Review # A Comprehensive Review of Graphitic Carbon Nitride (g-C₃N₄)–Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing Amirhossein Alaghmandfard and Khashayar Ghandi * Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; aalaghma@uoguelph.ca * Correspondence: kghandi@uoguelph.ca **Abstract:** g- C_3N_4 has drawn lots of attention due to its photocatalytic activity, low-cost and facile synthesis, and interesting layered structure. However, to improve some of the properties of g- C_3N_4 , such as photochemical stability, electrical band structure, and to decrease charge recombination rate, and towards effective light-harvesting, g- C_3N_4 -metal oxide-based heterojunctions have been introduced. In this review, we initially discussed the preparation, modification, and physical properties of the g- C_3N_4 and then, we discussed the combination of g- C_3N_4 with various metal oxides such as TiO_2 , ZnO, FeO, Fe_2O_3 , Fe_3O_4 , WO_3 , SnO, SnO_2 , etc. We summarized some of their characteristic properties of these heterojunctions, their optical features, photocatalytic performance, and electrical band edge positions. This review covers recent advances, including applications in water splitting, CO_2 reduction, and photodegradation of organic pollutants, sensors, bacterial disinfection, and supercapacitors. We show that metal oxides can improve the efficiency of the bare g- C_3N_4 to make the composites suitable for a wide range of applications. Finally, this review provides some perspectives, limitations, and challenges in investigation of g- C_3N_4 -metal-oxide-based heterojunctions. **Keywords:** graphitic carbon nitride; g- C_3N_4 ; metal oxide; photocatalysts; sensors; bacterial disinfection; supercapacitors ## 1. Introduction Graphitic carbon nitride (g- C_3N_4) is a polymeric, visible-light-active photocatalyst with a bandgap of ~2.7 eV (~460 nm), that was introduced since 2006 [1]. g- C_3N_4 has become an important material in chemistry, physics and engineering because of its facile, low-cost, environmentally-friendly preparation methods with promising stability and good physicochemical properties for use in a wide range of applications [2]. Compared with other semiconductors, g- C_3N_4 can be easily synthesized by various methods with desirable electrical structures as well as morphologies, and high thermal stability up to 600 °C in the air [3,4]. The most common precursors used to prepare g- C_3N_4 are melamine, dicyandiamide, cyanamide, urea, thiourea, and ammonium thiocyanate. Among different types of carbon nitrides such as α - C_3N_4 , β - C_3N_4 , cubic C_3N_4 , pseudocubic C_3N_4 , with bandgaps of around 5.49 eV, 4.85 eV, 4.30 eV, and 4.13 eV, respectively, g- C_3N_4 is the most stable phase under ambient conditions [2]. In order to enhance the performance and modulate the properties of g- C_3N_4 , researchers have proposed different methods such as doping and making heterojunction with other materials. Examples of these materials are metal oxides, metal sulfides, noble metals, and carbonaceous nanomaterials [5–12]. Among them, metal oxides are the most common ones to improve the efficiency of g- C_3N_4 , e.g., increasing the light absorption and reducing the recombination of electrons and holes by promoting the separation of charge carriers. This is mainly due to their suitable band structures [13–18]. The g- C_3N_4 structure has been widely used in many applications, in particular in energy-related applications. Energy consumption to provide electricity and heat will rise Citation: Alaghmandfard, A.; Ghandi, K. A Comprehensive Review of Graphitic Carbon Nitride (g-C₃N₄)–Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. *Nanomaterials* **2022**, *12*, 294. https://doi.org/10.3390/nano12020294 Academic Editor: Detlef W. Bahnemann Received: 10 December 2021 Accepted: 5 January 2022 Published: 17 January 2022 **Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Nanomaterials **2022**. 12, 294 2 of 73 to twice its current consumption by 2050, which is mainly due to industrialization, urbanization, and population growth [19,20]. The consumption of fossil fuels, such as natural gas, coal, and oil, should be decreased as their usage results in detrimental environmental impacts [2,19,20]. Two remedies are solar energy and photocatalysis [21–24]. Both require suitable semiconductors such as g-C₃N₄ with superior activities for different catalytic reactions, such as organic pollutants degradation, H_2 , and O_2 generation by water splitting and CO_2 reduction to hydrocarbon fuels [14,25–29]. The g-C₃N₄ can also be used for water disinfection and bacterial control [25,30]. It is evident from Figure 1 that the number of publications, collected from the Scopus database, has been growing fast from 2012 in the field of g- C_3N_4 and g- C_3N_4 -metal oxide-based heterojunctions. Figure 1a shows the number of all publications on g- C_3N_4 since 2012, showing that this topic is among the hot research areas. It is therefore important to provide a comprehensive review of the g- C_3N_4 -metal oxide composites. To the best of our knowledge, no publication reviews a wide range of papers to explain the applications and structure of these heterojunctions comprehensively. **Figure 1.** Number of annual publications (a) using "g-C₃N₄*" as a keyword since 2012, (b) using "g-C₃N₄*" with metal oxides ("TiO₂", "ZnO", "WO₃", "Iron Oxide", "Tin Oxide", and other metal oxides) as keywords since 2012. Adapted from Scopus database, dated 1 October 2021. This review covers the research up to 1 October 2021. We highlighted some general information about the structure and characterization of the bare g- C_3N_4 . We also discussed some modifications such as doping to improve the g- C_3N_4 properties. As well, we have also summarized the research on modification of the structure and properties, to enhance the efficiency of g- C_3N_4 for different applications, via combining g- C_3N_4 with metal oxides such as TiO_2 , ZnO, iron oxide, WO_3 , and tin oxide. After reviewing g- C_3N_4 -metal oxides, we focus on the applications of these kinds of heterojunctions. In the last part of this review article, we suggest some potential investigations for the future in this field that have not been conducted to this date to our knowledge. We also recommend some studies to better understand the nature of these heterojunctions. Most graphs in this review are reproduced by us from the data in original research papers cited, unless stated otherwise in the captions where the permission has been obtained. # 2. Structure and Properties of g-C₃N₄ Melamine, melam, melem, and melon are recognized as heptazine- and triazine-based molecular compounds (coplanar tri-s-triazine unit as the elementary structural motif of $g-C_3N_4$ structure) to prepare $g-C_3N_4$. As illustrated in Figure 2, triazine (C_3N_3) and tri-s-triazine/heptazine (C_6N_7) rings are the basic tectonic units of $g-C_3N_4$. Nanomaterials **2022**, 12, 294 3 of 73 **Figure 2.** (a) Triazine and (b) tri-s-triazine (heptazine) structures of g- C_3N_4 (gray, blue, and white balls are carbon, nitrogen, and hydrogen, respectively). Yan et al. properly studied the phase transition during heating of melamine from room temperature to $1000\,^{\circ}\text{C}$ with a heating rate of $10\,^{\circ}\text{C}/\text{min}$ [31]. Figure 3a shows that melamine sublimation and thermal condensation occur at 297 to 390 $^{\circ}\text{C}$, observed from significant endothermic differential scanning calorimetry (DSC) peak and drastic thermogravimetric analysis (TGA) weight loss. Other endothermic peaks at 545 and 630 $^{\circ}\text{C}$ are attributed to the materials' deamination and decomposition, respectively. **Figure 3.** (a) Melamine and (b) g- C_3N_4 thermal analyses, Copyright © 2022 American Chemical society [31]; (c) thermogravimetric curve of annealing of melamine; (d) C/N values of melamine products at different temperatures, Copyright © 2022 Elsevier [32]. Figure 3b shows the g- C_3N_4 thermal stability and phase transitions in an open system. This figure shows that g- C_3N_4 has high stability below 600 °C, which is 30 °C lower than Nanomaterials **2022**, 12, 294 4 of 73 the melamine decomposition temperature (630 °C). Beyond this temperature, g-C₃N₄ starts to decompose into small molecules (e.g., CO₂ and NH₃) [31]. The stability of g-C₃N₄ is higher in the semiclosed ammonia atmosphere than in the open system, mainly due to the inhibition of deamination under ammonia atmosphere. The TGA result illustrated that there is no residue at 750 $^{\circ}$ C [31]. The annealing temperature is a vital factor in the preparation and properties of the final g-C₃N₄ structure. Praus et al. used melamine as a precursor to synthesize g-C₃N₄ in an air atmosphere [32]. The TGA results, illustrated in Figure 3c, demonstrates that by heating the melamine to 400 °C melen is formed. The main reason for the weight loss at this temperature range is the elimination of ammonium. By further heating up to 600 °C, melon is obtained by melem polymerization [33]. In other words, at higher temperatures, the g-C₆N₉H₂ or g-C₃N_{4.5}H is more stable than g- C_3N_4 . Figure 3d illustrates that the C/N molar ratio is temperature dependent. The main difference in the C/N value of the synthesized g-C₃N₄ compared to the theoretical value of 0.75 for g-C₃N₄ is due to the incomplete condensation of the amino groups of melon and the low degree
of polymerization. Reaction atmosphere is another factor affecting the g-C₃N₄ by providing defects and disordered structures. For instance, in the H₂ atmosphere, by dicyanamide thermal condensation, more nitrogen vacancies were formed [34]. # 3. g-C₃N₄ Characterizations The presence of X-ray diffraction (XRD) peaks at about 13 and 27° is an indication of the formation of g-C₃N₄, corresponding to the (002) and (100) diffraction patterns, respectively [35-37]. Paul et al. showed the effects of calcination temperature on the naked g-C₃N₄ using XRD data, Fourier transform infrared spectra (FT-IR), bandgap structure, Brunauer-Emmett-Teller (BET), and photocatalytic recyclability data [36]. Due to the polycondensation of melamine at lower than 400 °C, the crystallinity of the g-C₃N₄ structure is detected (Figure 4a). In contrast, Figure 4b demonstrates that no significant differences are revealed in FTIR spectra at different calcination temperatures. In the FTIR spectra, the characteristic bands with high intensity at the wavenumber about 1640, 1569, 1412, 1328, and 1240 cm⁻¹ are related to the stretching modes of C=N and C-N heterocycles. Besides, the strong peaks at 815 cm^{-1} are attributed to the s-triazine units. The broad range peak between 3000 cm⁻¹ and 3500 cm⁻¹, is due to the N-H stretching and the remaining water molecules in the structure [35–39]. The BET specific surface areas were estimated to be 37.8, 73.7 and 65.6 $\text{m}^2 \cdot \text{g}^{-1}$ for $\text{g-C}_3 \text{N}_4$ synthesized at the calcination temperature of 450, 550 and 650 °C, respectively. Calcination temperature also affects the g-C₃N₄ bandgap. The bandgap when calcinated at 550 °C is narrower than when calcinated at 450 and 650 °C (Figure 4c) [36,38,40]. When the temperature increases to 700 °C, a higher bandgap is observed. In other words, the higher the degree of g-C₃N₄ polymerization, the larger the π -plane conjugation degree of heptazine rings via N_2 atoms, at the higher temperature. To assess the catalytic activity, ultraviolet-visible (UV-vis) diffuse reflectance spectrums (DRS) of the materials were determined at different temperatures [36]. As discussed earlier the results show that the bandgap of g-C₃N₄ prepared at 550 °C is narrower than those formed at 450 and 650 °C, so the structure prepared at the 550 °C absorbs more visible light, which can lead to the more appealing photoactivity. Moreover, the adsorption and degradation efficiencies for methylene blue dye by g-C₃N₄ prepared at 500 °C is 34.4% and 62.6%, which is higher than those synthesized at 450, 550, 600, and 650 °C [36]. Figure 4d reveals that the prepared g-C₃N₄ at a calcination temperature of 550 °C also showed good stability even after four cyclic runs. The pH, and catalyst loading are also important factors in the adsorption and degradation efficiency [36]. Nanomaterials **2022**, 12, 294 5 of 73 **Figure 4.** (a) XRD, (b) FTIR, (c) bandgaps of g- C_3N_4 prepared at different calcination temperatures, and (d) the photocatalytic recyclability degradation of dyes using prepared g- C_3N_4 at 550 °C [36]. Chen and coworkers illustrated that the PL depends on the condensation temperature (Figure 5a), showing the strong and stable emission in the range of 450–510 nm, mainly due to the π^* – π , and π^* –LP transitions [41]. The increase in the amount of the tri-s-triazine content at high temperature leads to the higher π states and cause orbital overlap and reduces the PL intensity. The UV-Vis spectra of the g-C₃N₄ at different synthesis temperatures are illustrated in Figure 5b. Like the PL emission peak, the strong absorption peaks at 450 nm and 500 nm are due to the π^* – π and π^* –LP transitions. Another study, conducted by Dias et al., concluded that during thermal treatment of g-C₃N₄, the enhanced porosity is mainly due to the creation of N vacancies and defects/holes within the nanosheets, resulting in the improvement of optoelectrical properties. Not only the treatment leads to the appearance of $n \to \pi *$ transitions, but we can also observe red shift in the absorption spectra. Moreover, it can enhance the photocatalytic activities by improving the carrier separation, reducing charge recombination, which is mainly due to the presence of trap states [42]. Furthermore, researchers also investigated the effect of the different dopants on the absorption properties of g-C₃N₄ [43]. These results showed the effect of temperature and dopants on the optical properties of g-C₃N₄. Yuan et al. showed the photograph of the melamine and g-C₃N₄ synthesized at different temperatures, graphically showing the color variation in the deionized water under UV light (365 nm) (Figure 5c) [44]. By increasing the synthesis temperature, the emitted color varied from blue-violet to green, and the intensity went through a maximum at 550 °C. The impact of the temperature on the PL spectra was demonstrated by the 5–10 nm blue-shift at lower temperatures, due to a less delocalized orbital resulting in a larger bandgap. Figure 5d also reveals strong PL emission spectra Nanomaterials **2022**, 12, 294 6 of 73 with a much smaller blue-shift. This research is among the rare studies investigating the effect of the environment on PL emission spectra. The g- C_3N_4 time-resolved PL spectra shows 5 ns electron-hole recombination at 25 °C [45]. **Figure 5.** (a) The PL spectra under 325 nm excitation (b) UV-Vis spectra of g- C_3N_4 , prepared at different temperatures, Copyright © 2022 American Chemical Society [41]; (c) The g- C_3N_4 in deionized water under 365 nm light; (d) the PL spectra of the g- C_3N_4 , g- C_3N_4 in water and in the DI water [44]. # 4. g-C₃N₄ Preparation Synthetic techniques for graphitic carbon nitride $(g-C_3N_4)$ were first reviewed by Thomas et al. in 2008 [26]. $g-C_3N_4$ can be synthesized with various techniques such as chemical vapor deposition (CVD), solvothermal, and plasma sputtering deposition. Chemical vapor deposition to deposit $g-C_3N_4$ thin film on indium-tin-oxide (ITO), was performed by Ye et al. [27]. In this method, the mixture of thiourea and melamine was put at the bottom of a crucible with ITO substrate above it and finally transferred to the muffle furnace. CVD has several advantages and disadvantages. To be more specific, thin films prepared by CVD are cohesive in all dimensions, which is suitable for elaborately shaped pieces and helps users to fill the insides, undersides, high aspect ratio holes, etc. CVD does not require high vacuum and can deposit a wide variety of materials to prepare high purity composites. In contrast, physical vapor deposition (PVD) such as sputtering requires a high vacuum atmosphere. The drawback of CVD is that some CVD precursors are costly, and can be highly toxic, explosive, or corrosive, such as Ni(CO)₄, B₂H₆, and SiCl₄, respectively. The by-product of this method, including CO, or HF, can also be hazardous. The substrates are limited since they should tolerate high temperatures [46]. The graphitic carbon nitride nanocone arrays were grown onto the Ni-coated Si (100) substrate, using plasma sputtering deposition [47]. This method requires a vacuum chamber and a plasma source with a discharge cavity. Thermal condensation is an economical, energy-efficient approach, which has a higher chance for scaleup for commercialization. The solvothermal methods have some drawbacks such as more synthetic steps compared Nanomaterials **2022**. 12, 294 7 of 73 to the thermal condensation method; however, they can be cost-effective, low energy consumption methods with more controllable size and morphology [48–50]. Several C-N precursors such as urea, thiourea, melamine, cyanamide, and dicyanamide are used for g- C_3N_4 synthesis (Figure 6a). The procedure is depicted in Figure 6b [51–55]. Among them, cyanamide and its derivates such as dicyanamide suffer from low solubility and high cost [56]. Pham and Shin showed that urea and melamine cause poor interconnection of g-C₃N₄ to NiTiO₃ since melamine provides a segregated g-C₃N₄ structure with no connection to the NiTiO₃ phase, and urea makes a condensed g-C₃N₄ structure by releasing oxygen-containing gas during the thermal condensation [56]. Dicyandiamide and thiourea with higher reactivity towards a polymerization reaction create strong Ti-N bonds in the composite, and allow for charge carrier formation, which is important for degradation of organic contaminants [57]. The order of photodegradation ability of bisphenol A (BPA) is $g-C_3N_4$ -Melamine in N_2 atmosphere $\approx g-C_3N_4$ -dicyandiamide $> g-C_3N_4$ -dicyandiamide in N_2 atmosphere > g-C₃N₄-Melamine > g-C₃N₄-Urea \approx g-C₃N₄-Urea in N₂ atmosphere [58]. The differences between the catalytic activities are mainly due to the different preparation procedures, which can change the type, the density of active sites, the network of sp2 hybridized carbon, nitrogen, and oxygen-containing functional groups [58]. Jung et al. showed that the precursor could affect the morphology of the g-C₃N₄-based systems [59]. The good binding of dicyandiamide (DCDA) to ZnO nanoparticles, lead to the formation of the core-shell morphology DCDA-CNZ composite, resulting in improving the degradation of methylene blue by charge transfer [59]. In contrast, due to the weak interaction of thio and urea with ZnO, thio and urea-CNZ have a porous and segregated morphology and produce gases during the polymerization [59]. **Figure 6.** (a) Synthesis precursors and calcination temperature for g- C_3N_4 preparation; (b) synthesis procedure using cyanamide (dicyanamide), urea, thiourea, and melamine for g- C_3N_4 synthesis (gray, blue, red, yellow, and white balls are carbon, nitrogen, oxygen, sulfur, and hydrogen atoms, respectively). Nanomaterials **2022**, 12, 294 8 of 73 As shown in Figure 6b, melamine can form from urea, thiourea, and cyanamide (dicyanamide), and then
