 1

, (32)
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where:
ω =

Nb + Nt

h(1− NCT NTC)
, (33)

4.2. Numerical Solution

Since Equations (24) and (19) were non-linear differential equations, calculating exact
solutions for these equations was difficult. The non-linear equations were illustrated
utilising ND Solve in Mathematica computational software. Thus, graphical illustrations
were created for the numerical approximations of the solutions.

Special Cases:

• The results of this study were reduced to the classical results of viscous fluids when
Γ = M = Grt = Grcγ = GrF = m = 0. This special case corresponded to a very sim-
plified model in a comparison to the present model since it only related to Newtonian
viscous flows in the absence of nanofluid and thermophysical phenomena.

• The results of Bég and Tripathi [37] could be used for our problem in the limited case
when Γ = M = m = 0.

5. Graphical Outcomes

In this section, we present the graphical outcomes of the problem under consideration.
To observe the effects of pressure increase with volume flow rate Q, Figure 2a,b was plotted
for diverse values of β and m. To analyse the impact of the pressure increase, the zones of
peristaltic flow were spilt into the following regions: (a) the retrograde (∆p > 0, Q < 0)
zone, in which the flow was travelling in the opposite direction from the peristaltic motion;
(b) the peristaltic (∆p > 0, Q > 0) zone, in which positive values of Q were completely due
to peristalsis after responding to the difference in pressure; (c) the free pumping (∆p = 0)
zone; and (d) the co-pumping (∆p< 0, Q >0) region, in which the difference in pressure
supported the flow because of the surface walls. From Figure 2a, it can be seen that in
the retrograde, peristaltic and free pumping regions, the pressure increased due to the
increasing values of β, whereas in the co-pumping region, the pressure decreased due to
the increasing values of β. It is obvious from Figure 2b that pressure decreased with the
increasing values of m in the retrograde and peristaltic pumping regions but this behaviour
was reversed in the co-pumping region. To reveal the impact of pressure gradient on Nb
and GrF, Figure 3a,b were plotted. It can be seen in Figure 3a that when x ∈ [0.6, 0.9],
the pressure gradient increased due to the increasing values of Nb. Figure 3b was plotted
to detect the impact of the pressure gradient for various values of GrF. It can be seen in
this figure that when x ∈ [0.6, 0.9], the pressure gradient decreased with the increasing
values of GrF. In order to examine the consequences of different wave forms on the pressure
gradient, Figure 4a–d were plotted. It can be seen in these figures that the maximum
pressure gradient was observed in the trapezoidal wave.

To study the features of the temperature profiles, solute concentrations and nanopar-
ticle fractions, Figures 5–7 were plotted. The difference between the temperature of hot
gas and cold surfaces produced a valuable source known as thermophoresis. Additionally,
this caused the particles to move in the direction of the cold surfaces. It should be noted
that in this study, the heat transfer changed as the thermophoresis Nt parameter varied.
Figure 5a illustrates that the temperature profiles increased because of the increasing values
of Nt. Similar effects can be noted in Figure 5b for the case of the Dufour NTC parameter.
Physically, it was evident that the Dufour effect, which is also known as the diffusion-
thermo effect, characterised the heat flow that was produced whenever the chemical system
was subjected to a concentration gradient. It can be seen in Figure 6a,b that the solute
concentration profiles decreased because of the increasing values of Nb and NCT . This
behaviour was because Nb and NCT had a direct relationship with each other. Moreover, it
occurred when random motions interacted with of solid nanoparticles through random
collisions and micro-mixing, which dispersed the solid nanoparticles and lowered their
concentration. Figure 7a,b were drawn to observe the effects of the nanoparticle fractions
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on Nb and Nt. Increasing values of Nb increased the nanoparticle density, which caused
the nanoparticle fraction to grow (Figure 7a), whereas the nanoparticle fraction decreased
with an increase in Nt Figure 7b. When Nt increased, the fluid viscosity lessened, which
resulted in a reduction in the nanoparticle fraction of less dense particles.
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Figure 2. The pressure increase over one wavelength (∆p) against the volume flow rate (Q):
(a) NCT = 0.3, NTC = 0.7, Grc = 0.4, GrF = 0.1, Grt = 0.5, Nt = 0.7, Nb = 0.2, M = 4, φ = π

6 ,
Γ = 0.8, m = 0.4; (b) NCT = 0.3, NTC = 0.7, Grc = 0.4, GrF = 0.1, Grt = 0.5, Nt = 0.7,
Nb = 0.2, M = 4, φ = π

