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Abstract: Polymer doping is an efficient approach to achieve self-healing perovskite solar cells.
However, achieving high self-healing efficiency under moderate conditions remains challenging.
Herein, an innovative self-healable polysiloxane (PAT) containing plenty of thiourea hydrogen bonds
was designed and introduced into perovskite films. Abundant thiourea hydrogen bonds in PAT
facilitated the self-healing of cracks at grain boundaries for damaged SPSCs. Importantly, the doped
SPSCs demonstrated a champion efficiency of 19.58% with little hysteresis, almost rivalling those
achieved in control atmosphere. Additionally, owing to the effective chelation by PAT and good
level of thiourea hydrogen bonds, after 800 cycles of stretching, releasing and self-healing, the doped
SPSCs retained 85% of their original IPCE. The self-healing characteristics were demonstrated in situ
after stretching at 20% strain for 200 cycles. This strategy of pyridine-based supramolecular doping
in SPSCs paves a promising way for achieving efficient and self-healable crystalline semiconductors.

Keywords: self-healing; perovskite solar cell; ambient environment; high efficiency; energy harvesting

1. Introduction

Stretchable hybrid organic–inorganic halide perovskite-based solar cells (SPSCs)
are attractive photoelectric materials exhibiting the advantages of extraordinary power-
conversion efficiencies (PCE over 18%), low cost, and easy manufacturing while exhibiting
strong panchromatic sunlight absorption, long carrier diffusion lengths, and adjustable
direct bandgaps [1–3]. SPSCs should attain high photovoltaic levels and properties fabri-
cated by grid-connection PSCs, while synchronously sustaining remarkable stretchability
and fatigue resistance [4–6]. However, poor crystallinity and fragility upon stretching
would generate plenty of cracks at grain boundaries (GBs), consequently exacerbating the
photovoltaic properties of SPSCs [7–10]. Nonradiative charge recombination, resulting
from these defective GBs, would lead to the loss of photovoltaic efficiency and environ-
mental stability in air [11,12]. Furthermore, cracks at GBs would rapidly spread to the
whole device and the mechanical stability will become aggravated dramatically. Challeng-
ingly, the damaged areas struggle to heal themselves owing to the intrinsic brittleness of
perovskite crystals [13,14]. In this context, various approaches on interface engineering
and polymer doping have emerged to enhance the perovskite crystallinity of stretch-
able perovskite devices [14–17]. By doping organic molecules or metal oxide materials
into films, the crystallinity could be enhanced prominently, and high stretchability (20%
strain) can also be achieved [13,18,19]. On the other hand, PCE of SPSCs could also be
improved with a satisfactory stretchability by doping into the polymer scaffolds inter-
face of GBs [6]. However, self-healing is still the “Achilles’ heel” of optoelectronic and
mechanical stretchability [13,20].
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In our previous work, pyridine-based polysiloxane was prepared and introduced
into perovskite films to enhance the crystallinity. However, the self-healing time and
efficiency still need to be improved, owing to the low transferability of urea-based hydrogen
bonding units. Herein, an innovative self-healable PAT polymer containing plenty of
thiourea hydrogen bonds was designed and introduced into FAPbI3 perovskite films
(Figure 1). Significantly, abundant thiourea hydrogen bonds, endowing the PAT polymer
with superior polymer transferability, afforded the improvement of the self-healing of
cracks at GBs for damaged SPSCs. Accordingly, after 800 cycles of stretching, releasing
and healing (at 100 ◦C for 15 min), the doped SPSCs retained 85% of their original IPCE.
The healing characteristic were demonstrated in situ after stretching at 20% strain for
200 cycles. Moreover, pyridine units were also adapted to form strong intermolecular
coordination interactions and passivate the grain boundary. The doped SPSCs prepared
in 40% relative humidity (RH) demonstrated a champion efficiency of 19.58% with little
hysteresis, almost rivalling those achieved in control atmosphere. This strategy of pyridine-
based supramolecular doping in SPSCs paves a promising way for achieving efficient and
self-healable crystalline semiconductors.
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Figure 1. Proposed mechanisms of passivation and self-healing characteristics, and the physical
structure of devices.