converted to tri-s-triazine (and melam) rings at ~335 and ~390 °C, respectively, and subsequently, g-C₃N₄ discovered from tri-s-triazine polymerization, by heating to 520 °C. Besides, the skeleton becomes prepared over 600 °C, and then beyond 700 °C, g-C₃N₄ is entirely decomposed into small molecules (e.g., NH₃). Figure 7a,b shows the urea and thiourea conversion mechanism into melamine. In this reaction, oxygen atoms in the urea structure help to facilitate g-C₃N₄ condensation and improve stability [60]. CO₂ and NH₃ are the by-products of the reaction of the melamine formation from urea, which can be recycled again to urea. In the formation of the g-C₃N₄, the presence of a crucible lid is so important since not only it prevents the gasses from escaping, but it also provides high pressure in the synthesis atmosphere, which is necessary for the preparation of g-C₃N₄. In other words, a covered alumina crucible should be used during thermal analysis to avoid melamine sublimation. **Figure 7.** Polymerization of (a) urea and (b) thiourea into a g- C_3N_4 at high temperatures (gray, blue, red, yellow, and white balls are carbon, nitrogen, oxygen, sulfur, and hydrogen atoms, respectively). During the heating reaction, the created gas bubbles act as soft templates to produce 24 nm pores in the yellow-colored graphitic carbon nitride [61]. Thiourea is used as another precursor for the g-C₃N₄ formation, and sulfur content improves the connectivity and packing of g-C₃N₄ sheets [60]. The overall conversion of urea and thiourea to melamine is endothermic. The first endothermic reaction of changing urea and thiourea to melamine is at temperatures higher than their melting temperatures, which are ~133 and ~180 °C, respectively, while at the higher temperature, melamine and heptazine were prepared in low pressure at, e.g., atmospheric pressure. To be more specific, the second reaction requires preheating to 260–280 °C to decompose urea in the presence of ammonia, passed over the activated alumina, silica gel, silica-alumina gel, or alumina gel. In order to completely form melamine, the vapors obtained from the first reaction should be maintained at ~400 °C [62]. It should also be noted that the g-C₃N₄ can be prepared by cyanamide and dicyanamide. Specifically, by polycondensation of cyanamide molecules and dicyandiamide, melamine was prepared at ~203 and ~234 °C, respectively [2]. ## 5. g-C₃N₄ Modifications # 5.1. Doping The presence of heptazine ring in the g- C_3N_4 affects electronic structure, toxicity, and density, and is important for applications, especially as biosensors, for photocatalytic hydrogen evolution, and CO_2 conversion. The density-functional theory (DFT) showed that the bandgap of the fully condensed g- C_3N_4 is lower than melem, and polymeric melon, which Nanomaterials **2022**, 12, 294 9 of 73 are 2.1 eV, 3.5 eV, and 2.6 eV, respectively [63–65]. As previously reported, the polymeric melon has a bandgap close to the defect containing bulk g-C₃N₄ [64]. There are mainly two types of experimental results to calculate the semiconductor bandgap. Specifically, the position of the conductive band (CB) and valance band (VB) can be measured by electrochemical impedance spectra (EIS), and Mott-Schottky (M-S) curve [63]. The result of both methods showed that the position of the conduction band (CB) and valance band (VB) of the g- C_3N_4 is about -1.3 eV and 1.4 eV, respectively [3,66]. The semiconductors' band edges can be tuned by functionalizing, doping, compositing with other materials. Liu et al. reviewed element-doped carbonized nitrogen in detail and investigated their organic pollutants degradation applications [3]. Ai et al. showed that the bandgap value of the phosphate doped g-C₃N₄ decreased from 2.57 eV to 2.49 eV, 2.43 eV, and 2.41 eV by increasing the content of the P element [67]. Other researchers demonstrated that the higher O, Na, Ag, and Co content doped to the g-C₃N₄ structure leads to the lower bandgap value [68–71]. Li et al. investigated the effect of different ratios of Sm to g- C_3N_4 . They illustrated that by varying the percentile molar ratios of Sm(NO₃)₃·5H₂O with melamine from zero to 0.01%, 0.025% and 0.05%, the bandgap decreased from 2.63 eV to 2.57 eV, 2.50 eV, and 2.44 eV, respectively, so Sm narrowed the g- C_3N_4 bandgap [72]. Table 1 is illustrated the effect of different dopants on the band edge position. We will further discuss and analyze the properties and applications of different g-C₃N₄-metal oxides. g-C₃N₄ is a metal-free semiconductor, which possesses a narrow bandgap suited for visible light absorption (45% of solar energy output) [66]. To have an in-depth investigation of the optical properties of the g-C₃N₄, we will investigate some characteristics of the synthesized g-C₃N₄ such as photoluminescence (PL) and UV-vis spectra. The origin and nature of the PL emission come from three different transition pathway including $\pi^*-\pi$, σ^* —the nitride atom bridge's lone pair (LP), and the π^* -LP transition. # 5.2. Metal Oxide-Based g-C₃N₄ Nanocomposite Different types of metal oxides, such as TiO_2 , ZnO, WO_3 , iron oxide, tin oxide, etc., can improve the photocatalytic efficiency of the g- C_3N_4 by reducing the electrons-holes recombination and promoting the charge carriers' separation. Consequently, metal oxide-based g- C_3N_4 nanocomposites can be used in different applications with enhanced electric, magnetic, and photocatalytic properties, such as H_2 generation, CO_2 reduction, NO oxidation, degradation of organic and inorganic dyes and other organic material, removal of toxic metal species, especially Cr (VI) from water, antibodies decontamination, solar cells, sensing, etc. [100-104]. In this part of the review, some metal oxide-based g- C_3N_4 heterojunction structures are compared with the g- C_3N_4 . There are five types of charge carrier separation for g- C_3N_4 -metal oxide photocatalysts: - (1) Type I heterojunction, - (2) Type II heterojunction, - (3) Z-scheme heterojunction, - (4) p-n heterojunction, - (5) Schottky junction. Most g-C₃N₄-metal oxide photocatalysts show type II and Z-scheme mechanisms for charge carrier separation. In this section, we will discuss these two heterojunction types. In type II heterojunctions, two semiconductors are bound to form a stable heterojunction, and the position of the VB of semiconductor A is higher than that of semiconductor B. In this case, because of the difference in voltages, the photoinduced hole migrated from the VB of semiconductor B to that of semiconductor A (Figure 8a). On the other side, electrons are transferred from CB of semiconductor A to that of semiconductor B. The enhanced electrons and holes separation will reduce the rate of the recombination and promote the electrons' lifetime. The construction of type II systems is highly desired for photocatalysis for different applications [7]. *Nanomaterials* **2022**, 12, 294 **Table 1.** The electrical properties and application of doped g- C_3N_4 . | Doping Element | $\mathbf{E}_{\mathbf{c}}$ | $\mathbf{E}_{\mathbf{g}}$ | $\mathbf{E}_{\mathbf{v}}$ | Application | Further Explanation | Ref | | |----------------|---------------------------|---------------------------|---------------------------|---|---|-------|--| | | -1.11 eV | 2.55 eV | 1.44 eV | Catalytic aromatic alcohols | The presence of P enhances the aldehyde selectivity. | [73] | | | Phosphorus | -0.33 eV | 2.58 eV | 2.25 eV | Photocatalytic hydrogen evolution | The g-C ₃ N ₄ tube doped with P improves light absorption. The quantum efficiency of the P-doped g-C ₃ N ₄ tube is 4.7 and 22.4 times higher than that of the g-C ₃ N ₄ tube and bulk g-C ₃ N ₄ . | [74] | | | | -1.34 eV | 2.79 eV | 1.44 eV | Photocatalytic CO ₂ conversion | The P-modified g- C_3N_4 demonstrates the highest photocatalytic efficiency. | [75] | | | | -1.17 eV | 2.69 eV | 1.52 eV | Photocatalytic hydrogen evolution | The P-doped structure has a high efficiency in accordance with the recombination, migration, and separation of electron-hole pairs. | [76] | | | | $-1.04 \; eV$ | 2.92 eV | 1.88 eV | Photocatalytic nitrogen fixation | Sulfur enhances the adsorption and activation of N_2 molecules of g - C_3N_4 porous nanosheets and uses for photocatalytic nitrogen fixation. | [77] | | | Sulfur | −1.23 eV | 2.80 eV | 1.57 eV | Photocatalytic hydrogen evolution | The H_2 generation rate of N-doped MoS_2 and S-doped $g-C_3N_4$ is about 23 and 38 times higher than that of pure SCN and NMS with 28.8 μ mol/g/h and 17.4 μ mol/g/h, respectively. | [78] | | | | -1.3 eV | 2.67 eV | 1.34 eV | Photocatalytic hydrogen evolution | The BiPO ₄ /S-C ₃ N ₄ improves photocatalytic activity by facilitating carrier transportation. | [79] | | | | $-1.3~\mathrm{eV}$ | 2.69 eV | 1.39 eV | Photocatalytic bisphenol degradation | $AgSC_3N_4 \text{ enhanced the photocatalytic activity since } Ag\text{ has a great electron storage ability.}$ | [80] | | | | -1.32 eV | 2.66 eV | 1.34 eV | Photocatalytic hydrogen evolution | Sulfur promotes the photocatalytic ability of hydrogen evolution about four times higher than the bulk g-C ₃ N ₄ . | [81] | | | | -0.88 eV | 2.61 eV | 1.73 eV | Photocatalytic CO ₂ reduction | The porous O-doped graphitic carbon nitride reveals enhanced photocatalytic activity. | [82] | | | | -0.76 eV | 2.57 eV | 1.84 eV | Photocatalytic hydrogen evolution | This result of the band edge value is related to the 1.1% oxygen content mass percentage. | [83] | | | | -0.37 eV | 2.53 eV | 2.15 eV | Thouseauth ite hy arogen evolution | This result of the
band edge value is related to the 2.5% oxygen content mass percentage. | | | | Oxygen | −1.08 eV | 2.93 eV | 1.85 eV | Photocatalytic hydrogen evolution and 2,4-dinitrophenol | The oxygen dopant with Pt exhibits excellent photocatalytic hydrogen evolution in overall water splitting with 29.6 μ mol/(g·h), and O-g-C ₃ N ₄ NR reached up to approximately 100% removal efficiency of 2,4-dinitrophenol within 75 min. | [84] | | | | 1.51 eV | 2.70 eV | -1.19 eV | | This band edge value is related to $CN-x = 0$ (x refers to the quantity of citric acid (gr)). | | | | | 1.50 eV | 2.62 eV | -1.16 eV | photocatalytic water splitting | This band edge value is related to CN-0.2. | [85] | | | | 1.46 eV | 2.52 eV | -1.06 eV | photocatary tie water splitting | This band edge value is related to CN-0.4. | [63] | | | | 1.46 eV | 2.49 eV | −1.03 eV | m 1 11 11 11 11 11 11 11 11 11 11 11 11 | This band edge value is related to CN-0.6. | FO (1 | | | Carbon | −1.13 eV | 2.54 eV | 1.41 eV | Thermal oxidation etching process | C-doped g - C_3N_4 improves the catalytic activity by extending the visible light absorption. | [86] | | | Boron | -0.8 eV | 2.8 eV | 2 eV | Photocatalytic Oxygen evolution,
Cr(VI) reduction | This structure is used for $Cr(VI)$ reduction and O_2 generation simultaneously. | [87] | | | Nitrogen | -0.5 eV | 2.4 eV | 1.9 eV | Photocatalytic | This band edge value is related to the nitrogen-doped g - C_3N_4 used for Photocatalytic tetracycline degradation. | [88] | | | J | -0.6 eV | 2.5 eV | 1.9eV | tetracycline degradation | This band edge value is related to the nitrogen-doped g-C ₃ N ₄ nanosheets. | | | | | −0.33 eV | 1.82 eV | 1.49 eV | Photocatalytic phenol degradation | N-doped g- C_3N_4 possesses a narrow bandgap since the N atom introduced an inter-bandgap, resulting in the redshift in the absorption UV-vis peak. | [89] | | *Nanomaterials* **2022**, 12, 294 Table 1. Cont. | Doping E | lement | $\mathbf{E}_{\mathbf{c}}$ | $\mathbf{E_g}$ | $\mathbf{E}_{\mathbf{v}}$ | Application | Further Explanation | Ref | |----------|--------|---------------------------|-------------------|---------------------------|--|---|------| | | Na | -1.16 eV | / 2.77 eV 1.36 eV | | 17α-ethynylestradiol
mineralization | The photostable Na doped g- C_3N_4 content causes the photoabsorption enhancement. | [70] | | Metal | K | −1.08 eV | 2.72 eV | 1.64 eV | Photocatalytic CO ₂ reduction | K content causes defects leading to improving catalytic activity by reducing the electron-hole recombination. | [90] | | | Ti | −1.02 eV | 2.5 eV | 1.48 eV | Photocatalytic enhancement | Ti-doped g- ${ m C_3N_4}$ caused narrower bandgap and reduced carrier recombination resulting in higher absorption. | [91] | | | Mn | −0.59 eV | 2.56 eV | 1.97 eV | Photocatalytic methylene blue degradation | The Mn-doped g - C_3N_4 nanoribbon reveals a great potential photocatalytic agent for water splitting coupling with MB degradation. | [92] | | | Ag | - | 2.60 eV | - | Photocatalytic oxidation of methylene blue | The higher Ag content leads to the lower bandgap of the structure, and a lower recombination rate is observed in the Ag-doped $g-C_3N_4$. | [93] | | | Fe | $-1.10~\mathrm{eV}$ | 2.50 eV | 1.40 eV | Environmental pollution control | Fe ³⁺ with nitrogen in heptazine forms a σ - π bond and can accelerate the electron-hole separation. | [94] | | | Co | −0.36 eV | 2.62 eV | 2.26 eV | Photo-electrochemical water oxidation | Co-doped g- C_3N_4 reduces the electron-hole recombination rate and demonstrates promising photocurrent and electrical conductivity. | [95] | | | P, O | $-0.80~\mathrm{eV}$ | 2.30 eV | 1.50 eV | Photocatalytic fluoroquinolone antibiotics degradation | The degradation rate of enrofloxacin was 6.2 times higher for phosphorus and oxygen co-doped graphitic carbon nitride (POCN) than $g-C_3N_4$. | [96] | | Co-doped | P, S | - | 2.6 eV | - | Photocatalytic hydrogen evolution | The high photocatalytic activity can be observed because of the synergic impact of P and S co-doping. | [97] | | | B, F | - | 2.72 eV | - | Photocatalytic hydrogen evolution | B, F co-doped g - C_3N_4 improves the charge generation and the separation efficiency. | [98] | | | Na, O | - | 2.72 eV | - | Photocatalytic hydrogen evolution | N_a , O co-doped g- C_3N_4 reveals that photocatalytic H_2 production activity was seven-fold improved by enhancing absorption of UV-vis spectra. | [99] | Nanomaterials **2022**, 12, 294 12 of 73 **Figure 8.** The two most common heterojunction types in g- C_3N_4 -metal oxide photocatalysts: (a) type II heterojunction, (b) Z-scheme heterojunction (white and dark balls are holes and electrons, respectively). The other heterojunction type is the direct Z-scheme photocatalytic system, which was initially suggested by Bard et al. in 1995 [105]. As shown in Figure 8b, in this heterojunction type, the generated electrons on the CB of semiconductor B transfer to the VB of semiconductor A and combines with the photogenerated holes. This type of photocatalysts can be helpful for both reducing the recombination by an increase of the electrons and holes separation and improving the redox ability [7]. Even if the electrons, and holes combine and generate hv in these heterojunctions, other photogenerated carriers can replace them. Different patterns of the migration of electrons and holes are due to the driving force of the electric field, formed by the band edge positions of different semiconductors. Depending on the electrical field direction, charge carriers start moving to reduce the energy of the system. Thus, different systems are defined based on the migration of electrons and holes in the heterojunction. The difference in each type is mainly due to the movement of electrons and holes. All types can be used in different photocatalytic activities. # 5.2.1. TiO₂-g-C₃N₄ Among the investigated semiconductor photocatalysts, TiO_2 has a suitable conduction band position, excellent stability, cost-effective preparation approach and is one of the most promising catalytic materials [106]. Fujishima and Honda were pioneers who researched using TiO_2 photocatalytic behavior in 1972 [107]. To improve TiO_2 's photocatalytic efficiency, researchers would like to reduce the bandgap of the system by doping with other elements and compositing with other compounds to absorb visible light energy [108]. To deal with TiO_2 's limitations, researchers have been using doping elements and compositing with organic material, such as conjugated polymers and g- C_3N_4 , since they have a narrow bandgap [108]. Boron is an effective dopant, which can improve the photocatalytic applications of TiO_2 coupled with carbon nitride, as shown by Christoforidis and coworkers [109]. In another study conducted by this research group, TiO_2 and carbon nitride nanosheets were synthesized by hydrothermal in-situ approach, improving the catalytic application. The mentioned materials have high porosity to ensure a high concentration of reactants in the vicinity of catalytic sites, used for CO_2 reduction [110]. Various synthetic methods such as co-calcination, hydrothermal treatment, solvothermal, and microwave-assisted to prepare the g- C_3N_4 -TiO₂ heterojunction [111–113]. The preparation of g- C_3N_4 -TiO₂ heterojunction widely includes the hydrothermal and calcination method [114]. Figure 9 illustrates the schematic of the TiO₂/g- C_3N_4 preparation route. Nanomaterials **2022**, 12, 294 13 of 73 **Figure 9.** Schematic illustration of TiO₂ / g-C₃N₄ heterojunctions synthesis approach. The conductive band of g-C₃N₄ ($E_{CB} = -1.4 \, eV$) is higher than those of anatase TiO_2 ($E_{CB} = -0.5 \, eV$), so the proper bandgap alignment helps to reduce the electron-hole recombination by increasing their separation and boost the space charge accumulation at the interface. Recombination is defined as a process of electrons and holes annihilation. The most common type of recombination is known as radiative recombination, which occurs when electrons and holes in a conductive and valance band, respectively, recombine and emit a photon. As discussed in the following sections, the presence of electrons and holes will assist us in different stages of photocatalytic activities. So, suppressing the charge recombination is crucial in the photocatalytic applications of semiconductors and heterojunctions. At the end of section three, we talked about how g-C₃N₄-based heterojunction separates the position of the electrons and holes. The charge carrier separation makes electron-holes recombination less favorable, so we can use these heterojunctions for photocatalytic activities. Figure 10a illustrates the conduction, valance, and bandgap position of the g- C_3N_4 and TiO_2 and reveals that the g- C_3N_4 - TiO_2 structure improves the photo-induced electrons flow from the g- C_3N_4 conductive band to that of TiO_2 , which promotes the photoelectrical ability of the final composite. Thus, the photogenerated electrons tend to accumulate in the TiO_2 conductive band since the conductive band of TiO_2 is more positive than that of g- C_3N_4 , (Figure 10a). In contrast, the holes transfer in an inverse way, which can provide type II heterojunction [112,115]. Due to the high recombination barrier, the heterojunction provides a high interfacial area for facilitating carrier transformation and separation to suppress the electron-hole recombination to improve the photocatalytic activity. Kočí et al. successfully deposited TiO₂ on the g-C₃N₄ surface by hydrothermal approach followed by calcination processing [116]. In this research, the mixture of TiO₂ and g-C₃N₄, prepared by thermal hydrolysis and polycondensation from