6 , Γ = 0.8, β = 0.6.
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Figure 3. The pressure gradient (dp/dx) against the axial distance (x): (a) NCT = 0.3, NTC = 0.7,
Grc = 0.4, GrF = 0.1, Grt = 0.5, Nt = 0.7, M = 4, φ = π

6 , Γ = 0.8, β = 0.4, m = 0.4, Q = −5;
(b)NCT = 0.3, NTC = 0.7, Grc = 0.4, Nb = 0.1, Grt = 0.5, Nt = 0.7, M = 4, φ = π
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β = 0.4, m = 0.4, Q = −5.
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Figure 4. The pressure gradient (dp/dx) against the axial distance (x) for the different wave shapes:
The various parameters used in (a–d) are as: NCT = 0.3, NTC = 0.7, Grc = 0.4, GrF = 0.1, Grt = 0.5,
Nt = 0.7, Nb = 0.9, M = 4, φ = π
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Figure 5. The temperature profiles (𝜃): (a) 𝑁𝐶𝑇 = 0.9,  𝑁𝑇𝐶 = 0.7,  𝑁𝑏 = 0.9, 𝛽 = 0.4, 𝑚 = 0.2, 𝑥 =
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m = 0.2, x = 0.2; (b) NCT = 0.9, Nb = 0.7, Nt = 0.9, β = 0.4, m = 0.2, x = 0.2.
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Figure 7. The nanoparticle fraction profiles (𝛺): (a) 𝑁𝐶𝑇 = 0.9,  𝑁𝑇𝐶 = 0.7,  𝑁𝑡 = 0.9, 𝛽 = 0.4, 𝑚 =
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Figure 7. The nanoparticle fraction profiles (Ω): (a) NCT = 0.9, NTC = 0.7, Nt = 0.9, β = 0.4,
m = 0.2, x = 0.2; (b) NCT = 0.9, NTC = 0.7, Nb = 0.9, β = 0.4, m = 0.2, x = 0.2.

In peristaltic propulsive flows, trapping is a rare phenomenon. It starts with the forma-
tion of a fluid mass that moves internally and is encircled by peristaltic wave streamlines.
Using peristaltic waves with high rates of flow and substantial occlusions, streamlines catch
the mass of fluid and propel it along. To study the phenomenon of trapping, Figures 8–10
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were plotted. The streamlines for the discrete values of Nb are represented in Figure 8,
which shows that with the enhanced values of Nb, the number and size of the trapped
masses increased, while they decreased with increasing values of m (Figure 9). The stream-
lines for the different wave forms are shown in Figure 10. A comparison between this work
and others in the available literature is presented in Table 1. It was noted that our results
agreed with the results for viscous fluid and those of Bég and Tripathi [37].
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Table 1. A comparison between the present work and the available literature.

Velocity Profile (u)
y=h(x) Present Work Viscous Fluid Bég and Tripathi [37]

0 2.7954 2.89268 2.95852
0.119994 2.76701 2.85902 2.92114
0.239987 2.68047 2.75708 2.80836
0.359981 2.53245 2.58482 2.61918
0.479974 2.31785 2.33935 2.35242
0.599968 2.0296 2.01684 2.00664
0.719961 1.65823 1.61226 1.58005
0.839955 1.19132 1.1191 1.07026
0.959948 0.612152 0.528699 0.473961
1.07994 −0.103582 0.171164 −0.213634
1.19994 −1 −1 −1

6. Conclusions

This article explored the impacts of double diffusive convection and inclined magnetic
fields in nanofluids on the peristaltic pumping of fourth grade fluids in non-uniform
channels. A mathematical model of a fourth grade fluid with inclined magnetic fields and
thermal and concentration convection in nanofluids was developed. A numerical technique
was used to solve the highly non-linear differential equations. The exact solutions for
the temperature, nanoparticle volume fraction and solute concentration were calculated.
Graphical outcomes were also illustrated to observe the effects of the different physical
parameters of the flow quantities. The main findings were as follows:

• The pressure gradient increased with increasing values of the Brownian motion parameter,
whereas it decreased with increasing values of the nanoparticle Grashof number;

• The temperature profiles increased with increasing values of the thermophoresis
parameter and Dufour parameter, while the concentration profiles decreased with
increasing values of the Brownian motion parameter and Soret parameter;

• The nanoparticle fractions decreased with increasing values of the Brownian motion pa-
rameter, whereas they increased with increasing values of the thermophoresis parameter;

• The number and size of trapped masses increased with increasing values of the
Brownian motion parameter, while they decreased with increasing values of the non-
uniform parameter.
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