2. Experimental Section
2.1. Materials

Bis(3-aminopropyl) terminated poly(dimethylsiloxane) (PDMS-NH2, Mn = 980 g/mol)
were purchased from Gelest (Morrisville, PA, USA). Adipic dihydrazide (AD, 98%), 1,1′-
thiocarbonyldiimidazole (TU), isophorone diisocyanate (IPDI), dimethyl formamide (DMF),
and anhydrous tetrahydrofuran (THF, 99.5%) were purchased from Aladdin (Shanghai,
China). Titanium aluminum carbide (Ti3AlC2, 200 mesh) and silver nanowires (AgNWs)
were purchased from Beijing Kaifatetao Technology Co. Ltd. (Beijing, China). All the
starting reagents and solvents used in the syntheses were used without further purification.
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2.2. Synthesis of PAT Polymer

For the synthesis of PAT polymer, a THF solution (10 mL) of PDMS-NH2 (1 mmol)
was stirred at 22 ◦C, into which a DMF solution (10 mL) of 1,1′-thiocarbonyldiimidazole
(TU, 2 mmol) was dropped slowly. The solution was stirred at 22 ◦C for 48 h. Consequently,
AD (1 mmol) as the chain extender, dissolved in DMAc, was added into the reaction system
that was further kept at 40 ◦C for 15 h under stirring and N2 atmosphere. Viscous and
transparent solutions of the PAT polymer were finally obtained. Then, the solution was
slowly dropped into vigorously stirred MeOH (400 mL) to obtain the solid precipitate. 1H
NMR (500 MHz, CDCl3, 25 °C): δ (ppm) 1.26 (br, CH2), 1.45 (br, C(S)NHCH2 in octane),
3.49–3.53 (br, C(S)NHCH2), 7.29–7.54 (br, C(S)NH).

2.3. Fabrication of PSC Devices

Initially, both of the bottom and top transparent electrodes (hc-PEDOT:PSS) with a
thickness of ~0.15 mm were prepared, as in previous reports [21]. Briefly, PEDOT:PSS
(Heraeus CLEVIOSTM PH1000, Shanghai, China) with 20 mg/mL Zn(TFSI)2 (Sigma-
Aldrich, Shanghai, China) were mixed together, then the ink were slot-die coated on the
PDMS substrates via optimized shear stress. The conductivity is over 4000 S·cm−1, which
is comparable to that of the PET/ITO. As for matching the energy level alignment of device,
a 30 nm hole-transport layer (HTL) PEDOT:PSS (Heraeus CLEVIOSTM Al4083, Shanghai,
China) was then meniscus-coated the hc-PEDOT:PSS anode. Meanwhile, the PEI (Aldrich,
Shanghai, China, 0.1 wt% diluted by isopropanol) was used to treat the PEDOT:PSS Al4083
layer for the top cathode. The 3M copper tape was applied to adhere to the electrode via
silver glue.

The perovskite precursor with PAT dropping was prepared as below: 549 mg PbI2
(Sigma-Aldrich, Shanghai, China), 46 mg PbBr2 (Sigma-Aldrich, Shanghai, China), 150
mg HC(NH2)2I (Xi’an p-OLED Corp., Xian, China), 40 mg CH3NH3I (Xi’an p-OLED
Corp.), PAT (0, 0.017 wt%, 0.035 wt% and 0.051 wt%) were dissolved in 1 mL mixture
solvent of anhydrous DMF and anhydrous NMP (DMF:NMP, v/v, 9:1). The perovskite
precursor solutions were spin-coated on the hc-PEDOT:PSS anode at a rotation speed of
4000 rpm for 30 s. Then, the perovskite films were heated at 100 ◦C on a hotplate for 15 min.
Then, the perovskite precursor-coated substrate was annealed on a hot plate at 100 °C for
15 min. Subsequently, 60 nm-thick [6,6]-phenylC61-butyric acid methyl ester (PC61BM,
ADS) was meniscus-coated from an anhydrous chlorobenzene solution. After drying,
the top PEI/PEDOT:PSS/PDMS electrode was deposited via a film-transfer lamination
technique: the bottom device was first exposed to air-plasma for about 2 s (flash) [22]. Then,
PEI/PEDOT:PSS/PDMS electrode was transferred onto the PC61BM film and encapsulated
using a vacuum-laminator [20]. All the processes were carried out in ambient environment
with 40% relative humidity, room temperature.