melamine, respectively, should be mixed in distilled water for 16 h in an air atmosphere dried at 60 °C. Finally, the dried sample should be maintained at 450 °C in a covered crucible with a heating ramp of 15 °C/min in the air in a muffle furnace. The highest photocatalytic performance was obtained under UVA ($\lambda = 365$ nm) irradiation compared to other types of ultraviolet (UV) rays (UVB, and UVC), which is attributed to the high separated charge carrier. The low rate of recombination leads to the great photocurrent stability. In another work on g-C₃N₄-TiO₂ heterojunction structure, Alcudia-Ramos et al. demonstrated that the prepared heterojunction has a higher photocatalytic efficiency than the individual g-C₃N₄ and TiO₂ [112]. The researcher also showed that solvothermal synthesis enhances tri-s-triazine's carbonization [117]. Miranda et al. used an impregnation method to prepare g-C₃N₄-TiO₂ [118]. The presence of the g-C₃N₄ in the heterojunction endows the high specific area to the structure. The researchers also used the photochemical reduction method to prepared g- C_3N_4 - TiO_2 based nanocomposite. They also demonstrated that in the TiO₂/g-C₃N₄/G composite, TiO₂ was a semiconductor to capture visible light and also prevents g- C_3N_4/G stacking [119]. Several parameters affect the g- C_3N_4 -TiO₂ heterojunction structure. Various research works have been investigated the effect of the g- $C_3N_{4'}$ s ratio. Wang et al. prepared this microstructure with 10%, 30%, 50%, 70% of g- C_3N_4 , which are labeled with (x = 10, 30, Nanomaterials **2022**, 12, 294 14 of 73 50, and 70) [110]. All the XRD results from different publications have shown the same diffraction pattern. As a case in point, the XRD pattern of g- C_3N_4 - TiO_2 is illustrated in Figure 10b. In the TiO₂ diffraction pattern, the peaks at 25.5, 37.7, 48.2 and 54.1 °C are related to the (101), (004), (200) and (105) planes, respectively. Furthermore, there is no g- C_3N_4 characteristic peak at 13.1 $^{\circ}$ C in the g- C_3N_4 -TiO $_2$ hybrid sample, which may be attributed to the low crystallinity of g-C₃N₄ compared to the TiO₂ in the microstructure. However, the peak at 27.5 is obviously observed in all samples. The more g-C₃N₄ ratio in the structure leads to the higher XRD intensity at 27.5 °C and the lower peak intensity at 25.5 °C [120]. TiO₂ possesses a high crystallinity so the characteristic peak at 25.5 °C is higher than 27.5 °C. There are no obvious changes in other characteristic peaks in the composite XRD patterns. The FT-IR spectra of the g-C₃N₄-TiO₂ structures are demonstrated in Figure 10c [120]. In all FT-IR analyses, stretching vibration of the Ti-O and Ti-O-Ti is observed at about $475\,\mathrm{cm}^{-1}$. Additionally, peaks at $3419\,\mathrm{cm}^{-1}$ are attributed to the absorbed moisture and hydroxyl group in the structure. The peak at 2360 cm⁻¹ that appeared in all samples is mainly due to the adsorbed CO_2 . All the characteristic peaks at TiO_2 and g-C₃N₄ are observed in the composite samples. The pore size distribution of the g-C₃N₄, TiO_2 , $g-C_3N_4$ - TiO_2 is illustrated in Figure 10d [120]. The pore size at ~3.5 nm, 10 nm, and 3.8 nm, 32 nm is due to the presence of TiO_2 , and $g-C_3N_4$, respectively. Additionally, the BET specific area of the g-C₃N₄-TiO₂ hybrid structure was increased at the higher g-C₃N₄ content. Finally, the higher the bandgap of TiO₂, the lesser the absorption wavelength at higher than 400 nm (Figure 10e). The g- C_3N_4 revealed the absorption band extending to about 430 nm, which is mainly due to the low bandgap [120]. The blue shift in the absorption spectra was also demonstrated at a higher g-C₃N₄ ratio in the structure. It was shown bandgaps calculation of the g-C₃N₄, TiO₂, g-C₃N₄-TiO₂. The results revealed that the bandgap of CNT50 samples is 2.92 eV, which is like the bulk g-C₃N₄ with the bandgap of 2.9 eV and narrower than the bandgap of TiO₂ (3.20 eV). Due to the narrow bandgap and heterojunction formation, the hybrid composite not only suggested the higher generation of the electron and hole but also improved photocatalytic activity [120,121]. Li et al. synthesized $g-C_3N_4$ @TiO₂ hollow sphere nanostructure with high crystallinity [122]. In this work, researchers used the different ratios of TiO₂ hollow sphere and melamine (1:2, 1:4, and 1:8) in the solution, which are called HS-CNTO1, HS-CNTO2, and HS-CNTO3, respectively. They demonstrated that the recombination rate of the photogenerated electronholes decreased by introducing the TiO_2 in the g- C_3N_4 structure. In all samples, the sharp PL emission peak at 455 nm can be observed. The intensity of the PL peak reduced as the $g-C_3N_4$ content ratio decreased [122]. In addition, as can be seen in Figure 10f, the electron resistance decreased when g-C₃N₄-TiO₂ heterojunction was used. Additionally, stability is another vitally important factor in determining the photocatalytic activities, and it is shown that the g-C₃N₄-TiO₂ heterojunction demonstrates excellent stability after three to five cycles under different circumstances [117,120,122,123]. Many factors may affect the g- C_3N_4 -TiO $_2$ heterojunction productivity and improve the photocatalytic activity by enhancing the charge carrier separation and prevent recombination [124–126]. Rathi and coworkers showed that the CuNi@g- C_3N_4 -TiO $_2$ nanocatalyst had a 3-fold and 5-fold higher photocatalytic activity than bare g- C_3N_4 and TiO $_2$ nanorod for Rhodamine B degradation. Besides, the photocurrent density of the TiO $_2$ nanorod, bare g- C_3N_4 , Cu@g- C_3N_4 , Ni@g- C_3N_4 , and TiO $_2$ /CuNi@g- C_3N_4 is 0.108 mA/cm 2 , 0.377 mA/cm 2 , 0.530 mA/cm 2 , 0.6012 mA/cm 2 , and 0.890 mA/cm 2 , respectively. It should also be mentioned that the charge separation was promoted since the presence of Cu and Ni species [126]. In another work, researchers also prepared Ti $^3+$ -TiO $_2$ /O-g- C_3N_4 heterojunctions via a hydrothermal approach [125]. In this synthesis approach, 1 g g- C_3N_4 should disperse with titanium oxohydrides sol precursor at room temperature for 20 min, ultrasonically. The collected sample should transfer into the Teflon-lined autoclave at 160 °C for 27 h and then be washed and dried at 60 °C for 3 h. This method was used to prevent the g- C_3N_4 aggregation and fabricate exfoliated g- C_3N_4 nanosheets. The synthesized heterojunction significantly decreased the regenerated electron-hole pairs' recombination. Additionally, Nanomaterials **2022**, 12, 294 15 of 73 the conductivity is greatly enhanced and widens the light absorption range by adding the Ti³⁺, and O. P is another element used to improve the heterojunction connection and promote photocatalytic activity by facilitating the carriers' transfer and separation [127,128]. **Figure 10.** (a) Proposed mechanism for charge transfer of type II of the $g-C_3N_4$ -TiO₂ heterojunction interface under visible light irradiation; (b) XRD patterns; (c) FT-IR spectra of the $g-C_3N_4$ -TiO₂ heterojunction; (d) the pore size distribution curves; (e) UV-vis spectra of the prepared TiO₂, $g-C_3N_4$, and TiO₂- $g-C_3N_4$ composites, Copyright © 2022 Elsevier [120]; (f) PL emission spectrum of TiO₂, $g-C_3N_4$ -TiO₂, and $g-C_3N_4$ products, Copyright 2019 © American Chemical Society [122]. Various novel metal nanoparticles are leading to the improvement of photoexcited semiconductors because the surface plasmonic effect is beneficial to reduce the photogenerated electron-hole recombination, improve the efficiency of visible light absorption and photocatalytic activity. Silver, and gold nanoparticles, for instance, have high stability and good conductivity. Au nanoparticles can increase the electron concentration onto their surface and enhance and extended adsorption for catalytic activity by its surface π bond [129–131]. Ag nanoparticles (AgNPs) are also used to modify the g-C₃N₄-TiO₂ heterojunction [132–135]. The presence of AgNPs not only promotes the visible light response due to the surface plasmon resonance (SPR) effect, but also, they can result in capturing the electrons, to separate them, and transfer them more easily. These electrons react with the absorbed O₂ on the AgNPs modified TiO₂@g-C₃N₄ to form O⁻₂. With reference to the high specific area, electrical conductivity, and mobility, different graphene-based materials such as reduced graphene oxide [119,136]. Other materials can also be used to modified g-C₃N₄-TiO₂ heterojunction to increase the specific area and separate the photo-induced electron-hole pairs to enhance photocatalytic efficiency [137–139]. The structure and morphological evaluation of the prepared g- C_3N_4 -metal oxide-based heterojunctions have been investigated in different research works [140–143]. Jo et al. revealed structural properties of g- C_3N_3 -TiO₂ heterojunctions, which are consistent with other similar composites [144]. Figure 11a showed the transmission electron microscope (TEM) micrograph and the selected area electron diffraction (SAED) pattern of 5%-g- C_3N_4 /TiO₂ nanoparticles. Researchers observed that g- C_3N_4 nanolayer uniformly is covered with TiO₂ nanoparticles, which suggested an intimate interface between them. Besides, the inset Figure 11a showed that the circular rings corresponded to the (101), (004), Nanomaterials **2022**, 12, 294 16 of 73 (200), and (105) planes of the polycrystalline TiO_2 nanoparticles anatase phase. A TEM image showed that the TiO_2 nanoparticles are deposited onto the layered structure on $g-C_3N_4$. Moreover, the high-resolution transmission electron microscope (HR-TEM) images of the 5%- $g-C_3N_4$ / TiO_2 nanotube indicates the interplanar distance of 0.350 nm, attributed to the (101) plane of anatase phase of TiO_2 (Figure 11b,c). In addition, elemental mapping analysis of the 10%-CN/TNP (Figure 11d) suggested that TiO_2 is uniformly
present onto the $g-C_3N_4$ surface. Figure 11d also revealed the presence of Ti, O, C, and N, which suggested the co-existence of both layered $g-C_3N_4$ and TiO_2 nanotube [144]. **Figure 11.** (a) TEM images of 5%-g- C_3N_4 /TiO₂ nanoparticles (inset SAED pattern); (b,c) HRTEM images of 5%-g- C_3N_4 ; (d) elemental mapping image of Ti, O, C, N elements of the 10%-g- C_3N_4 /TiO₂ composite, Copyright © 2022 Elsevier [144]. # 5.2.2. ZnO-g-C₃N₄ ZnO nanostructures such as nanosheets, nanoplates, and nanorods are semiconductors that have been used for preparing of g-C₃N₄-based heterojunctions. Like the TiO₂, the ZnO bandgap is about ~3.2 eV with E_{CB} and E_{VB} of about 2.7 eV and -0.5 eV, respectively [145]. We showed that the ZnO nanostructure's size, shape, and order could be tuned by an interplay of magnetic and gravity forces [146]. We also demonstrated the enhanced microbial detection capability when the synthesis was conducted under these external forces by changing the materials' electrical resistance based on surface interactions. Because of low-cost of the preparation, having a large surface area, high aspect ratio, proper bandgap energy, minimal toxicity, and good stability, ZnO nanostructures have captured considerable researchers' attention [147,148]. However, ZnO suffers from minimal light absorption (5% of the ultraviolet spectrum of the sun energy). Additionally, a high electron-hole recombination rate is another undesirable factor of ZnO for photocatalytic applications. To deal with these problems the heterojunction of ZnO with g- C_3N_4 might be an option for different photocatalytic applications because, coupling g- C_3N_4 with ZnO nanostructures can improve charge migration, separation and prevent electron-hole recombination. Nanomaterials **2022**, 12, 294 17 of 73 Researchers have reported various methods for preparing the g-C₃N₄-ZnO structure, such as hydrothermal, solvothermal, atomic layer deposition, etc. [149–153]. Jung et al. synthesized $g-C_3N_4$ -ZnO with various thermal treatment and condensation temperatures (T = 350, 400, 450, 500 °C). The BET specific area and ZnO crystallite size of the prepared Z-scheme $g-C_3N_4$ -ZnO structure is decreased by increasing the thermal treatment temperature [154]. Other researchers who designed g-C₃N₄-ZnO via thermal treatment announced that the optimal amount of the g-C₃N₄ content in the composite is 5.0 wt.% [155]. Melamine and ZnCl₂ should be vigorously stirred for 20 min in a 250 mL beaker, then, Na₂CO₃ is added dropwise into the suspension and stirred magnetically for 30 min, and finally, dried at 60 °C for 30 min. The product was placed into a crucible with a cover to prevent from the volatilization of melamine and heated at 500 °C for 2 h at a rate of 10 °C/min. The g-C₃N₄/ZnO photocatalysts were obtained after deamination treatment at 520 °C for 2 h. The effect of different g-C₃N₄ precursors such as dicyandiamide (DCDA), urea, and thiourea on the g-C₃N₄ and ZnO interaction and structural morphology was investigated in another work [156]. The excellent interaction of the DCDA-ZnO results in the perfect Z-scheme charge transfer core-shell structure with the ZnO core and shell of the g-C₃N₄, and the low electron density of the PL emission resulting in promoting the efficiency of the Methylene Blue (MB) photocatalytic degradation. If the interaction between the precursors, such as urea and thiol, and ZnO is weak, the porous, segregated morphology is obtained. Hydrothermal method to prepare g-C₃N₄-ZnO heterojunction [149] not only is a low-cost preparation but also Zhang et al. revealed that it could detect nine pesticide residues in four different samples simultaneously. The solvothermal synthesis method of the preparation of the g-C₃N₄-ZnO modified the TiO₂ nanotube arrays by using the ethylene glycol solution is reported by Mohammadi et al. [150]. Zhang and coworkers synthesized the g-C₃N₄-ZnO heterojunction composite in the metal ion-containing ionic liquid's presence by the solvothermal method [156]. g-C₃N₄ was added to the ZnCl₄ in an ethanol solution, sonicated, and mixed with NaOH. Then, the mixture should be placed in a 25 mL Teflon-sealed autoclave and maintained at 160 °C for 24 h. After washing with distilled water and absolute ethanol, the dried g-C₃N₄-ZnO powder was provided. The strong interaction between g-C₃N₄ and ZnO result in the higher migration of the generated electrons and slower recombination rate was prepared. They revealed that the power conversion of the structure composed by the solvothermal approach compared to the pure TiO₂ nanotube arrays increases from 1.04% to 2.45%. Besides, the uniform type II heterojunction between g- C_3N_4 and ZnO can also be synthesized by atomic layer deposition (ALD) [151]. The mentioned heterojunction composite, synthesized by the ALD method, possessed a stable dispersion of g-C₃N₄ powder in the reactor, which prevented the charge carrier recombination. Mechanochemistry (mechanical milling) is also employed to prepare g-C₃N₄-ZnO composite [157]. This method provided significant photocatalytic stability and enhanced the composite's photocatalytic activity, which was 3-fold higher than the bulk g-C₃N₄ because of the strong interaction with ZnO. Figure 12 illustrates the schematic of the $ZnO/g-C_3N_4$ preparation method. Introducing the ZnO to the g- C_3N_4 is proved that this structure can enhance photocatalytic performance such as charge transfer and separation and decrease the photogenerated carriers' recombination (Figure 13a) [159–163]. In recent years, several types of research have been worked on the characterization of these heterojunctions. For example, Wang et al. demonstrated the eight XRD characteristic peaks for the pure Zn in the g- C_3N_4 -ZnO sample, shown in Figure 13b [164]. The reduction in the g- C_3N_4 content results in a decrease in the intensity of its two prominent characteristic peaks. Besides, they also revealed the FTIR analysis of the synthesized composites. The g- C_3N_4 -ZnO composites' FTIR peaks show the main peaks of the bulk g- C_3N_4 , which are shifted to the lower wavenumber, and this is because of the low strength of the characteristic bonds. The FTIR peaks of the g- C_3N_4 -ZnO heterojunction are also similar to those of the main peaks of the g- C_3N_4 wavenumber. The indication announces a chemical bond in the heterojunction between g- C_3N_4 and ZnO so that this structure will improve the charge transfer and photocatalytic efficiency. Moreover, Nanomaterials **2022**, 12, 294 18 of 73 the UV-vis DRS spectra of the g-C₃N₄, ZnO, and g-C₃N₄-ZnO heterojunction with the different g- C_3N_4 ratio is illustrated in Figure 13c [164]. The absorption edge of the g- C_3N_4 is about 460 nm, attributed to the bandgap of 2.69 eV. Besides, the absorption wavelength of the pure ZnO appeared at 396 nm showing the bandgap of 3.13 eV. Finally, the g-C₃N₄-ZnO revealed the redshift for the higher g-C₃N₄ content, which is extended to the visible-light region. The intense visible light absorption is another significant indication of the strong chemical interaction and more electron-hole generation leading to the photocatalytic activity's improvement [164]. The high photocatalytic activity of the mentioned structure is mainly used to degrade of dyes such as malachite green (MG). After the reaction of the photocatalyst with MG, the photocatalytic rate in 0, 5, 10, 15, 20, 25, 30, 35 and 45 min was measured (Figure 13d) [165]. A similar analysis was conducted on other dye types, such as Rhodamine-B (Rh–B), Congo red (Con-R), and Red ink (RI) solution. The results show the degradation efficiency after 45 min in the presence of the g-C₃N₄ was determined ~97.24%, 82.37%, 70.05% and 46.99% for MG, Rh-B, Con-R, and RI's degradation, respectively [165]. Figure 13e demonstrated the photoinduced charge transfer capability of g-C₃N₄-ZnO nanorod arrays. The photocurrent density of the prepared materials was generated and increased under visible light irradiation. However, the photocurrent density decreased as the illumination was stopped. It was also revealed that the g-C₃N₄-ZnO produced the most photocurrent density compared to the bare ZnO and g-C₃N₄, showing excellent charge transfer and separation. The charge transfer resistance is depicted in Figure 13f, shown impedance spectroscopy (EIS) Nyquist plots [160]. The arc radius in EIS spectra corresponds to the resistance of the interface layer at the photocatalyst surface. As observed in Figure 13f, the smaller arc radius is shown for g-C₃N₄-ZnO than that of g-C₃N₄ and ZnO. To be more specific, the smaller arc radius leads to the lower charge transfer resistance, resulting in the improved photogenerated transformation at the interface. PL spectra announce the photocurrent recombination, separation, and migration rate [160]. The ZnO PL emission wavelengths under the excitation wavelength of 350 nm were low-intensity emissions at 445 nm and 600 nm with low intensity. Besides, the emission spectra of the g-C₃N₄ and g-C₃N₄-ZnO heterojunction under the same excitation wavelength are 452 nm and 506 nm, respectively. Moreover, the higher PL intensity of the composite than that of g-C₃N₄ and ZnO reveals a more recombination rate of photogenerated charge carriers via the Z-scheme pathway. One of the most critical factors in photocatalytic efficiency is the catalyst's lifetime. Recyclability of g-C₃N₄-ZnO is obviously illustrated by the negligible loss of the photocatalytic activity after the five cycles resulting in good stability of the $g-C_3N_4$ -ZnO photocatalyst [166–168]. **Figure 12.** Schematic of the g- C_3N_4 -ZnO heterojunction synthesis approach, reproduced from Reference [158]. Nanomaterials **2022**, 12, 294 19 of 73 Figure 13. (a) Proposed mechanism for charge transfer of type II of the g-C₃N₄-ZnO heterojunction interface under visible light irradiation; (b) XRD patterns of ZnO,
g-C₃N₄, and g-C₃N₄@ZnO samples; (c) UV-vis absorption spectra of ZnO, g-C₃N₄, and g-C₃N₄@ZnO composites, Copyright © 2022 Elsevier [164]; (d) Malachite Green (MG) photocatalytic activity of the g-C₃N₄/ZnO photocatalyst, Copyright © 2022 Elsevier [165]; (e) the pure ZnO NRAs, g-C₃N₄ thin film, and g-C₃N₄/ZnO heterostructure photocurrent response to a light on-off under visible light illumination (≥420 nm), Copyright © 2022 Elsevier [159]; (f) Nyquist plots of the ZnO, g-C₃N₄, and g-C₃N₄/ZnO catalysts. Reproduced from Reference [160]. The doping of the heterojunction is a method to change and tune the properties of the bare g-C₃N₄-ZnO heterojunction. The metal elements are one of the excellent candidates used as dopants in the g-C₃N₄-ZnO structure. Ahmad et al. illustrated the effect of different metal dopants on photocatalytic efficiencies [169]. Ag-doped g-C₃N₄-ZnO showed the highest specific area compared to the pure ZnO, g-C₃N₄, and Al, Mg, Ni, Cu-doped heterojunctions. The redshift is observed for UV-vis absorption for the metal-doped g-C₃N₄-ZnO composite compared to the pure ZnO, revealing the more visible light absorption, and inducing a higher charge carrier generation rate [169]. The bandgap of the ZnO, g-C₃N₄, Al, Mg, Ni, Cu, and Ag-doped g-C₃N₄-ZnO, which is determined by the Tauc's plots, is 3.23 eV, 2.66 eV, 3.15 eV, 3.08 eV, 3.06 eV, 3.0 eV and 3.05 eV, respectively. The PL spectra of these doped composites demonstrated the three emissions at 391 nm, 456–466 nm, and 550 nm, which are attributed to the free exciton transition or recombination process, bandgap recombination of photoinduced charge carriers, and oxygen vacancies [169]. The photocurrent of the metal-doped structure is higher than that of the pure ZnO and g-C₃N₄. The Cu-doped composite showed the lower electron transition resistance among all composites. It was concluded that the synergistic impact of Cu-doped g-C₃N₄-ZnO, promotes electron mobility and separation efficiency [169]. Photocatalytic activity of the Mg-doped composite is higher than that of ZnO, g-C₃N₄, and g-C₃N₄-ZnO structure. Mg is one of the ideal candidates for charge separation in the composite structure [170]. Other kinds of metalbased materials such as K, Cr, Co, and Fe have shown excellent light absorption, increased photo-induced electron-hole generation and separation, and migration for improved photocatalytic activities [171–174]. ZnO/K@g-C₃N₄ had higher stability after five cycles (84%) for tetracycline removal. Doping the Cr into the g- C_3N_4 -ZnO structure promoted photocatalytic performance [172]. 60% g-C₃N₄ /Cr-ZnO photocatalyst had 93% degradation rate in Nanomaterials **2022**, 12, 294 20 of 73 1.5 h, which is 3.5, 2.5, and 2-fold higher than that of 5% Cr-ZnO, bulk g- C_3N_4 , and 60% g- C_3N_4 -ZnO, respectively. Nitrogen is another widely important element used as a dopant for the g- C_3N_4 -based heterojunctions [147,175–177]. g- C_3N_4 with 7 wt % of N-ZnO showed the highest photocatalytic RhB degradation with 5 and 4 times higher than those of N-ZnO, and g- C_3N_4 , respectively [175]. g- C_3N_4 -ZnO with N doping exhibited a 77% higher H₂ evolution rate than that of pure carbon nitride and showed a great charge carrier transfer [147,176]. The N-doped heterojunction revealed the high photocatalytic activities for methylene blue degradation since it shows the narrower bandgap [178]. Other researchers showed the impact of carbon doping in the ZnO-g- C_3N_4 composites [177,179–181]. The Z-scheme heterojunction system containing C-doped g- C_3N_4 grafted on the C, N co-doped ZnO was used to improve the optical properties for enhancing the BPA organic pollutants photodegradation and hydrogen evolution reaction [177]. Oxygen and sulfur are also used to improve the efficiency of the composites [181,182]. Different g-C₃N₄-ZnO heterojunction-based ternary composites have been constructed by various researchers worldwide [183–187]. The surface plasmon resonance (SPR) effect of Ag and Au nanoparticles (NPs), resulting in the improved photocatalytic activities improve by increasing the electron-hole generation and separation, so many researchers tend to use Ag NPs in the heterojunction structures [188–192]. Ag NPs facilitate the migration and improve the photoinduced electron-hole pairs separation by creating close interfaces between g-C₃N₄ and ZnO. Besides, Ag NPs reduce the energy barrier for CO₂ to increase the intermediate radicals on the surface of the nanocomposites [191,193]. It is also revealed that the reaction constant rate for Ag (5 mol%)/ZnO/ g-C₃N₄ is 2.4 times higher than ZnO/ g-C₃N₄. Ag $(5 \text{ mol}^{\circ})/\text{ZnO}/\text{ g-C}_3\text{N}_4$ composite extends its surface, leading to promoting the photogenerated electron-holes pairs and increasing the lifetime and stability of the charge carrier [194,195]. To show the improved photocatalytic performance with high stability, different Ag-based compounds between g-C₃N₄ and ZnO have been investigated [188,196–199]. In another research, the hydrothermally synthesized Ag-ZnO/S-g-C₃N₄, comprising ZnO NPs doped with 7% Ag with 25% Sulfurized-g-C₃N₄, exhibited outstanding MB photodegradation (97% in 40 min) with excellent recyclability [200]. Carbon-based materials are also used beside the g-C₃N₄-ZnO structure [199,201,202]. Graphene oxide (GO) is carbon-based material commonly used in the g-C₃N₄-ZnO heterojunction [199,203,204]. GO is a two-dimensional platform, providing a promising electron conductivity, high specific surface area, and Young's modulus, which are useful for improving photocatalytic activities. The RhB dye degradation is about 99% for ZnO-g-C₃N₄-GO nanocomposites in 14 min [199]. The trinary nanocomposites provide high stability, which can be used for a wide range of environmental applications [203]. Other forms of carbon-based nanomaterials such as carbon dots (C Dots) are also used to improve the heterojunction structures' efficiency [201,205]. The C Dots provide the facile photoinduced electrons transfer from the ZnO's CB to the g- $C_3N_{4'}$ s VB. The Z-scheme heterojunction structure can be used in biomedical applications for bacteria-killing and acceleration of wound healing system [201]. ### 5.2.3. Iron Oxide-g-C₃N₄ Fe $_x$ O $_y$ such as FeO, Fe $_3$ O $_4$, and Fe $_2$ O $_3$, not only can improve the photocatalytic performance of the g-C $_3$ N $_4$ structure due to some unique characteristics but they can also be vastly used for contaminant removal in various media [206–209]. Compared to the combination of g-C $_3$ N $_4$ with TiO $_2$ or ZnO, fewer papers have been focused on the g-C $_3$ N $_4$ -FeO $_x$ heterojunctions. Xu et al. announced that the CB and VB of Fe $_2$ O $_3$ are 0.3 eV and 2.4 eV, respectively [210]. FeO $_x$ failed to show any appreciable photocatalytic activity since the improper, more positive CB edge position (Figure 14a). It is confirmed that g-C $_3$ N $_4$ / α -Fe $_2$ O $_3$ nanocomposites obey a Z-scheme mechanism for photogenerated charge separation. Working on the g-C $_3$ N $_4$ -FeO $_x$ composite was ignited by the pioneering study authored by Ye et al. [211]. They demonstrated that the efficiency of the Fe $_2$ O $_3$ /g-C $_3$ N $_4$ photocatalysts was increased up to 1.8 times than the bulk C $_3$ N $_4$ for the RhB degradation under visible light irradiation. Nanomaterials **2022**, 12, 294 21 of 73 One of the most common synthetic methods to make iron oxides, especially superparamagnetic iron oxides (SPIONs), which show the highest saturation magnetization among all iron oxides while having a low magnetic coercivity, is co-precipitation method [212]. The effect of different parameters such as solution temperature, alkalinity, and stirring rate were investigated by Hosseini's group on the suspension properties for MRI applications [213]. Iron oxides have many applications in different area such as biomedical applications, environmental application, etc. [214,215]. Wang et al. prepared g-C₃N₄-Fe₂O₃ nanocomposite via chemical co-precipitation approach [209]. They also evaluate the adsorption and desorption of seven polycyclic aromatic hydrocarbons (PAHs). Low limits of detection (LOD), excellent linearity, and recovery of the g-C₃N₄/Fe₃O₄ nanocomposites revealing their ideal candidacy for environmental applications, especially PAHs removal from water samples. In another research, the Fe₂O₃-g-C₃N₄ heterojunction was synthesized by thermal treatment in a hypoxia environment [216]. The presence of Fe₂O₃ in the structure will reduce the recombination rate and promote N₂ adsorption. Some other researchers used in-situ thermal condensation to prepared g-C₃N₄ with iron oxides, which can be used in ciprofloxacin (CIP) degradation [217]. CIP is an antibiotic for bacteria sterilization by inhibiting the bacterial DNA. Besides, it is demonstrated that the remnant CIP in the soil can be absorbed by plants and transfer to the human body by consumption. The long-term CIP intake leads to some serious health issues [218]. The hydrothermal method is another method for preparing this composite [219]. In this method, researchers used the solution containing colloidal of the mixture of both Fe₂O₃ and g-C₃N₄. Fe₂O₃ could not cause the methanol yield since the low conduction band of the Fe_2O_3 . To be more specific, Fe_2O_3 (5, 10, 15, 20 wt %) was added to 500 mg of g-C₃N₄ (in 25 mL of water), prepared by direct solid-state reaction of dicyandiamide and thiourea, to form a homogeneous mixture. The solution was transferred into the Teflon-lined stainless-steel autoclave at 150 °C for 4 h, and then washed and dried at 60 °C overnight. As a result, Duan and Mei revealed that the g-C₃N₄-Fe₂O₃ heterojunction significantly improved methanol yield from the CO₂ photoreduction. As mentioned above, Fe₂O₃ has a narrow bandgap of about 2.1 eV, making the iron oxides an excellent candidate for broad visible light absorption. Some
factors, such as the high recombination rate of electron-holes, the short diffusion length of holes, and lack of sufficient conductivity, improve the need to constructing a FeO_x-based composite, which will increase the applications of this composite. One of the most well-known FeO_x-based composites is the g-C₃N₄-Fe₂O₃, which can adequately promote photocatalytic activities. Geng et al. illustrated the XRD and FTIR pattern of the g-C₃N₄-Fe₂O₃ composites, which are similar to the results of other publications [220]. Any significant peak shift is observed in the XRD pattern of the composites, which are indicated in Figure 14b. Additionally, the intensity of the peaks related to the (104) and (110) of α -Fe₂O₃ are strengthened by increasing the α -Fe₂O₃ content in the structure [220]. They also investigated that the FTIR characteristic peaks of the g-C₃N₄-Fe₂O₃ composites are not significantly change compared to the bare $g-C_3N_4$ and Fe_2O_3 (Figure 14c). As mentioned previously, the broad peak around 3500 cm⁻¹ is due to the presence of moisture in the samples. The characteristic peaks at the bare Fe₂O₃ and g-C₃N₄ comprising 3000–3400 cm⁻¹ and unresolved peaks from 1237 to 1640 cm⁻¹ indicating N–H, C–N, and C=N in the g-C₃N₄, respectively [220]. Besides, the sharp peak at 811 cm^{-1} is related to the stretching vibration of the triazine units. At the same time, the peaks at 543 cm⁻¹ and 469 cm⁻¹ directly correspond to the Fe-O stretching vibrations. The optical studies are also depicted in Figure 14d,e, which not only showed absorption and emission of this composite but also revealed the effect composition on these characteristics features. All samples showed a promising UV absorption above 450 nm compared to the g-C₃N₄, helping the photocatalytic characteristics improvements (Figure 14d) [221]. The PL emission spectra showing in Figure 14e will aid us in a clearer understanding of the photophysical behavior of the prepared materials. The results showed a broad peak at the range of 440–463 nm, while the PL intensity of the Fe_xO_v showed a high decrease. The decrease in the PL intensity may be due to the reduction in the luminous recombination probability, resulting in enhancing the charge Nanomaterials **2022**, 12, 294 22 of 73 separation and photocatalytic reactions. Cheng et al. also demonstrated the insignificant deactivation in about 16 h during 4 cycles showing high stability of this composition. In order to improve the photocatalytic activities, Wang and his coworkers used Al–O bridged $g-C_3N_4-\alpha-Fe_2O_3$ z-scheme nanocomposites [222]. In this work, the photocurrent density with 450 nm excitation wavelength increased when researchers used the Al–O bridged $15 g-C_3N_4-\alpha-Fe_2O_3$, containing 15 mass percentage of $g-C_3N_4$ and 6 mole percent of Al to Fe. This analysis indicated in Figure 14f showed that Al–O bridged $g-C_3N_4$ facilitated the photo-generated charge transfer and separation [222]. **Figure 14.** (a) Proposed structure of g-C₃N₄-FeO_x heterojunction interface; (b) XRD patterns and (c) FT-IR spectra of g-C₃N₄, α-Fe₂O₃, and α-Fe₂O₃/ g-C₃N₄ composites, Copyright © 2022 Elsevier [220]; (d) UV-Vis diffuse reflection absorption spectra; (e) PL spectra of CN and xFe-CN samples with an excitation wavelength of 380 nm, Copyright © 2022 Elsevier [221]; (f) single-wavelength photocurrent response of F, 15CN-F and 15CN-6Al-F, Copyright © 2022 Elsevier [222]. Metastable materials that transform from one to another state over a long period of time have superior properties. Bibyite phase of iron(III) oxide ($\beta\text{-Fe}_2O_3$) act as its $\alpha\text{-phase}$ (hematite) iron(III) oxide. However, it shows a more desirable bandgap (1.8 eV) for photocatalysis. Christoforidis et al. prepared metastable $\beta\text{-phase}$ Fe $_2O_3$ nanoparticles on the g-C $_3N_4$ surface by a solid-state, in-situ growth method, without the need of specialized equipment, surfactants, stabilization, or precipitating agents [223]. In this research, the $\beta\text{-Fe}_2O_3$ improve the photocatalytic activities by increasing the ability of light absorption in the visible region, and enhanced carriers' separation. The hybrid $\beta\text{-Fe}_2O_3/g\text{-C}_3N_4$ nanomaterials are an excellent candidate for photodegradation since they showed higher photocatalytic activity and a promising stability [223]. There are several g- C_3N_4 - FeO_x -based composites with promising photocatalytic activities. The g- C_3N_4 coated with the Fe_xO_y covered by metals will enhance the photocatalytic properties by ameliorating the photo-induced charge generation and separation. The promising LSPR effect of the Au and active sites of Pt convinced researchers to use $Fe_2O_3/Pt/Au$ nanocomposite immobilized on the g- C_3N_4 surface as an excellent composite for hydrogen evolution [224]. As discussed in our previous papers, Au nanoparticles with strong LSPR can participate in catalytic reactions (for an example see [225]). Au NPs with a Nanomaterials **2022**, 12, 294 23 of 73 strong LSPR effect enlarge the photo-electron conversion efficiency of the photocatalyst. The researcher also investigates the CO₂ photoreduction of g-C₃N₄ quantum dots-Au NPs co-modified CeO₂/Fe₃O₄ micro-flowers (MFs). They showed that Au NPs promote photocatalytic activities by generating the electrons and holes and enhance carriers' separation in CeO₂ MFs and CN QDs in the photocatalyst [226]. Copper is another metal used in the g-C₃N₄-FeO_x-based composite. Liu et al. fabricated g-C₃N₄/Fe₂O₃-Cu for electrochemical detection of glucose [227]. g-C₃N₄/Fe₂O₃-Cu composites improved the electrochemical performance for glucose detection with a LOD of 0.3 mM. They also confirmed that g-C₃N₄-Fe_xO_v composite can be used as an electrode in sensors to measure other compounds. The effect of a multi-walled carbon nanotube was investigated by Zhang et al. [228]. They demonstrated that due to the large specific area, hydrogen bonds, π - π , and electrostatic interactions of the MWNTs@g-C₃N₄@Fe₂O₃, these 3D structures were novel magnetic solid-phase extraction sorbents for PAH with the LOD of 0.001–0.5 mgr·L⁻¹. Besides, the 3D structure has a good repeatedly and recovery for 16 PAHs in the water samples. Graphene, as other carbon-based materials also used to improve the efficiency of Fe₃O₄/g-C₃N₄ composites. Wng et al. showed that the Fe₃O₄/graphene/S doped g-C₃N₄ dose of 1.0 g/L comprising 20% Fe₃O₄ mass fraction could completely remove Ranitidine $(\leq 2 \text{ mg/L})$ in 60 min, an initial pH of 7.0 [229]. The other ternary composite used for the water splitting is g-C₃N₄/CeO₂/Fe₃O₄ [230]. The composites showed enhanced oxygen and hydrogen evolution reaction with high current density ($40 \text{ mA} \cdot \text{cm}^{-2}$) at the potential of 327 mV, which was greater than the bare Fe₃O₄ and bulk g-C₃N₄. The ternary composites showed excellent stability and negligible activity loss up