2.4. Solar Cells Characterizations

The current density–voltage (J-V) curves are characterized using Keithley 2400 Source
meter (Beijing, China,). The currents are measured under the solar simulator (EnliTech,
Beijing, China, 100 mW cm−2, AM 1.5 G irradiation) and the reference silicon solar cell
is corrected from NREL. All the measurements are performed under nitrogen at room
temperature. The reverse scan range is from 1.3 V to 0 V and the forward scan range is 0 V
to 1.3 V, with 8.0 mV for each step, and the scan rate is 0.2 V s−1, with a delay time of 30 ms.
The incident photo-to-electron conversion efficiency spectra (IPCE) are detected under
monochromatic illumination (Oriel Cornerstone 260 1/4 m monochromator equipped
with Oriel 70613NS QTH lamp, Beijing, China,), and the calibration of the incident light
is performed with a monocrystalline silicon diode. The area of PSCs was corrected by
calibrated apertures (0.1 cm2). The repeated stretching cycle tests are performed by a
custom-made stretching machine which is actuated by a stepper motor (Beijing, China,
Zhongke J&M). All the results of stretching test results are averaged from over 50 samples.
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As for the self-healing J-V tests, all the samples were re-annealed on a hot plate at 100 °C
for 15 min.

2.5. General Characterizations

X-ray diffraction patterns (XRD) were recorded with a Bruker D8 Discover Diffrac-
tometer (Beijing, China) with Cu Kα radiation (1.5406 Å). The step size, testing temperature
and weight of the samples were 0.02◦, 25 ◦C and 3 g, respectively. The testing angle (2θ),
voltage and current were 5~80◦, 40 kV and 40 mA, respectively. Top-view, cross-sectional
SEM images were obtained with a field-emission scanning electron microscope (JEOL,
JSM-7500F, Tokyo, Japan) at an accelerating voltage of 15.0 kV. AFM were obtained by using
Veeco IIIa Multimode scanning probe microscope. The ultraviolet–visible (UV-Vis) spectra
are recorded by Ocean Optics spectrophotometer (Shanghai, China). Steady-state pho-
toluminescence (PL) and time-resolved photoluminescence (TRPL) measurements at the
peak emission of ~770 nm (on the excitation at 470 nm) are carried out by the steady state
and lifetime spectrometer (FLS920, Edinburgh Instruments Ltd. London, UK). The TRPL
excitation fluence is ~4 nJ·cm−2 from a 405 pulsed laser with a wavelength of 405 ± 8 nm
and pulse width of 45 ps, at a repetition rate of 0.1 MHz. The PL decay data is recorded
using time-correlated single photon counting technique. Fourier transform infrared spectra
(FT-IR, Thermos Nicolet 6700 spectrometer, Berlin, Germany) were collected to characterize
the surface chemical structure.