to 14 h. the Z-scheme g-C₃N₄/Fe₃O₄ can be coupled with the CdS and was used for different antibiotics degradation [231]. The results showed the improved degradation rate to 45 times of CdS, 26 times of pure g-C₃N₄, and 9.5 times of CdS/g-C₃N₄ for the tetracycline removal. The presence of the Fe₃O₄ improves the photocatalytic performance and stability by an increase in the inducing and separation of the electron-hole pairs and generating more 'O₂⁻ for organic pollutant degradation [231]. Other Fe_xO_y compounds are also used to improve the UV-visible light absorption for different applications. NaFe₂O₄ is one of the most well-known FeO_x structures, using in the g-C₃N₄-based composites [232–234]. The Fe₃O₄@NiFe₂O₄-g-C₃N₄ improves photocatalytic activity up to 90% of CIP degradation by reducing the electron-hole recombination [232]. In all superparamagnetic samples, the high M_s assists in improvig of the recyclability and stability of the photocatalyst. The more magnetite content in the sample leads to a higher probability in the particle agglomeration, resulting in the decrease in the active sites of the and the reduction in the photocatalytic efficiencies. The fabricated g-C₃N₄/NiFe₂O₄ can also be used to degrade MB and RhB by activating H_2O_2 to produce the oxidizing reagent [233,234]. The magnetic properties of the NiFe₂O₄ (M_s = 45 emu/g) were induced to the whole composite (M_s = 40 emu/g) to promote repeatability and improve the photodegradation rate [233]. The other most popular compound captured researchers' attentions are ZnFe₂O₄ and LaFeO₃ [235–237]. ### $5.2.4. WO_3-g-C_3N_4$ Figure 15a demonstrated the band edge position of the WO $_3$ compared to the g-C $_3$ N $_4$. This Figure illustrated that the bandgap of the WO $_3$ is 2.6 eV with VB and CB of 2.9 eV and 0.3 eV, respectively, which are more positive than that of g-C $_3$ N $_4$ and the O $_2$ /O $_2$ -potential [238–240]. Thus, it is approximately impossible to produce 'O $_2$ by using the traditional type-II mechanism. Many researchers showed that the charge migration almost occurred by the Z-scheme mechanism in the binary g-C $_3$ N $_4$ -WO $_3$ composite [241–243]. Various methods have been fabricated this binary composite. The hydrothermal approach is one of the main routes to prepare the g-C $_3$ N $_4$ -WO $_3$ composite [244,245]. Zhang et al. prepared WO $_3$ /g-C $_3$ N $_4$ by dissolving the WCl $_6$ and ascorbic acid in ethanol and g-C $_3$ N $_4$ followed by 5 min sonication and stirred for 20 min [244]. The uniform suspension was heat-treated at 220 °C for 12 h, and then washed several times using ethanol. The other Nanomaterials **2022**, 12, 294 24 of 73 way for the preparation of the heterojunction is the microwave irradiation technique with the direct calcining of the WO_3 and $g\text{-}C_3N_4$ combination at 400 °C for 2 h [246]. In this method, to prepare WO_3 by simple household microwave irradiation, tungstic acid in NaOH
solution was mixed and stirred for 30 min to form a tungstic hydroxyl group [246]. Afterward, the pH of the prepared mixture was reduced to 1 by adding HCl solution, and the gel should be put into the Teflon-lined household microwave oven (2.45 GHz) for 10 min to prepared WO_3 . Finally, the mixture should be placed in an alumina crucible with a cover in a muffle furnace and heated at 400 °C for 4 h. A wet chemical process, sonochemical, in situ self-assembly, etc., are other ways to synthesize the $g\text{-}C_3N_4\text{-}WO_3$ heterojunction [247–249]. g-C₃N₄-WO₃ composites were characterized by various techniques. In most research papers, XRD and FTIR are the prime characteristic methods to evaluate the formation of $g-C_3N_4$ -WO₃. Researchers announced that the WO₃/CN wt % = 10% provides the best characteristics compare to the balk g-C₃N₄ and WO₃ [250]. Figure 15b shows the XRD patterns of the bulk g-C₃N₄, WO₃, and g-C₃N₄-WO₃, perfectly showing the impact of WO₃ content on this characterization. There are nine distinct peaks for the as-prepared WO₃ [247,251]. Additionally, the binary composites revealed the combination peaks of the WO₃ and g-C₃N₄. The higher WO₃ content leads to the lower peak's intensity of the g-C₃N₄, corresponding to the expansion of the interlayers and g-C₃N₄ coverage with a WO₃. The low intensity of the peaks at 23.5° and 36.6° , which is detectible in the sample with a high WO₃ to g-C₃N₄ ratio, is related to the hexagonal-phase WO₃ and illustrated the formation of the composite successfully. They also characterized the g-C₃N₄-WO₃ composite with the FTIR spectra analysis [251]. Like other materials' FTIR spectra, the wide peak at the range of 3000–3500 cm⁻¹ in all samples is attributed to the N-H and O-H stretching vibration, and the adsorbed water molecules' bending vibration stands at about 1630 cm⁻¹ for samples (Figure 15c). The broad peak at the 750–1000 cm⁻¹ corresponds to the O-W-O stretching vibrations of WO₃ [252,253]. As a result, although the g- C_3N_4 characteristic FTIR peaks can be observed in the composite FTIR spectra, WO₃ peaks are not significantly detected in the hybrid composite, which can be ascribed to the vacancies between the g-C₃N₄ clusters or band overlapping. Optical studies were carried out by Chai et al. on the g-C₃N₄ with WO₃ structure [254]. The UV-vis DRS of the WO₃, g-C₃N₄, and WO₃-g-C₃N₄ composites with the WO₃ contents is depicted in Figure 15d. The obvious absorption edges at ~470 nm and 455 nm are detected for WO₃, g-C₃N₄, respectively, corresponding to the 2.64 eV and 2.73 eV. The g-C₃N₄-WO₃ composites present the combination absorption features of g- C_3N_4 and WO₃ [254]. Figure 15e displays the PL emission peak of the bulk g- C_3N_4 and 18.6 wt % WO₃/g- C_3N_4 hybrid composite [254]. The result demonstrates that the intensity of the composites' PL peak at ~440 nm is lower than that of the pure g-C₃N₄ [255-257]. The PL spectra revealed that WO₃ apparently suppresses the photoinduced electron-hole recombination in the WO₃/g-C₃N₄ composites and confirms the Z-scheme interface contact [258]. They are also revealed that the OH⁻ generating during the photocatalytic reaction leads to the higher PL intensity increases the irradiation time. Besides, the transient PL decay trace of the bare g-C₃N₄, WO₃, and g- C_3N_4 -WO₃ composite hollow microsphere are ~ 4.46 ns, 1.62 ns, 2.23 ns, respectively [259]. The zeta potential values of the WO₃, g-C₃N₄ and their binary composites announce the negatively charged surface of the samples [260]. The presence of WO₃ in the composite changes the zeta potential from -5.7 mV to -33.1 mV, while it decreases the BET specific area from 100.97 $\text{m}^2 \cdot \text{g}^{-1}$ to 47.88 $\text{m}^2 \cdot \text{g}^{-1}$, which are high enough for promising adsorption ability and photocatalytic activities. g-C₃N₄-WO₃ reveals high stability and repeatability after 4 cycles with a slight efficiency decrease for the degradation of RhB [261–263]. There are also some dopants and compounds used to improve the photocatalytic efficiency of the binary composites. In the z-scheme C or Pt-g- C_3N_4 with hydrogen treated WO₃, the electrons from g- C_3N_4 and holes from WO₃ facilitate the photogenerated charge carries generation, which will enhance the photocatalytic activities [254,264]. In other words, the C or Pt dopants help the composite to improve the light absorption and charge Nanomaterials **2022**, 12, 294 25 of 73 separation. This structure also enhances stability and repeatability. O-doped g- C_3N_4 - WO_3 has 4.7 times higher H_2 performance than the bare composite [265]. The carbon vacancies and g- C_3N_4 oxidization resulted in the formation of the porous composites and a decrease in the composite's surface area. The effective Si-O bridge between g- C_3N_4 and WO_3 significantly promotes charge transfer and separation [266]. **Figure 15.** (a) Proposed structure of g- C_3N_4 - WO_3 heterojunction interface; (b) XRD patterns and (c) FT-IR spectra of obtained samples (x in WO_3/g - C_3N_4 refer to the mass ratio of WO_3 to g- C_3N_4), Copyright © 2022 Elsevier [251]; (d) UV-DRS spectra of pure g- C_3N_4 , WO_3 and WO_3/g - C_3N_4 heterojunctionp; (e) PL emission spectra of g- C_3N_4 and 18.6 wt % WO_3/g - C_3N_4 composite, Copyright © 2022 Elseviers [254]. In addition to the doped binary composites, adding other compounds to form the ternary structure is a practical way to boost the composite characteristics. Mediators and co-catalyst such as metals (such as Ag, Au, Cu, Pt, and Sn) are currently used to improve the Z-scheme composites by facilitating the transporting and carrier capturing during the photocatalyst process [267–272]. Li et al. demonstrated the charge carrier migration between various WO₃-Metal (Cu, Ag, Au)-g-C₃N₄. They showed that Cu plays the ideal candidate for photocurrent enhancement and improves the photocatalytic performance in the Z-scheme g-C₃N₄-WO₃ heterojunction among different metals used in the research. In other words, the Cu-g-C₃N₄ and WO₃-Cu are favorable for electron migration since they have the matched Fermi level of energy [267]. In other research, the developed WO₃/Ag/g-C₃N₄ ternary composite was used for the RhB and tetracycline (TC) degradation. The results demonstrated that the improved photocatalytic activity of WO₃/Ag/g-C₃N₄ is obtained due to the large contact region between g-C₃N₄ nanosheets and WO₃ nanoplates. Besides, the presence of the Ag NPs in the composite with SPR effect accelerates the charges to transfer, improves the photocatalytic activity, and enhances the stability and repeatability [268,269]. Researchers also worked on the $Ag/g-C_3N_4/WO_3$ to degrade oxytetracycline hydrochloride under visible light [273]. The 0.4 g/L of $Ag/g-C_3N_4/WO_3$ composite demonstrated the highest photocatalytic activity, which could degrade 97.74% of oxytetracycline (10 mg/L) in 60 min. In another research, Qin et al. showed that the presence of Pt in the WO_3 -g- C_3N_4 composites possesses excellent photocatalytic H_2 evolution with 1299.4 µmol under visible light, which is higher than that of $WO_3/g-C_3N_4/Pt$ and pure CN with Nanomaterials **2022**, 12, 294 26 of 73 1119.4 μ mol, and 113.2 μ mol, respectively [274]. As mentioned above, g-C₃N₄/Au/WO₃ as Z-scheme heterojunction displayed excellent photocurrent that can be used in photoelectrochemical immunosensing of Aflatoxin B1 in food, which can be dangerous for humans [275]. The methane formation over the WO₃-Bt-g-C₃N₄ composite was 5.98, 6.74, and 25.19 times higher than that of WO₃-g-C₃N₄, Bt-g-C₃N₄, and g-C₃N₄ samples, respectively [272]. Some promising properties of tungsten-based materials such as electrical, optical, magnetic, and photocatalytic activities, low-cost preparation persuade researchers to use these materials such as NiWO₄, BaWO₄, CuWO₄, and BiWO₆ [270,276–278]. The band structures of these compounds with g-C₃N₄ and WO₃ make the CB and VB positions match each other, leading to the prolonged charge carriers' lifetime in the form of a double Z-scheme system. The photoelectrochemical (PEC) of a double Z-scheme g-C₃N₄-WO₃-Bi₂WO₆ system reveals the enhanced photocurrent density, reduced electron-hole recombination, resulting in the promotion of photocatalytic efficiency [276]. Other materials have been anchored in the g-C₃N₄-WO₃ to form an excellent composite for different applications [279,280]. Bi-based materials are among the prime and important materials used to construct the composites for photocatalytic activities [281–283]. MoS₂ and MoO₃ are other compounds to be utilized as materials for this ternary composite [284,285]. g-C₃N₄/WO₃ with TiO₂ can also be useful for the methylene blue dye degradation, which its efficiency is about 3.1 folds higher than that of the binary counterparts of TiO_2/WO_3 (0.00691 min⁻¹) in 120 min. The kinetic constant for different composition of this composite are in order of TWG-15% (which 15% is the g- C_3N_4 wt %) > TWG-10% > TWG-5% > TWG-20% > TW [286]. # 5.2.5. Tin Oxide-g- C_3N_4 Other metal oxides widely used in g-C₃N₄ binary heterojunction are tin oxides. SnO (stannous oxide) and SnO₂ (stannic oxide) are two forms of tin oxide. Figure 16a shows the band edges' position in the tin oxide and compares it to the CB and VB of the g-C₃N₄. He et al. showed that the SnO₂ has a large bandgap of about 3.6 eV, and its CB level is lower than that of g- C_3N_4 [287]. It is also demonstrated that these tin oxide-g- C_3N_4 composites mostly form the Z-scheme heterojunction [288,289]. Tin oxide can be designed with various shapes by wet and dry methods. The heterojunction is synthesized by different synthetic methods, including hydrothermal and thermal treatment [78,290-292]. Sadrnezhad and coworkers prepared g-C₃N₄-SnO₂ with the pyrolysis of urea under microwave irradiation [293]. In this work,
tin, ammonium, and urea were put into the beaker and placed in a microwave oven operating at 2.45 GHz and 900 W for 30 min. Finally, the product was washed and dried in the oven. In another work, the mesoporous SnO₂ decorated with g-C₃N₄ was prepared via pulsed electrophoresis and facile water-crystallization [293]. With pulsing electrophoresis optimized parameter, the 0D g-C₃N₄ can be homogeneously and completely distributed inside the 1D SnO2. Sol-gel is also used to fabricate an efficient g-C₃N₄-SnO₂ photocatalyst [294]. Several techniques have been used to confirm the formation of this composite. The XRD pattern and FTIR spectra of g-C₃N₄, SnO₂, and SnO₂-g-C₃N₄, are depicted in Figure 16b,c [295]. SnO₂ does not change during the preparation of the final structure, which can be seen from the insignificant differences between the pure SnO₂ and the SnO₂-g-C₃N₄ XRD pattern in Figure 16b. The characteristic peaks in SnO₂ revealed the (110), (101), (200), and (211) planes of a tetragonal rutile-like structure. Other small peaks, which are not mentioned in Figure 16b, are related to the (220), (310), (301), (202), and (321). As shown in Figure 16b, the (002) crystal plane peak of g-C₃N₄ overlapped with the (110) crystal plane peak of SnO₂. Additionally, the Sn–O–Sn anti-symmetric stretching vibration between 400 cm⁻¹ and 700 cm⁻¹ was demonstrated in Reference [295] (Figure 16c). The red-shift peak at 597 cm⁻¹ was a good indication of the formation of SnO₂-g-C₃N₄ heterojunction [296,297]. The presence of SnO₂ in the structure suppresses the electron-hole recombination rate. Peng et al. demonstrated the negligible differences and slight blue shift of g-C₃N₄-muscovite sheet/SnO₂ structure, compared to the absorption edges of g-C₃N₄ (Figure 16d) [298]. Introducing the muscovite sheets does not affect the composites' Nanomaterials **2022**, 12, 294 27 of 73 absorption, and g- C_3N_4 -muscovite sheet/SnO₂ absorption spectra reveal the potential photocatalytic applications under visible light. They also showed that the g- C_3N_4 -muscovite sheet/SnO₂ Cement has an excellent photocatalytic activity for RhB stains and isopropyl alcohol photodegradation. Due to the low electron-hole recombination probability of the SnO₂-g- C_3N_4 , the intensive PL intensity was observed in Figure 16e [298,299]. The faster interfacial charge-transfer and lower resistance, results in the Nyquist plot diameter decrease compared to SnO₂ and g- C_3N_4 , shown in Figure 16f [300]. This is therefore a promising photocatalyst. The properties and morphology of this composite change when the relative content of g- C_3N_4 varies in the heterojunction [301,302]. Chen et al. showed that the g- C_3N_4 mass ratio of 72% provides the highest photocatalytic performance, which is 17 times higher than bulk g- C_3N_4 [303]. SnO₂-g- C_3N_4 heterojunction reveals notable stability and recyclability [18]. In addition to robust photocatalytic activities, this composite has a noticeable photoelectrochemical performance under visible light. Doping different elements, such as Sb, S, B, and P, is one of the main approaches to improve the performance of the SnO₂-g- C_3N_4 , which can modify the band edges [304–306]. **Figure 16.** (a) Proposed structure of $g-C_3N_4-SnO_2$ heterojunction interface; (b) XRD patterns and (c) FT-IR spectra of SnO_2 , graphene-like C_3N_4 , $SnO_2/g-C_3N_4$ composites (reproduce from Reference [295]); (d) UV-vis absorption spectra of $g-C_3N_4$ -based samples (muscovite sheet(x)/ $SnO_2/g-C_3N_4$ (MSx/CN), which x refers to the mass of MS powder), Copyright © 2022 Elsevier [298]; (e) PL spectra of $g-C_3N_4$ and SnO_2 quantum dots- $g-C_3N_4$ nanocomposite, Copyright © 2022 Elsevier [299]; (f) EIS Nyquist plots of the bare SnO_2 , $g-C_3N_4$, and $SnO_2-g-C_3N_4$ structure, Copyright © 2022 Elsevier [300]. Doping is a method to improve the efficiency of SnO_x -g- C_3N_4 heterojunctions, which are used in different applications. SnO_2/g - C_3N_4 sensor doped with Ni shows LOD about 1.38 ppb and has high stability, promising selectivity, rapid response and recovery time, and great resistivity against humidity [307]. Besides, researchers used made Ce doped SnO_2/g - C_3N_4 to make capacitors with a specific capacity of <274 F/g. A supercapacitor with energy and power densities of 39.3 W h kg⁻¹ and 7425 W kg⁻¹, respectively, was made by using Ce-SnO₂/g-C₃N₄/Activated Carbon. The supercapacitor device exhibited retention of 84.2% after completing 5000 cycles [308]. Additionally, several researchers used the SnO_2 -g- C_3N_4 based ternary composites to increase the applications of these kinds of composites [309,310]. The plasmonic Au- SnO_2 -g- C_3N_4 photocatalyst was fabricated for H_2 evolution and degradation of the organic pollutant, which is commonly used due to the outstanding photocatalytic activities and Nanomaterials **2022**, 12, 294 28 of 73 significant stability (remain unchanged after 5 h in 5 cycles) [309,311]. In this ternary heterojunction, the presence of the plasmonic Au and g-C₃N₄ offer enhanced photogenerated electrons to the structure. SiO₂ is another compound used besides the SnO₂-g-C₃N₄ system for pollution treatment applications [312]. As mentioned above, TiO₂ has promising properties that aid us in promoting the properties of this composite [313,314]. This ternary composite also demonstrated the perfect antibacterial activity for the degradation of *E. coli* bacteria, probably due to the interface between g-C₃N₄-SnO₂ and TiO₂ and lower charge recombination rate [314]. SnO₂/chitosan/g-C₃N₄ nanocomposite has been used as an Electrochemiluminescence aptasensor to improve lincomycin detection [315]. Ali et al. also showed the cost-effective prepared g-C₃N₄/rGO/SnO₂ nanocomposite for RhB degradation. The optimal amount of this nanocomposite reveals an increased RhB degradation efficiency [316]. As a result, the SnO_2 -g- C_3N_4 structure can be used in a wide range of applications. The exploitation of new clean energy instead of fossil fuels is of great interest to many since the fossil energy is exhausted. As a case in point, water splitting is a perfect example of this clean energy generation, which is widely applied by the g-C₃N₄-SnO₂ [317,318]. Besides, in order to reduce environmental pollution, the demand for electric transports has been increased. Thus, it is essential to use the rechargeable batteries such as lithium-ion batteries (LIBs) and improve lithium storage capacity. Specifically, g-C₃N₄ enables SnO₂ anode to enhance the Li storage in these batteries [319,320]. This heterojunction is also used to detect different compounds. Cao et al. showed that SnO₂/g-C₃N₄ composite promoted the sensitivity and selectivity in ethanol gas-sensing applications [321]. The degradation of the inorganic pollutant is another application of this heterojunction [322,323]. The emission of nitrogen dioxide (NO₂) and nitric oxide (NO) causing some environmental issues is one of the biggest challenges among several researchers, solved by Zou and coworkers by using SnO₂-g-C₃N₄ photocatalysts using visible-light irradiation under 30 min [287]. SnO_2 -g- C_3N_4 is also used to decomposed Ammonium Perchlorate (AP), a toxic inorganic material [324]. #### 5.2.6. Other Metal Oxides Other kinds of metal oxides such as V₂O₅, NiO, MoO₃, Cu₂O, Co₃O₄, CeO₂, Bi₂O₃, Al_2O_3 , etc., are also used to improve the performance of the bulk g- C_3N_4 [325–345]. The g-C₃N₄-based heterojunctions can be modified by combining with several metals or doping with various agents [346–348]. Cu is a conventional metal using for the improvement of photocatalytic performance. Zhou et al. used Cu/Al₂O₃/g-C₃N₄ for Rhodamine B degradation by H₂O₂ [349]. The Cu immobilized Al₂O₃/g-C₃N₄ also showed promising stability for the treatment of water pollution. Besides, copper is used as a charge separation center for hydrogen evolution, MO, and phenol solution degradation under visible light [350,351]. In addition to Cu, the noble metal Ag and Au is another metal catalyst used besides the g- C_3N_4 -based composite [347,352–356]. The Ag and Au can prevent rapid recombination probability, improve the transfer of a generated electron, and enhance the visible light absorption by the surface plasmon resonance, and can be used for a wide range of applications, especially decontamination of organic pollutants. Bi, Pd, Pt, Ni, and Cd are other metal photocatalysts used for improved photocatalytic activities [357–363]. Some semiconductors are also used besides the metal oxide-g-C₃N₄ based composites. Carbon-based nanomaterials provide excellent stability, cost-effective synthesis, enhanced photogenerated electron reservoirs used in bioimaging and sensing, photocatalysis, electrocatalysis [214,336,364–367]. Xie et al. fabricated the carbon quantum dots modified with MoO₃-g-C₃N₄ and demonstrated that this structure showed outstanding visible-light absorption used to degrade tetracycline (TC) from the environment [364]. Besides, among all carbon-based nanomaterials, reduced graphene oxide (rGO) has captured intensive attention [368,369]. Gong and coworkers illustrated that the charges transfer between g-C₃N₄ and Bi₂Fe₄O₉ (BFO) was improved by using rGO. The presence of the rGO causes the separation of electrons and holes in the CB of $g-C_3N_4$ and the VB of BFO, respectively [354]. Nanomaterials **2022**, 12, 294 29 of 73 In addition to the mentioned metals and semiconductors, metal-organic frameworks (MOFs) are a novel class of porous and crystalline materials with a large surface areato-volume ratio, high porosity, and tunable pore size that might improve the biosensor sensitivity. Since these structures are made from metal ions, clusters, and organic ligands, these materials can promote the separation and transfer of photoinduced electrons, making them a promising candidate for photocatalytic activities, such as organic
pollutants degradation, water splitting, and CO_2 reduction [370]. Cui et al. utilized the Fe-based MOFs, MIL-53(Fe), with Bi_2O_3 and $g-C_3N_4$ for the degradation of amino black 10B since this structure can enhance the visible light absorption range [371]. Like other heterojunctions, doping is another element to improve the performance of these composites and widen their applications [372–376]. Some $g-C_3N_4$ -based ternary composites comprising the metal oxide compounds can promote photocatalytic activities [103,377–380]. Bismuth complex oxides are among the most efficient catalysts with layered structures beside the g-C₃N₄-based composites. Among various Bi-based compounds, Bi₂O₃ based catalysts have drawn significant attention in the different areas [381,382]. It illustrated that CuO₂/Bi₂O₃/g-C₃N₄ nanocomposite reveals improved photocatalytic activities for decomposing of 2,4-dichlorophenol under visible light [381]. In another research work, Vattikuti et al. prepared Bi₂O₃/V₂O₅ photocatalysts anchored on the g-C₃N₄ nanostructure, which can be used for the phenol red (PR) pollutant degradation [383]. They also demonstrated that the efficiency of hybrid composites for the PR removal under the simulation solar light irradiation was higher than that of fabricated materials. Bi₂O₃/g-C₃N₄ heterojunctions were also conjugated with the BiPO₄ [15]. g-C₃N₄/Bi₂O₃/BiPO₄ hybrid exhibited the perfect photoelectric performance, which is mainly due to the high separation and photogeneration charges and can increment the oxidation/reduction rate. Bi₂O₂CO₃ is another Bi contained material that shows promising photocatalytic activities [384,385]. Kumar and coworkers suggested novel magnetic g-C₃N₄/Bi₂O₂CO₃/CoFe₂O₄ heterojunction with high visible light absorption for reduction of 4-nitrophenol into 4-aminophenol [386]. TiO₂-g-C₃N₄ based ternary composites are widely used for photodegradation. Min et al. fabricated the Cu₂O-TiO₂/g-C₃N₄ hybrid composite for the organic dyes' discolorations. Besides, this nanocomposite can also illustrate good performance for discolorations of RhB, MB, and MO within 3, 10, and 15 min, respectively [387]. TiO₂-g-C₃N₄ composites are also anchored with CeO₂ and metal to form g-C₃N₄-Meⁿ⁺¹/CeO₂-TiO₂ for photooxidation of toluene [388]. ## 6. Application of Metal Oxide-Based g-C₃N₄ Nanocomposites 6.1. Photocatalysts 6.1.1. H₂ Generation via Water Splitting These days, the demand for safe, efficient, and renewable energy resources instead of limited fossil fuel sources has increased among more and more people [14,184,389–391]. This replacement is an efficient remedy for global warming and greenhouse gases emission. The hydrogen energy content is in the range of 120 to 142 MJ kg $^{-1}$, which is higher than that of hydrocarbon fuels. Thus, it is estimated that hydrogen will be responsible for 90% of energy production by 2080. As a result, H₂ generation is a novel and environmentally-friendly research topic among many researchers [8,13,392–395]. One of the most recent hydrogen production techniques is the photocatalytic water splitting method via metal oxide-g-C₃N₄ heterojunctions by using prolific light sources [365,390,396–400]. For water splitting, the band position of the photocatalysts should be modified to provide the CB position more negative than the H₂O reduction potential (0 eV vs. Normal Hydrogen Electrode (NHE)) for H₂ generation and more positive than the H₂O oxidation potential (1.23 eV vs. NHE) for O₂ generation. To be more specific, the generated electrons are used for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) Nanomaterials **2022**, 12, 294 30 of 73 via Equations (1) and (2), respectively, and the final water-splitting reaction is shown in Equation (3) [111]. Hydrogen evolution reaction (HER): $$2H^+ + 2e^- \rightarrow H_2$$, $E^\circ = 0.00$ eV vs. NHE (1) Oxygen evolution reaction (OER): $$H_2O \rightarrow 1/2O_2 + 2H^+ + 2e^-$$, $E^\circ = -1.23$ eV vs NHE (2) Overall water splitting: $$H_2O \rightarrow H_2 + 1/2O_2$$, $\Delta G^{\circ} = -1.23 \text{ kJ mol}^{-1}$ (3) where NHE is the normal hydrogen electrode. Generally, there are three steps for each photocatalytic reaction; initially, the semiconductor absorbs light with energy equal to or higher than the bandgap to generate the electrons and holes in the valance and conductive band, respectively. Then, the photoinduced electrons and holes are moved to the surface of the semiconductor to start the reaction. Finally, the charge carriers participate in the reduction and oxidation reactions on the surface of the photocatalysts. Considering the band edges position of some of the metal oxide-g-C₃N₄ composites, which were noted previously, some heterojunctions are more anodic than that of H_2O reduction potential to show excellent performance under visible light irradiation [111,401]. As a case in point, TiO₂-g-C₃N₄ heterojunctions are widely used as an excellent photocatalytic for H₂ evolution. Yan et al. demonstrated that the efficiency of the visible-light-induced H₂ evolution of the binary composite comprising anatase TiO₂ and g-C₃N₄ was enhanced, and this is due to the desirable photoinduced carriers' separation [402]. In order to raise the heterojunction efficiency, other kinds of materials with various effective characteristics are also used. These materials (metals) or cocatalysts such as Ag, Au, Pt, etc., can host active sites for H⁺ reduction [403,404]. The loading Au and Ag would be significantly beneficial for this application because of their plasmonic characteristic. Marchal et al. illustrated that the optimized components ratios and contact quality in Au/(TiO₂-g-C₃N₄) lead to the enhanced visible light absorption with the proper band positions for photogenerated charge carriers [403]. Besides, the presence of Au and Ag will promote the water splitting for H_2 production by the improved charge separation rate. The H_2 generation rate under sunlight irradiation as a function of the relative ratio of methanol as a sacrificial agent and TiO_2/g - C_3N_4 is depicted in Figure 17a. It was mentioned that no H_2 generation was observed for the Au-free g- C_3N_4 and TiO₂. Furthermore, the best photocatalytic H₂ production was observed for the 0.5 wt % Au/(TiO₂-g-C₃N₄) (95/5) structure, using 1 vol% of CH₃OH as a sacrificial agent (Figure 17a). Carbon quantum dots (CQDs) can also improve photocatalytic performance to effectively decompose H_2O_2 to H_2O and O_2 . CQDs possess up-conversion fluorescence spectra, which could convert visible light to ultraviolet or near-ultraviolet light, resulting in excellent photocatalysis. Consequently, it is proven that the combination of C_3N_4 , TiO_2 , CQDs is a great candidate for water splitting [405]. Other metal oxide-g-C₃N₄ based composites such as WO₃-g-C₃N₄ and ZnO-g-C₃N₄ are used for H₂ generation. Mahala et al. demonstrated that the prepared ZnO nanosheets decorated with g-C₃N₄ quantum dots composites on the fluorine-doped tin oxide (FTO) coated glass slide could be utilized as a photoanode for water splitting via PEC (Figure 17b) [406]. In another work, the effect of boron addition and carbon nitride content did increase the H₂ evolution up to 85% compared to the bare TiO₂, which is mainly due to charge carriers' generation and separation [109]. It was also shown that the photoconversion efficiency of the low charge-transfer resistance of ZnO decorated with g-C₃N₄ is 2.3 times higher than that of pure ZnO [406]. As discussed previously, this composite had a high specific surface area, promising electronic conductivity, and excellent charge transfer interfaces and would be excellent candidates for the water splitting and H₂ evolution [407]. Other materials with suitable properties can also be used to improve the H₂ generation of g-C₃N₄-metal oxide-based composites [141,283]. In a plasmonic photocatalyst, a metal nanostructure with a size less than the wavelengths of the light, is embedded onto dielectric or semiconductor materials [408]. In such systems, the light can lead to a local electromagnetic field by generating localized surface Nanomaterials **2022**, 12, 294 31 of 73 plasmon resonance (LSPR) and hot carriers. The hot carriers move to conductive and valance bands and this phenomenon is called the LSPR sensitization [409,410]. The hot carriers can be useful for direct oxidation or reduction of chemical species. Some of the metals that showed plasmonic effects are gold (Au), silver (Ag), copper (Co), and platinum. Zhao et al. state that the LSPR of Au can enhance the light absorption and increase the number of photogenerated carriers in the $Au/g-C_3N_4/CeO_2$ plasmonic heterojunction. The heterojunction was employed for Cr^{6+} reduction and oxytetracycline hydrochloride (OTH) catalytic degradation [411]. **Figure 17.** (a) Hydrogen production rate of different samples as a function of the amount of methanol added as a sacrificial agent under solar light irradiation, Reproduced from Reference [403]; (b) schematic image of the ZnO/C₃N₄ QDs synthesis on FTO using electrodeposition and a dipcoating method, Copyright © 2022 Elsevier [406]. Metal oxide-g-C₃N₄ based ternary composites capture lots of attention among researchers [412]. For example, g-C₃N₄ (CN)/TiO₂ (TO)/PbTiO₃ (PTO) films were prepared by the sol-gel followed by the CVD method and were investigated for PEC water splitting [413]. Wang et al. showed the decreased resistance of the interface (RCT) of CN0.10/TO0.4/PTO compared to the pristine PTO and CN0.10/PTO, which facilitated the charge transfer and reduced electron-hole recombination [413]. The incident phototo-current conversion efficiency (IPCE) was calculated to measure the PEC performance. The pristine PTO has a lower IPCE than CN0.10/PTO, which is mainly due to the higher charge recombination rate. After the TO buffer layer's insertion, the IPCE value was drastically increased to 14.2% at
380 nm [413]. The inserted compact TiO₂ buffer layer provided the type II and Z-scheme interfaces between PTO, TO, and CN and promoted the PEC performance with an improved current density of $-68.5 \,\mu\mathrm{A}$ cm $^{-2}$ at 0 V versus Ag/Ag-Cl electrode. The high performance is mainly due to the high photogenerated ability of g-C₃N₄/TiO₂ heterojunction. BiVO₄ is another cost-effective compound with a proper bandgap (2.4 eV) to enhance the PEC water splitting [184]. Like PbTiO₃, BiVO₄ can also improve the photocurrent density of the g-C₃N₄@ZnO/BiVO₄ heterojunction to the 0.65 mA cm^{-2} at 1.23 V versus Ag/Ag-Cl electrode. Table 2 provides some other research activities on the water-splitting application of the g- C_3N_4 -metal oxide-based composites. # 6.1.2. CO₂ Reduction CO_2 emission is one of the leading environmental problems causing by fossil fuel consumption and results in a temperature rise of the earth's surface. Photocatalytic CO_2 reduction is a green method to deal with this problem for two reasons [111]. Not only CO_2 reduction reduces the CO_2 emission, but it also solves the future energy demands by producing energy fuels such as CH_4 , CH_3OH , etc. Photocatalytic CO_2 conversion is largely achieved by different metal oxide-g- C_3N_4 based systems, as they have desirable band edges positions. Equations (4)–(7) are chemical reactions for CO_2 conversion to other solar fuels. $$CO_2(g) + 2 H^+ + 2 e^- \rightarrow CO + H_2O$$ $E^\circ = -0.53 \text{ eV vs. NHE at pH 7}$ (4) Nanomaterials **2022**, 12, 294 32 of 73 $$CO_2(g) + 2 H^+ + 2 e^- \rightarrow HCOOH$$ $E^\circ = -0.61 \text{ eV vs. NHE at pH 7}$ (5) $$CO_2(g) + 6 H^+ + 6 e^- \rightarrow CH_3OH + H_2O$$ $E^\circ = -0.38 \text{ eV vs. NHE at pH 7}$ (6) $$CO_2(g) + 4 H^+ + 4 e^- \rightarrow HCHO + H_2O$$ $E^\circ = -0.48 \text{ eV vs. NHE at pH 7}$ (7) ZnO and TiO₂ are widely used as the g-C₃N₄-based composites for CO₂ conversion [429,430]. Wang et al. designed a photocatalyst comprising TiO₂ and g-C₃N₄ using ball milling and calcination. The heterostructure between TiO₂ and C₃N₄ leads to a low charge recombination rate, and high separation, resulting in the high CH₄ and CO evolution yields of 72.2 and 56.2 μ mol g⁻¹ are obtained [431]. In another research, Nb-TiO₂/g-C₃N₄ Z-scheme heterojunctions were investigated and showed that the 50Nb-TiO₂/50g-C₃N₄ composition was the best photocatalysts with high carrier separation ability for the reduction of CO_2 [432]. The existence of electrons and holes in the CB of the g- C_3N_4 and VB of Nb-TiO₂, respectively, makes the Nb-TiO₂/g-C₃N₄ system a potential candidate for reducing of CO2 into CH4 and CO and HCOOH. Guo and coworkers were thermally deposited g-C₃N₄ onto the porous ZnO nanosheets by two-step calcination and demonstrated that the ZnO porous nanosheets @ g-C₃N₄-0.4 showed the highest CO₂ conversion efficiency [433]. Not only this composite suppressed the photoinduced electron recombination and facilitated the carrier transfer, but also the CO₂ chemosorption increased in this composite since the increasing defect vacancies formed on the porous ZnO nanosheets. Shen et al. demonstrated 3-ZnO/g-C₃N₄ (3 is the mass ratio of ZnO) has a high photocatalytic activity for CO₂ reduction to CO and CH₄ [434]. This experiment showed an insignificant decrease in photocatalytic activities, which indicates $ZnO-g-C_3N_4$ had high photocatalytic stability. A similar analysis has been performed on the hydrocarbon generation rate with hollow g-C₃N₄, hollow CeO₂, which is shown in Figure 18a [435]. The fast kinetics of CO reduction results in a higher CO evolution rate compared to the CH₄ and CH₃OH. The highest yield obtains for g-C₃N₄@ 49.7 wt % CeO₂. Increasing amounts of CeO₂ in the g-C₃N₄@CeO₂ composites will decrease the PL intensity at about 460 nm, meaning that the lower electrons and holes recombination and enhanced charge separation (Figure 18b) [435]. Other researchers also work on the CO_2 reduction of g- C_3N_4 -metal oxide-based photocatalysts, which is listed in Table 3. ### 6.1.3. Photodegradation of Organic Pollutants The development of an increased number of dye-related industries such as textile, food, and furniture manufacturing leads to severe environmental problems [445,446]. In addition to the negative aesthetic impact on water sources, the chemical oxygen demand (COD) in wastewater will be increased in the presence of organic dyes. Various methods, such as coagulation, adsorption, and membrane separation, have been used to eliminate organic dye from effluents, which only reclaim organic dyes from the wastewater liquid phase to the solid phase, creating secondary pollutants in the environment. These techniques are also a significant threat to living organisms. As a result, a metal oxide semiconductor has been widely used for the degradation of organic dyes. Photocatalysis in which most of the metal oxide can eliminate organic dyes by degradation and transfection them into particles, using solar energy for activation of the reaction. The related equations for dye degradation of the metal oxide-g- C_3N_4 are shown in Equations (8)–(11) [447]: $$(g-C_3N_4+Metal\ Oxide) + h\nu \rightarrow e_{CB}^- + h_{VB}^+$$ (8) $$O_2^- + 2e_{CB}^- + 2H^+ \to OH^{\bullet} + OH^-$$ (9) $$h_{VB}^{+} + H_2O \rightarrow H^+ + OH^{\bullet} \tag{10}$$ Organic pollutant + $$OH^{\bullet} \rightarrow CO_2 + H_2O$$ (11) *Nanomaterials* **2022**, 12, 294 **Table 2.** A list of selected works on g- C_3N_4 -metal oxide-based photocatalytic water splitting. | Photocatalyst | Type of Heterojunction | Source of Light | Highest Photocatalytic Rate | Ref | |---|------------------------|---|--|-------| | TiO ₂ -g-C ₃ N ₄ | Type II | Asahi Spectra Hal-320 (300 mW cm $^{-2}$) with a 420 nm cut off filter ($\lambda > 420$ nm) | 3.6 μmol·h ⁻¹ | [115] | | TiO_2 -g- C_3N_4 | Type II | Xenon lamp with a 320 nm cut off filter ($\lambda > 320$ nm) | $76.25~\mu mol \cdot h^{-1}$ | [414] | | C-doped TiO ₂ -g-C ₃ N ₄ | Type II | 300 W Xe lamp (PLS-SXE300) with a 420 nm cutoff filter ($\lambda > 420$ nm) | 35.6 μ mol· g^{-1} · h^{-1} | [128] | | TiO ₂ -g-C ₃ N ₄ decorated by Co-Pi | Type II | 300 W Xe lamp coupled with a monochromator | - | | | TiO ₂ nanodots/g-C ₃ N ₄ | S-scheme | 300 W Xe lamp (LANPU) with a 300 nm cutoff filter ($\lambda > 300$ nm) | The H_2 and O_2 evolution rate is 1318.3