3. Results and Discussion

Various measurement techniques and theorical simulation were performed to verify
the adequacy of PAT passivation crystallization upon the stretchable perovskite films.
Initially, scanning electron microscope (SEM) of pristine and doped perovskite films were
carried out to illustrate the enhancing of crystallinity (Figure 2a and Figure S5, Supporting
Information). The grain size of perovskite crystals in SEM images were calculated by ImageJ
software. ImageJ is a statistic analysis software based on Java designed by the National
Institutes of Health (New York, NY, USA), which has been widely utilized to calculate and
analyze the nanoparticle size in SEM images [13,20]. Obviously, with the incorporation
of PAT, the grain-size enlarged remarkably from 0.650 µm to 1.25 µm (as shown in the
inset graph). Furthermore, hydrophobic siloxane units were introduced into PAT molecular
structure to increase the environmental stability. Contact angle (CA) measurements of
pristine and doped perovskite films were carried out (Figure S4, Supporting Information).
The CA increased from 62.59◦ to 78.32◦, demonstrating that the siloxane structures in PAT
result in an excellent hydrophobic characteristic, and the moisture-resistance of perovskite
films was dramatically enhanced [23]. Subsequently, steady-state photoluminescence and
optical absorption performances were explored and showed an apparent increase. As
the optical absorption spectra illustrated, the utilization ratio of light spectrum markedly
improved with the introducing of PAT polymer (Figure 2c). Furthermore, it could be
found from fitted the time-resolved photoluminescence curves (TRPL, Figure 2d) that the
perovskite films doped with PAT polymer displayed fast and slow phase lifetimes of τ1 = 8.6
and τ2 = 39.7 ns, respectively, whereas the pristine perovskite films exhibited lifetimes of
τ1 = 5.3 ns and τ2 = 24.2 ns, respectively. Attributed to this decay, the concentration of
trap-states tended to be lower and the electronic quality of doped films were improved
intensively [16,24]. Additionally, XRD spectra were also patterned to explore the enhanced
crystallinity as shown in Figure S6. The weak peak located at 14.4◦ and 28.2◦ can be indexed
to the (110) and (220) plane of α-FAPbI3, respectively.
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In theory, the compact coordination interactions between perovskite crystals and
doped polymer could effectively passivate the GBs to withdraw various environmental
stimuli. To profoundly demonstrate the mechanisms of improved crystallinity, first princi-
ple computational analysis based on density functional theory (DFT) was performed and
the bichelation mechanisms were proposed. Briefly pyridine units in PAT, acted as Lewis
bases and formed a chelation adduct with PbI2 (−1.601 eV) in the precursor, exhibiting
strong intermolecular Pb2+-Namido, I−-Npyridyl, and Pb2+-Oamido coordination inter-
actions (Figure 3a). Consequently, the higher energy barrier generated by the plentiful
PAT-Pb2+ bichelation interactions would restrict the formation of FAPbI3 (formamidinium
iodide as the organic cation). The higher energy barrier increased the critical concentration,
contributing to the enlarged crystal grains. Moreover, the pyridine unit in PAT could be
intensively adsorbed onto FAPbI3 surface with a higher adsorption-energy (−1.852 eV,
Figure 3b) [25]. The original molecule and single-chelation passivation molecule showed an
unstable state due to the lower adsorption energy, −0.183 eV and −0.231 eV, respectively.
Additionally, iodine (I−) vacancy could also be passivated by pyridine units and compen-
sated for the loss of electronic at GBs, preventing the photo-electrons being captured by
these defects and thus reducing non-irradiative recombinations [26]. Therefore, attributed
to these bichelation interactions of PAT as an inhibitor, intact crystallinity were achieved
with oriented growth [27].