and 638.7 µmol g^{-1} , respectively,
(roughly as same as the stoichiometric
ratio of evolved H_2 to O_2) | [415] | | ZnO - g - C_3N_4 | Type II | PLS-SXE-300C lamp with an UV light intensity of 34 mW/cm ² and visible-light intensity of 158 mW/cm ² | - | [416] | | N-doped ZnO-g-C ₃ N ₄ | Z-scheme | PLS-SXE-300C UV lamp with a 420 nm cut off filter ($\lambda > 420$ nm) | 152.7 μmol· h^{-1} | [417] | | $g-C_3N_4-WO_3$ | - | 300-W Xe lamp (PLS-SXE300) with a 420 nm cutoff filter ($\lambda > 420$ nm) | 963 μ mol·g $^{-1}$ ·h $^{-1}$ | [141] | | $O-g-C_3N_4/WO_3$ | Z-scheme | 300 W Xenon lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | 15,142 μ mol·g ⁻¹ | [265] | | $S-Cu_2O/g-C_3N_4$ | Z-scheme | 300 W Xe lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | $24.83~\mu\mathrm{mol}\cdot\mathrm{h}^{-1}$ | [418] | | BiO_2/g - C_3N_4 | Type II
Z-scheme | 500 W Xe lamp with a 420 nm cutoff filter ($\lambda >$ 420 nm) | $8,542~\mu\mathrm{mol}\cdot\mathrm{g}^{-1}$ | [419] | | g-C ₃ N ₄ / BiYO ₃ | Type II | - | 37.6 μ mol·g ⁻¹ ·h ⁻¹ | [420] | | $g-C_3N_4/La_xCo_{3-x}O_4$ | - | 300 W Xe lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | $63.12~\mu\mathrm{mol}\cdot\mathrm{h}^{-1}$ | [421] | | Fe_2O_3/g - C_3N_4 | Z-scheme | 350 W Xe lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | 398.0 μ mol·g ⁻¹ ·h ⁻¹ | [210] | | Mn_3O_4/g - C_3N_4 | p-n heterostructure | 300 W Xenon lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) (PLS-SXE300D/300DUV, Beijing Perfectlight) | The H_2 and O_2 evolution rate is 3300 and 654 μ mol $g^{-1} \cdot h^{-1}$, respectively. | [422] | | g-C ₃ N ₄ /Nitrogen-Doped Carbon
Dots/WO ₃ | - | 300 W Xenon lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) (CEL-HXF 300) | $3.27 \text{ mmol g}^{-1} \text{ h}^{-1}$ | [423] | | Mn_3O_4/g - C_3N_4 | - | 300 W Xenon lamp source (PLS-SXE300D/300DUV) | $2700 \mathrm{mmol}\cdot\mathrm{g}^{-1}\cdot\mathrm{h}^{-1}$ | [422] | | $NiO/g-C_3N_4$ | Type II | Xe lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | $1.41~\mathrm{mmol}\cdot\mathrm{h}^{-1}$ | [424] | | In_2O_3/g - C_3N_4 | Type II | 300 W Xe lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | $0.99~\mathrm{mmol}\cdot\mathrm{h}^{-1}$ | [425] | | MoO_{3-x} -g-C3 N_4 | Z-scheme | 300 W Xe lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | $22.8~\mathrm{mmol}\cdot\mathrm{h}^{-1}$ | [426] | | $ZnO/Au/g-C_3N_4$ | Z-scheme | 150 W Xenon arc lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | $3.69~\mu mol~h^{-1}~cm^{-2}$ | [397] | | d-Ti ₃ C ₂ /TiO ₂ /g-C ₃ N ₄ | - | 300 W Xe lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | $1.62 \; \rm mmol \cdot h^{-1} g^{-1}$ | [396] | | TiO_2/g - C_3N_4 | Type II | 450 W high-pressure mercury lamp | $22.4 \mathrm{mol}\cdot\mathrm{h}^{-1}$ | [402] | | TiO_2 - WO_3 - g - C_3N_4 | - | - | $286.6 \text{ mmol} \cdot \text{h}^{-1}$ | [427] | | $TiO_2/Ti_3C_2/g$ - C_3N_4 | - | 300 W Xe lamp | 2592 mmol·g $^{-1}$ | [428] | Nanomaterials **2022**, 12, 294 34 of 73 **Figure 18.** (a) Hydrocarbon generation of hollow $g-C_3N_4$
(H-g- C_3N_4), hollow CeO_2 (H- CeO_2), and $g-C_3N_4$ @ CeO_2 for 4 h illumination; (b) photoluminescence emission spectra of H-g- C_3N_4 , H- CeO_2 references, and $g-C_3N_4$ @ CeO_2 heterojunction with different ratios. Copyright © 2022 Elsevier [435]. Researchers have suggested several metal oxide semiconductors that can be used in the g-C₃N₄-based heterojunctions. There are increasing numbers of studies showing the degradation capability of TiO₂, ZnO, WO₃, Bi₂O₃, CeO₂, etc. [100,101,113,116,448–451]. Zada et al. investigated the photodegrading of 2,4-dichlorophenol (2,4-DCP) and bisphenol A (BPA) over Au-(TiO_2/g - C_3N_4) nanocomposites. As mentioned above, the excellent photocatalytic of the nanocomposites containing Au is mainly due to the SPR of decorated Au [131]. The structure revealed 46% and 37% for 2,4-DCP and BPA degradation, which is 5.11 and 3.1 times larger than the bulk g-C₃N₄ in water under visible-light irradiation, respectively [131]. In another research, the synthesized ZnO@g-C₃N₄ exhibited an enhanced photocatalytic activity to degrade tetracycline (TC) under visible-light irradiation, which is 2.77 and 1.51 fold more than the photocatalytic ability of pure g-C₃N₄ and ZnO [452]. The improved degradation was due to the enhanced transference of charge carriers and reduced charge recombination in the presence of the generated reactive oxygen species (ROS). The pharmaceuticals contaminants have hazardous impacts on human health and environmental biodiversity. Zhu and coworkers fabricated WO₃-g-C₃N₄ composites for the photocatalytic degradation of one of the most well-known antibiotics, sulfamethoxazole (SMX), under visible light irradiation [453]. It is also revealed that the presence of RGO besides WO₃-g-C₃N₄ heterojunctions promoted the degradation rate of ciprofloxacin (CIP) nearly twice as compared to the WO₃-g-C₃N₄ structure [454]. In addition, H_2O_2 can raise the photocatalytic activities by the hydroxyl radicals' productions from the degradation of a natural organic matter up to 71% for 5 h [455]. Shafawi et al. prepared Bi₂O₃ particles decorated on porous g-C₃N₄ sheets by impregnation method [456]. 1 g/L of the composite containing g- C_3N_4 with 9 wt % Bi_2O_3 at 10 ppm reactive black 5 (RB 5) at pH = 5.7 demonstrated 84% degradation efficiency under UV-vis light for 120 min. The synergistic effects between g-C₃N₄ and CeO₂ provides higher catalytic activities compared to the bare ones [457–459]. The catalytic effects of the g-C₃N₄/CeO₂ composite, bare g-C₃N₄, and CeO₂ on the thermal decomposition of ammonium perchlorate (AP) were analyzed by using TGA and DTA characterization [460]. Two weight-loss regions from 25 °C to 500 °C, which were similar to the weight loss steps of AP in the absence of catalyst, were observed in Figure 19a,b. The weight loss decomposition temperatures of AP in the presence of the pure g-C₃N₄, CeO₂, and g-C₃N₄/CeO₂ were 53.6 °C, 47.6 °C and 74.6 °C, respectively (Figure 19a). It is also noticeable from Figure 19b that the AP thermal decomposition rate of g-C₃N₄/CeO₂ nanocomposites was higher than that of CeO₂ and g-C₃N₄. This heterojunction also shows a highly efficient for 2,4-dichlorophenol degradation [460]. *Nanomaterials* **2022**, 12, 294 $\textbf{Table 3.} \ A \ list of CO_2 \ reduction \ applications \ of the \ g-C_3N_4-metal \ oxide-based \ photocatalytic.$ | Photocatalyst | Type of Heterojunction | Source of Light | Highest Photocatalytic Rate | Ref | |---|------------------------|--|--|-------| | NiO-g-C ₃ N ₄ | Type II | 300 W Xenon-arc lamp | 4.17 μ mol·g ⁻¹ ·h ⁻¹ | [436] | | g-C ₃ N ₄ foam-Cu ₂ O | Z-scheme | 350–780 nm lamp | 8.182 μ mol·g ⁻¹ ·h ⁻¹ (CO revolution) | [437] | | $NiMoO_4$ - g - C_3N_4 | Z-scheme | - | 7238 μ mol·g ⁻¹ ·h ⁻¹ | [438] | | CeO_2 -g- C_3N_4 | Type II | 300 W of Xenon-arc lamp | $0.590 \ \mu mol \cdot h^{-1}$ (CO evolution) | [439] | | $ZnO/Au/g$ - C_3N_4 | Z-scheme | 300 W UV-Vis lamp | 689.7 μmol/m ²
(CO evolution) | [440] | | $ZnO/g-C_3N_4$ | Z-scheme | 300 W xenon light source with a 420 nm cutoff filter ($\lambda > 420$ nm) | ~72.24 $\mu mol \cdot g^{-1}$ | [435] | | TiO_2/g - C_3N_4 | Type II | 8 W UV lamp | The highest CH_4 and CO yields of 72.2 and 56.2 μ mol g^{-1} | [431] | | Nb doped TiO_2/g - C_3N_4 | Z-scheme | 1000 W Xe lamp | The CH ₄ , CO, O ₂ , HCOOH generation rate in the presence of 50Nb-TiO ₂ /50 g-C ₃ N ₄ is 562, 420, 1702, 698 μ mol h ⁻¹ g ⁻¹ , respectively. | [432] | | $ZnO/g-C_3N_4$ | Z-scheme | 350 W Xe lamp | The CH ₃ OH production rate was 1.32 μ mol h ⁻¹ g ⁻¹ | [429] | | ZnO/g-C ₃ N ₄ | Type II | 300 W xenon lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | $ m H_2$, $ m CH_4$, and CO production rates of 22.7 $ m \mu mol \cdot g \cdot C_{at}^{-1} \cdot h^{-1}$, 30.5 $ m \mu mol \cdot g \cdot C_{at}^{-1} \cdot h^{-1}$, and 16.8 $ m \mu mol \cdot g \cdot C_{at}^{-1} \cdot h^{-1}$ | [433] | | $ZnO/g-C_3N_4$ | Type II | 350 W Xe arc lamp | $45.6 \text{ mol g-C}_{at}^{-1} \cdot h^{-1}$ | [441] | | TiO_2/g - C_3N_4 | Type II | 450 W Xe lamp | 22.5 μ mol·g ⁻¹ and 70 μ mol·g ⁻¹ for CO and CH ₄ yield, respectively | [442] | | g-C ₃ N ₄ / 3D ordered microporous (3DOM)-WO ₃ | Z-scheme | visible light ($\lambda \ge 420$ nm) | 48.7 μ mol g ⁻¹ h ⁻¹ | [443] | | NiTO ₃ /g-C ₃ N ₄ | Z-scheme | 300 W xenon lamp with a 420 nm cutoff filter (λ > 420 nm) | The highest yield of CH ₃ OH production is $13.74~\mu mol\cdot g^{-1}\cdot h^{-1}$ | [444] | Nanomaterials **2022**, 12, 294 36 of 73 **Figure 19.** (a) TG and (b) DTG curves of pure ammonium perchlorate (AP), AP coupled with g-C₃N₄, CeO₂, and g-C₃N₄/CeO₂ heterojunction, Copyright © 2022 Elsevier [460]. Methylene Blue (MB), Methylene Orange (MO), and Rhodamine B (RhB) are the most commonly stable dyes in water at room temperature [461–468]. MB and RhB are toxic dyes that their high concentration can be so harmful to human and marine animal health. In accordance with the high resistivity of the MB and RhB in different environmental conditions, wastewater treatment is an urgent issue. Therefore, it is crucial to provide an effective and low-cost system to eliminate MB and RhB from sewage. As mentioned above, 2D/1D g-C₃N₄/ZnO nanocomposites reveal high stability, which retains the initial activity after repeated cycles [469]. The enhanced photocatalytic activity of g-C₃N₄-ZnO is likely due to the synergistic effects of photon acquisition and direct contact between organic dyes and photocatalyst [470]. To be more specific, the RhB dye degradation efficiency of this composite is 99% and 95% after one and three cycles under sunlight irradiation, respectively [471]. It is reported that the highest degradation efficiency for MB is obtained for the 30 wt % few-layer g- C_3N_4 -ZnO nanocomposites is the best composition [472]. The higher amount of g-C₃N₄ can increase the electrons and holes recombination, leading to the decrease of photocatalytic activity. It is also noticeable that RhB degradation efficiency for this composite is about 2.1 times higher than that of pristine ZnO [473]. Apart from g-C₃N₄-ZnO heterojunction, g-C₃N₄-TiO₂ heterojunction has high capability in the RhB degradation [474–477]. In these composites, •O₂ – played a major role while h⁺ played a minor role [478–480]. Li et al. prepared Ti³⁺ self-doped TiO₂ nanoparticles/g-C₃N₄ heterojunctions and demonstrated that the Ti³⁺ and O defects improve the conductivity and light absorption range to the visible wavelength region. Besides, the photocatalytic activities for environmental purification of organic compounds (MB) of the Ti³⁺ self-doped TiO₂/g-C₃N₄ nanostructures were improved under visible light irradiation remarkably [481]. It is proven that the photocatalytic activity of 2 wt % g-C₃N₄-TiO₂ improved by 70% compared to the bare TiO₂ [118]. The RhB degradation kinetic constant of g-C₃N₄-TiO₂ heterojunction is 9 times and 25 times higher than g- C_3N_4 and TiO₂, respectively [482]. The AgPO₄/g- C_3N_4 was used for the degradation of organic pollutants. Z-scheme carbon nitride with AgPO₄ and Ag nanoparticles was used for the degradation of RhB. The presence of Ag can improve visible light absorption. The prepared hybrid structure can improve the electrons holes separation and efficiency [483]. Other metal oxides can also be used in the g-C₃N₄ based heterojunction for organic dye degradation [398,484–487]. Bi₂O₃/g-C₃N₄ heterojunctions are the most commonly used composites for organic dye degradation [488,489]. Fan et al. mentioned that the *OH radicals played the crucial roles during photocatalytic degradation of MB in 0.5- Bi₂O₃/g-C₃N₄ (0.5 is the mass of Bi₂O₃ in the synthetic process) Z-scheme heterojunction, while ${}^{\bullet}O_2^-$, h^+ , e^- radicals have less contribution to this activity [490]. Compared to the pure Bi₂O₃ and bare g-C₃N₄, the Bi₂O₃/g-C₃N₄ heterojunctions showed better catalytic activity with 100% MB degradation ability in 90 min [490]. The 2% Bi₂O₃/g-C₃N₄ composites showed a degradation rate constant of 0.040 min⁻¹, which is 2.5 and 1.9 fold higher than that found for bulk and nitrogen vacant 2D g-C₃N₄ nanosheet, respectively [491]. This composition showed excellent photocatalytic activity with a methylene green degradation efficiency of 98.7% under visible light irradiation [448]. At 30 °C, 5% CeO₂/g-C₃N₄ (5% is the molar ratios of the CeO₂/g-C₃N₄ samples) photocatalyst showed Nanomaterials **2022**, 12, 294 37 of 73 the best efficiency for MB degrading under visible light
irradiation with the constant rate of 1.2686 min⁻¹, which is 7.8-fold higher than pure g-C₃N₄ [492]. Some ternary composites are also used for RhB and MB dye degradation [493]. SnO₂-ZnO quantum dots anchored on g-C₃N₄ nanosheets were demonstrated as a promising candidate for RhB degradation, which is 99% in 60 min under visible-light irradiation [494]. This hybrid also showed a promising potential for hydrogen production with the photocatalytic rate of 13.61 μ mol g⁻¹, which is 1.06 and 2.27 times higher than that of the binary ZnO/g-C₃N₄ hybrid and pristine g-C₃N₄. In similar work, ZnS quantum dots (ZNS)/SnO₂/g-C₃N₄ ternary nanocomposites were synthesized via solid-state calcination [495]. The high bandgap of SnO₂ and ZnS QDs leads to the reduction of the recombination rate and increases the separation of the generated carriers in the g-C₃N₄ [495]. The lower conduction band edge position of the SnO₂, which is lower than others compel electrons to accumulate in this state. The position of the electrons and holes helped in improving the photocatalytic performance and enhancing stability. As a result, the transferred electrons can act as a suitable reductant and react with adsorbed O_2 to produce superoxide radicals (O_2^-) . On the other side, the holes in the valence band of g-C₃N₄ can directly oxidize the pollutants to degraded products since these holes have strong oxidizing power [495]. g-C₃N₄-metal oxide heterojunction is used to degrade different elements such as Hg, Cr (VI) [136,496,497], and different toxic and harmful materials such as atrazine (ATZ), chloramphenicol, ciprofloxacin (CIP), and etc. [197,454,498–502]. There are several research activities on the photodegradation applications of g-C₃N₄-metal oxide-based heterojunctions which are listed in Table 4. #### 6.2. Sensors Some benefits, such as high sensitivity to analytes, rapid response to external stimulations, excellent fluorescence quenching abilities, light and electricity conversion properties, biocompatibility, and high stability make g- C_3N_4 nanosheet a promising candidate as a modified electrode for sensors to detect different analytes such as glucose, hydrogen peroxide, dopamine, etc. [6,549–554]. Metal oxide semiconductors/g- C_3N_4 composites are widely used as gas sensors [555]. As a result, the g- C_3N_4 loaded with metal oxides has also revealed new types of sensors to detect different kinds of materials [556]. General schematic description in Figure 20, shows different types of g- C_3N_4 -metal oxide sensors. Like other applications, g-C₃N₄-TiO₂ based structures are one of the most used composites for sensing applications. Li et al. demonstrated that the photoelectrochemical TiO₂/g-C₃N₄/CdS platform could be employed for the ultrasensitive determination of T4 polynucleotide kinase (T4 PNK) because this composite showed significant stability and reproducibility with high selectivity [557]. The photocurrent response is demonstrated in Figure 21A. To be more specific, "trace a" shows a low photocurrent at a bare electrode. The rapidly increased photocurrent is detected in "trace b" (from 10 to 30 s) due to decrease in the rate of electron-hole recombination and the high-efficiency absorption. In the TiO_2/g - C_3N_4 modified-FTO in "trace c", the photocurrent increases to 30.7 μA since the bandgap of the g- C_3N_4 reduces the charge carrier recombination and facilitates the electron transmission [557]. The photocurrent increases in "trace d" (TiO₂/g-C₃N₄/CdS nanocomposite-modified electrode). The photocurrent increased to 80.0 μA after attaching DNA₃, which can capture ssDNA₂ to the electrode and then blocking 6-mercaptohexanol (MCH) ("trace e"). For comparison, the photocurrent of CdSe QDs with or without the bio-functionalization of DNA₂ on the electrode matrix is 180 and 78 μA, respectively [557]. In addition, "trace f" shows that DNA2-CdSe QDs hybridized onto the surface, the photocurrent density increases to 180.0 µA since the presence of CdSe QDs improve the light absorption efficiency. To compare, CdSe QDs also functionalized the electrode matrix without DNA₂, and the result showed that the photocurrent density is about 78.0 μA which is similar to the "trace e" and highly lower than "trace f". As a result, the constructed platform shows a promising candidate for ultrasensitive detection of T4 PNK activity [557]. TiO₂ with g-C₃N₄ is also used for sensitive detection of protein kinase A (PKA), which is an enzyme that covalently decorates proteins with phosphate groups [558]. *Nanomaterials* **2022**, 12, 294 **Table 4.** the photodegradation application of g- C_3N_4 -metal oxide-based heterojunctions. | Photocatalyst | Type of Heterojunction | Source of Light | Application | Highest Photocatalytic Rate | Stability | Ref | |---|------------------------|---|--|--|-----------|-------| | TiO ₂ -g-C ₃ N ₄ | Z-scheme | 300 W Xenon arc lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | Degradation of Rhodamine B and tetracycline hydrochloride | The RhB removal rates for 5 layer TiO_2 , 3, 5, 7 layers g - C_3N_4 (0.5)/ TiO_2 were 5.1%, 17.9%, 31.2%, and 22.6%, respectively | - | [503] | | P/O co-doped $g-C_3N_4$ /anatase TiO_2 | Z-scheme | 350 W Xenon-arc lamp as a light