To verify the feasibility of PAT dopant and the self-healing of photovoltaic devices, SP-
SCs with a structure of stretchable substrate (PDMS [28])/PEDOT:PSS/perovskites/PCBM/
PEDOT: PSS/PDMS were assembled. To explore the optimal doping concentration of PAT,
PCE of different SPSCs were tested as shown in Figure S7. It could be found that, with the
increase in PAT concentration from 0 (0.05 mg·mL−1) to 0.035 wt% (0.1 mg·mL−1), PCE
increased gradually from 17.51% to 19.58%, which could be attributed to the enhanced crys-
tallinity. However, when the concentration of PAT increased to 0.051 wt% (0.15 mg·mL−1),
large amounts of pinholes formed in perovskite films, resulting in lower PCE. Based on
these tests, 0.035 wt% (0.1 mg·mL−1) concentration were selected as the optimal concen-
tration. Then, the photocurrent density versus photovoltage (J-V) curves were tested and
drawn in Figure 4a. The doped device exhibited a short-circuit current density (JSC) of
21.60 mA/cm2 and an open-circuit voltage (VOC) of 1.14 V under reverse-scan direction,
a JSC of 21.66 mA/cm2, a VOC of 1.12 V under the forward-scan direction. Particularly,
the champion PCE of 19.58% was firstly attained, which intrinsically verified the valid
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bichelation passivation by pyridine in PAT. Figure 4b–e display the detailed performance
values of pristine and doped devices, demonstrating the excellent enhancing of SPSCs with
PAT. The integration of the external quantum efficiency (EQE) spectra of the pristine and
doped devices are shown in Figure 4f, being consistent with the data in Figure 4a.
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It is well known that the moisture-induced volatilization of organic cations has been
restricting the development of PSCs [12]. Subsequently, environmental stability, as well
as photovoltaic performances, is also one of the fundamental challenges to be settled for
SPSCs. The un-encapsulation-doped and pristine devices were fabricated as expected and
exposed in atmosphere whose relative humidity (RH) was kept at around 20%. It is worth
noting that the devices still remain 83% of original PCE after storing for 2000 h (Figure S8,
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Supporting Information). However, the PCE of pristine devices were only 65% of original
devices. In addition to moisture, light stability was also verified under simulated solar
light (AM1.5, 100 mW·cm−2). As shown in Figure S8, even after continuously irradiating
for 300 h, the doped SPSCs still kept almost 94.5% of their initial PCEs. On the contrary, the
PCE of pristine devices decreased rapidly to 60% under the same conditions.

Remarkably, the stretchability and self-healing were deeply explored to enrich the
contents of PSCs to wearable and stretchable electronic devices [29–31]. The changes of
perovskite films under 20% strain were investigated in ambient conditions, as shown in
Figure 5a,b. Apparently, upon stretching to 20% strain, PAT at GBs containing plenty of
thiourea hydrogen bonds were damaged firstly and dissipated the strain energy. After
healing for 15 min at 100 ◦C, the little cracks mostly self-healed, verified in situ by SEM
and AFM images performed. In addition, the self-healing of photovoltaic performances
under 20% strain were also explored (Figure 5c) and verified for the doped SPSCs. Notably,
even after 800 cycles of stretching and releasing, the doped SPSCs still retained 50% of their
original IPCE, while the pristine ones retained 20%. However, after healing for 15 min,
the IPCE of doped SPSCs dramatically increased to 85% due to the healing of cracks,
demonstrating their excellent self-healing and stability. Compared with our previous
work, the shorter healing time and higher healing efficiency may promote the practical
applications of polymer-doped perovskite solar cells.
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4. Conclusions

In summary, SPSCs with recoverable performances were successfully fabricated by
introducing an innovative self-healable PAT with pyridine coordination units and plenty of
thiourea hydrogen bonds. The doped SPSCs achieved a champion PCE of 19.58%, which is
the best efficiency recorded to date for devices based on stretchable substrates. Moreover,
moisture resistance and light irradiation resistance were also exhibited. Even after storing
for 2000 h in 80% RH, the doped devices still retained 83% of their original PCE, attributed
to the hydrophobic characteristic of siloxane in PAT polymer. Significantly, effective bichela-
tion passivation and excellent self-healing properties were demonstrated by photovoltaic
performances characterization and optical images performed in situ. After 800 cycles of
stretching, releasing, and self-healing, the doped SPSCs retained 85% of their original
IPCE. This strategy of bichelation passivation and thiourea hydrogen bonding healing
offers a promising approach for crystalline semiconductors in wearable and stretchable
electronic devices.
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