source with a 420 nm cutoff filter
$(\lambda > 420 \text{ nm})$ | Degradation of enrofloxacin | ~98.5% | 1 h | [504] | | TiO ₂ @ g-C ₃ N ₄ | Z-scheme | 100-W xenon lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | Degradation of RhB | 95.68% | | [505] | | MoS_2 -g- C_3N_4 @ TiO_2 | - | 350 W Xenon lamp | Degrdation of Methylene Blue | 97.55 | 1 h | [506] | | g- C_3N_4 and polyaniline-co-modified TiO ₂ | - | xenon lamp containing an optical filter | Degradation of tetrabromobisphenol A | 92.42% | 16 h | [507] | | N-TiO ₂ /O-doped N
vacancy g-C ₃ N ₄ | Type II
Z-scheme | Lamp with a 420 nm cutoff filter $(\lambda > 420 \text{ nm})$ | Degradation of tetracycline hydrochloride and Cr(VI) | TC-HCl and Cr(VI) removal efficiency is 79.9% and 89.5%, respectively TiO ₂ @g-C ₃ N ₄ photocatalyst shows the | - | [508] | | TiO ₂ @g-C ₃ N ₄ | Туре ІІ | 300 W xenon lamp | Degradation of tetracycline antibiotic | The highest tetracycline degradation rate is 2.2 mg/min, which is 2 times higher than that of TiO ₂ and 2.3 times higher than that of bulk g-C ₃ N ₄ . | - | [509] | | TiO_2/g - $C_3N_4/$ persulfate (PS) | Type II | 300 W xenon lamp with a 420 nm cutoff filter (λ > 420 nm) | Degradation of micropollutant (phenol, bisphenol A and carbamazepine | 99.3%. | | [510] | | TiO ₂ nanowire/g-C ₃ N ₄
nanosheet/graphene (G)
heterostructures | - | 300 W xenon lamp | Degradation of nitrobenzene | 97% | 4 h | [119] | | Ti ³⁺ and O doped
TiO ₂ /g-C ₃ N ₄ | Туре ІІ | 30 W cold visible light-emitting diode | Degradation of Rhodamine B | The photodegradation reaction rate constant based on this heterojunction is 0.0356 min ⁻¹ , which is 3.87 and 4.56 times higher than those of pristine Ti ³⁺ -TiO ₂ and g-C ₃ N ₄ , respectively. | - | [125] | | TiO_2/g - C_3N_4 | Type II | - | Degrdation of ciprofloxacin (CIP) | 68.1% | 3 h | [511] | | ZnO - g - C_3N_4 | Z scheme | 500 W Xe lamp, with a 420 nm cutoff filter (λ > 420 nm) | Degradation of Methylene
Blue (MB) | 75% | 3 h | [512] | | ZnO-g-C ₃ N ₄ | Z scheme | 300 W xenon lamp | Degradation of cephalexin oxidation | 98.9% | 1 h | [513] | *Nanomaterials* **2022**, 12, 294 Table 4. Cont. | Photocatalyst | Type of Heterojunction | Source of Light | Application | Highest Photocatalytic Rate | Stability | Ref | |---|------------------------|--|--|--|-----------|-------| | djembe-like ZnO-
g-C ₃ N ₄ | - | 150 W Xenon light sources | Degradation of MB and RhB | MB and RhB degradation efficiency are ~95% and ~97%, respectively. | 50 min | [514] | | WO_3 -g- C_3N_4 | | 300 W Xenon lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | Degradation of tetracycline | 90.54% | 1 h | [515] | | WO_3 - g - C_3N_4 | Z-scheme | 450 W xenon lamps | Degradation of AO7 | 100% | 75 min | [516] | | WO_3 -g- C_3N_4 | Z-scheme | 35-W Xe lamp with a radiation intensity of 1380 μW·cm ² | Degradation of orange G | 98% | 1 h | [517] | | $Ag\text{-WO}_3/g\text{-C}_3N_4$ | Z-scheme | 500 W Xe lamp (Beijing Bofei
Technology. Co. Ltd., Beijing,
China) | degradation of oxytetracycline hydrochloride | 97.74 | 1 h | [273] | | WO ₃ @g-
C ₃ N ₄ @MWCNT | Z-scheme | 5 mW cm ⁻² Xe lamp (SANEI electronics-JAPAN) | Degradation of tetracycline | 79.54% | 2 h | [518] | | g-C ₃ N ₄ /WO ₃ | Z-scheme | - | Degradation of nitenpyram | The photocatalyst rate constant is $0.036~\rm min^{-1}$ which is about 1.7 and 25 times higher than that of pure g-C ₃ N ₄ and WO ₃ , respectively. | - | [519] | | Bi_2O_3 - g - C_3N_4 | Z-scheme | 350 W xenon lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | Degradation of Rhodamine B | 98% | 80 min | [520] | | Bi_2O_3 - g - C_3N_4 | Z-scheme | 250 W Xenon lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | Degradation
of tetracycline | 80.2% | 50 min | [521] | | g - C_3N_4 - CeO_2 | Type II | 300W Xe arc lamp | Degradation of antibiotic doxycycline hydrochloride | 84% | 1 h | [522] | | Shuttle-like
g-C ₃ N ₄ -CeO ₂ | - | 300 W Xe arc lamp | Degradation of norfloxacin | 88.6% | 1 h | [523] | | Kaolin/CeO ₂ /g-C ₃ N ₄ | - | 500 W Xenon lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | Removal of ciprofloxacin | 90% | 150 min | [524] | | $Fe_3O_4/CeO_2/g\text{-}C_3N_4$ | - | 300 W Xe lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | Degradation of
tetracycline hydrochloride
Reduction of | 96.63% | 3 h | [525] | | $Au/g\text{-}C_3N_4$ nanosheets/CeO $_2$ | Z-scheme | 500 W Xe lamp with a 400 nm cutoff filter ($\lambda > 400$ nm) | hexavalent chromium Oxidation of oxytetracycline hydrochloride | 88.2%
95.1% | 150 min | [411] | | Co_3O_4 -g- C_3N_4 | - | 250 W Xe lamp with a 420 nm cutoff filter (λ > 420 nm) | Degradation of
Methyl Orange | 100% | 3 h | [526] | Nanomaterials **2022**, 12, 294 40 of 73 Table 4. Cont. | Photocatalyst | Type of Heterojunction | Source of Light | Application | Highest Photocatalytic Rate | Stability | Ref | |---|------------------------|--|--|--|-----------|-------| | NiO-g-C ₃ N ₄ | Type II | 500 W Xe-lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | Degradation of
Methylene Blue | 6.3 wt. % NiO loading shows a 2.3 times higher MB degradation rate than that of the pristine g-C ₃ N ₄ . | 80 min | [527] | | $V_2O_5\text{-}g\text{-}C_3N_4$ | Z-scheme | 500 W Xenon lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) 150 W-Xe lamp having 1.5 AM | Degradation of Congo Red and Cr (VI) reduction | . | 90 min | [528] | | MoO_3 - g - C_3N_4 | Z-scheme | filter which allows wavelength
larger than 400 nm for the visible
light-based catalytic reaction | Degradation of Rhodamine B | 93% | 3 h | [529] | | MoO_3 -g- C_3N_4 | Z-scheme | 500W Xenon lamp | Degradation of Rhodamine B | 100% | 10-15 min | [530] | | MoO_3 -g- C_3N_4 | Z-scheme | visible light ($\lambda > 420$ nm) | Degradtion of tetracycline | 85.9% | 100 min | [531] | | BiMoO ₆ -g-C ₃ N ₄ | Z-scheme | 300 W Xe lamp
A 300 W Osram, 230 V with a | Degradation of ciprofloxacin | ~100 | 30 min | [532] | | $g-C_3N_4/SnO_2$ | S-scheme | 420 nm cut-off filter as used as the visible light source. | Degradation of NO | 44.17% | 30 min | [533] | | g-C ₃ N ₄ -NiO | Z-scheme | 30 W LED-light source | Degradation of Methyl
Orange (MO) | 96.8% | 2 h | [461] | | $ZnO/g-C_3N_4$ | Type II | 150 W Xe lamp | Degradation of MB and RhB | The MB and RhB degradation was ~95% and ~97%, respectively. | 50 min | [514] | | g - C_3N_4 / CuO_x | - | 350W Xe lamp | Degradation of Methyl
Orange (MO) | ~62.5%. | 70 min | [534] | | WO_3/g - C_3N_4 | Z-scheme | 300 W Xe arc lamp | Degradation of sulfamethoxazole | 91.7% | 4 h | [453] | | g - C_3N_4
Nanosheets/ZnO | - | 500 W Xe lamp | Photocatalytic reduction of aqueous chromium(VI) | 70% | 4 h | [535] | | $ZnO/g-C_3N_4$ | - | 500 W xenon lamp | Photodegradation of Direct
Blue 199 (DB) | 99% | 100 min | [536] | | $ZnO/g-C_3N_4$ | - | A 150 W xenon lamp | Degradation of tetracycline hydrochloride | 97% | 30 min | [452] | | MoS ₂ /Al ₂ O ₃ /g-C ₃ N ₄ | - | 150 W tungsten halogen lamp with a 420 nm cutoff filter $(\lambda > 420 \text{ nm})$ | Degradation of crystal violet (CV) | 97.3%. | 90 min | [537] | | g-C ₃ N ₄ /ZnO | Z-scheme | 300 W Xenon lamp cutoff filter with a 420 nm cutoff filter ($\lambda > 420$ nm | Degradation of 4-chlorophenol | ~ 95% | 1 h | [538] | Nanomaterials **2022**, 12, 294 41 of 73 Table 4. Cont. | Photocatalyst | Type of Heterojunction | Source of Light | Application | Highest Photocatalytic Rate | Stability | Ref | |---|------------------------|--|---|---|----------------------|-------| | Gd ₂ O ₃ NPs@g-C ₃ N ₄ | - | 300 W Xe lamp with a 420 nm cutoff filter (λ > 420 nm) (PLS-SXE300, Beijing Perfectlight Technology Co., Ltd., Beijing, China) | Degradation of Methyl
Orange (MO)
Methyl Blue (MB)
Rhodamine B | 72.4%
95.5%
100% | 2 h | [539] | | MoO_3/g - $C_3N_4/peroxydisulfate$ (PDS) | Z-scheme | 350 W Xenon lamp with a 420 nm cutoff filter ($\lambda > 420$ nm) | degradation of ofloxacin (OFLX) | 94.4% | 2 h | [540] | | $ZnO/g-C_3N_4$ | Z-scheme | 300 W Xe lamp | Degradation of cephalexin | 98.9% | 1 h | [513] | | $\text{Ce}_2\text{O}/\text{Bi}_2\text{O}_3/\text{g-C}_3\text{N}_4$ | Z-scheme | 75 W halogen lamp | Degradation of Malachite green and Rose Bengal | - | 1 h | [541] | | CuO/ZnO/g-C ₃ N ₄ | Z-scheme | 400 W hallow lamp | Degradation of Methylene
Blue and ammonia-nitrogen | The MB and ammonia-nitrogen degradation efficiency are ~98% in 45 min and 91% in 6 h. | 45 min, and
6 h | [542] | | $Fe_3O_4/ZnO/g$ - C_3N_4 | Type II | 23 W white LED | Degradation of pantoprazole | 97.09%. | 90 min | [543] | | Fe ₃ O ₄ /TiO ₂ /g-C ₃ N ₄ | - | 500 W Xenon Lamp with a 420 nm cutoff filter ($\lambda > 420$ nm | Degradation of Rhodamine B
(RhB) and Methylene
Orange (MO) | The photocatalyst shows the RhB, and MO degradation efficiency is ~96.4% in 80 min and 90% in120 min. | 8 min and
120 min | [544] | | g-C ₃ N ₄ /ZnO/TiO ₂ | - | 1000 W xenon lamp irradiation
system equipped with a 410 nm
cutoff filter under room
temperature. | Degradation of p-toluenesulfonicacid (p-TSA) | 100% | 60 min | [545] | | $ZnO/Ag_2O/g$ - C_3N_4 | - | high pressure xenon short arc lamp with the light intensity of 100 mW cm^{-2} | Degradation of ciprofloxacin | 97.4% | 48 min | [196] | | $WO_3/TiO_2@g-C_3N_4$ | - | 500 W metal halide lamp | Removal of acetylsalicylate
(aspirin) and
methyl-theobromine (caffeine) | 98% | 90 min | [546] | | $\text{TiO}_2@\text{g-C}_3\text{N}_4/\text{Co}_3\text{O}_4$ | - | 300 W xenon lamp | Degradation of tetracycline
(TC) and Methylene
Orange (MO) | The TC (10 mg/L) and MO (25 mg/L) degradation efficiency are 91.6% and 97.8%, respectively. | 1 h | [547] | | $g\text{-}C_3N_4/Bi_2O_3/TiO_2$ | - | Xe-lamp light source with a 420 nm cutoff filter ($\lambda > 420$ nm | Degradation of Methylene
Blue (MB) | The MB removal efficiency is 77.5%. | 3 h | [548] | | SnO ₂ /ZnO@g-C ₃ N ₄ | - | 300 W xenon lamp | Degradation of Rhodamine B
dye and H ₂ production | 99% | 1 h | [494] | | g-
C ₃ N ₄ /NiO/ZnO/Fe ₃ O ₄ | - | - | removal of esomeprazole | $95.05 \pm 1.72\%$ | 70 min | [513] | Nanomaterials **2022**, 12, 294 42 of 73 **Figure 20.** Different kinds of g-C₃N₄-metal oxide-based sensors for materials detection. **Figure 21.** (A) Photocurrent responses of (a) FTO, (b) FTO/TiO₂, (c) FTO/TiO₂/g-C₃N₄, (d) FTO/TiO₂/g-C₃N₄/CdS, (e) FTO/TiO₂/g-C₃N₄/CdS/capture-DNA₃/MCH, (f), FTO/TiO₂/g-C₃N₄/CdS/capture-DNA₃/MCH/DNA₂-CdSe, (g) FTO/TiO₂/g-C₃N₄/CdS/capture-DNA₃/MCH/CdSe, Copyright © 2022 American Chemical Society [557]; (B) Nyquist plots of ZnO, g-C₃N₄/ZnO composites and g-C₃N₄ nanosheets electrodes, Copyright © 2022 American Chemical Society [559]. ZnO-g- C_3N_4 is another heterojunction used as an agent as UV-assisted gas sensors. It is shown that the ethanol (C_2H_5OH) sensing capability of ZnO-g- C_3N_4 is much higher when compared to the bare ZnO and g- C_3N_4 . The ZnO with 8% g- C_3N_4 showed the best sensing performance than the others, which attributes to effective electrons and holes separation between g- C_3N_4 and ZnO and the UV-light catalytic effect in the room temperature [559]. The structure showed an excellent response of ethanol at room temperature, which was Nanomaterials **2022**, 12, 294 43 of 73 higher than the pure ZnO at the same condition. The arc radius of ZnO and g- C_3N_4 /ZnO is shown in Figure 21B. The results show that adding g- C_3N_4 nanosheets to ZnO improves the charge transfer and reduces the electrical resistivity [559]. Sensing of NO₂ and CH₄ by ZnO-g-C₃N₄ heterojunction have also been investigated [560,561]. Hydrogen sulfide (H_2S) is a corrosive and toxic gas, which can be generated from oil refining, mines, or petroleum fields, fuel cells, or food processing industries and may cause severe problems. As a result, eliminating H₂S has always been a serious research topic. Zeng et al. used α -Fe₂O₃/g-C₃N₄ for H₂S detection and showed that 5.97% α -Fe₂O₃ with g-C₃N₄ provides the best cataluminescence response [562]. The prepared α -Fe₂O₃/g-C₃N₄ composite can be used as an H₂S gas sensor in environmental monitoring, oil refining, food processing, and so forth. Researchers have shown that g-C₃N₄-SnO₂ composites can also be used as sensors for different kinds of compounds. Specifically, Zhang et al. proved that the presence of g-C₃N₄ beside SnO₂ enhances the gas sensitivity and selectivity of SnO₂ to acetic acid vapor with the reduced temperature from 230 °C to 185 °C [563]. The limit of acetic acid vapor detection is 0.1 ppm; however, the long-term stability of the prepared composite is low and should be improved. In-SnO₂ loaded cubic mesoporous g-C₃N₄ will be a new method and structure to design efficient humidity sensors for monitoring indoor climatic conditions [564]. Table 5 lists the applications of g-C₃N₄-metal
oxide heterojunction used as sensor material. ### 6.3. Bacterial Disinfection According to different sizes, shapes, and structures of bacteria, viruses, microbes, and microalgae, the g-C₃N₄ has the ability to eliminate them under ultraviolet or visible light irradiation changes. Fabricating the g-C₃N₄ with different metal oxides is important for effective composites for water antimicrobial disinfection and microbial control. Biohazards are widely present in wastewater and contaminated water containing a variety of viruses, bacteria, fungi, etc., causing health issues in humans [30]. The pioneering work by Matsunaga et al. showed that TiO₂ could help in inactivating bacteria such as Escherichia coli, Lactobacillus acidophilus, and Saccharomyces cerevisiae under UV light [580]. TiO₂ suffers from low absorption of solar energy and this is due to the wide bandgap of TiO₂, which is widely discussed in the previous parts. One method to increase TiO₂ performance is to combine it with different semiconductors. Li et al. prepared g-C₃N₄-TiO₂ using a facile hydrothermal-calcination approach with high photocatalytic bacterial inactivation ability [114]. They demonstrated that this composite could facilitate water disinfection, especially in hospital wastewaters with highly concentrated pathogenic microorganisms, using visible light. In another work, researchers investigated the excellent efficiency of this composite on the removal of the microcystis aeruginosa and Microcystin-LR [581]. In order to improve the photocatalytic activity, researchers are more likely to dope metal elements such as Ag and Cr in the g-C₃N₄-metal oxide structure, which can perform as an electron sink to separate the carriers. Doping these elements not only can modify the band edge positions of these structures but also, due to antimicrobial and bacterial properties of these materials, they are widely used in the g-C₃N₄-metal oxide-based photocatalysts [102,189]. g-C₃N₄/Cr-ZnO nanocomposites with superior antibacterial activity against Gram-negative (*Escherichia coli*) and Gram-positive (*Bacillus subtilis, Staphylococcus aureus*, and *Streptococcus salivarius*) were investigated [172]. In this research, the 60%g-C₃N₄/5%Cr-ZnO nanocomposite performs the highest antibacterial activity. Fe-SnO₂/g-C₃N₄ revealed a promising sterilization performance for *Escherichia coli* and *Staphylococcus aureus* under sunlight, near-ultraviolet light, and daylight lamp [582]. The sterilization performance of this structure is mostly deserved under a daylight lamp. The magnetic silver-iron oxide nanoparticles decorated graphitic carbon nitride nanosheets showed antibacterial performance against *E. coli* bacteria [583]. Nanomaterials **2022**, 12, 294 44 of 73 **Table 5.** The list of applications of g- C_3N_4 -metal oxide heterojunction used for detection. | Photocatalyst | Application | Explanation | Ref | |--|--|---|-------------------------| | MoO ₃ -g-C ₃ N ₄ | Detection of Furazolidone | The high electroactive surface area (0.3788 cm²), as well as enhanced heterogeneous electron transfer rate ($K^{\circ}_{\rm eff}$ = 4.91 \times 10 ⁻² cm·s ⁻¹ can detect Furazolidone with low limit of detection (LOD) (1.4 nM) with a working range of 0.01–228 μ M. | | | Co_3O_4 - g - C_3N_4 | Detection of environmental phenolic hormones | This composite showed a wide detection range and a low limit of detection LOD (10^{-9} mol L ⁻¹) | [565] | | g - C_3N_4 - Fe_3O_4 | Determination of Tramadol in Human
Biological Fluids | LOD of this composite is ${\sim}0.1~\mu M$ | [566] | | $V_2O_5\text{-}g\text{-}C_3N_4$ | Detection of folic acid | The sensitivity, the LOD, and noise-to-signal ratio of the sensor is 19.02 μ A mM ⁻¹ cm ⁻² , and 0.00174 μ M, and 3 (S/N = 3), respectively | [567] | | g-C ₃ N ₄ -NiO | Detection of quercetin | The dynamic range and LOD of g-C $_3$ N $_4$ -NiO for sensing quercetin is 10 nM to 250 and 0.002 μ M, respectively | [568] | | Cu_2O - g - C_3N_4
NiO- Co_3O_4 - g - C_3N_4
$ZnO @ g$ - C_3N_4 | Humidity sensor
Detection of tetrabromobisphenol-A
Detection of CCRF-CEM cells | The response time and recovery time were $180-200 \mathrm{s}$ and $5-10 \mathrm{s}$, respectively. This structure showed a LOD of $\sim 0.1 \mathrm{mmol} \mathrm{L}^{-1}$ The LOD of this compsite is $\sim 20 \mathrm{cell/mL}$ | [569]
[570]
[571] | | ZnO flower-rod/g-C ₃ N ₄ -gold
nanoparticle | Detection of carcinoembryonic antigen (CEA) | The PEC aptasensor for CEA determination is from 0.01 to 2.5 $\rm ng\cdot mL^{-1}$ with detection of 1.9 $\rm pg\cdot mL^{-1}$. | [572] | | g-C ₃ N ₄ /ZnO | Ethanol sensing | Compared to the ZnO, the g- C_3N_4 /ZnO-8% composites revealed an excellent response ~60 orders of magnitude at room temperature. | [559] | | $ZnO/g-C_3N_4$ | NO ₂ sensing | The response, recovery time, and LOD of $ZnO/g-C_3N_4-10$ wt % are 142, 190 s, and 38 ppb, respectively. | [561] | | $SnO2/g-C_3N_4$ | Ethanol gas Sensing | The composite with 7 wt % g- C_3N_4 content exhibited a promising gas sensing property to ethanol, which has better response and selectivity than that of the pure SnO ₂ based sensor. | [321] | | g - C_3N_4/ZnO | CH ₄ Sensing | The higher active sites can be obtained in this structure due to the larger specific surface area leading to the great response toward 1000 ppm CH ₄ . | [560] | | g - C_3N_4 - Mn_3O_4 | H ₂ S sensor | The LOD (S/N = 3, LOD) is $0.13 \mu g \text{ mL}^{-1}$ | [573] | | $\alpha\text{-Fe}_2O_3/g\text{-}C_3N_4$ | H_2S sensor | The linear detection range and detection limit of the H_2S gas sensor were 0.88–7.01 μ g mL ⁻¹ (r = 0.998) and 0.5 μ g mL ⁻¹ (S/N = 3), respectively. | [562] | | O vacancy WO _{2.9} /g-C ₃ N ₄ | 4-nitrophenol Sensing | Compared to other research works, this heterojunction showed the linear range of 0.4–100 µmol/L and a lower detection limit of 0.133 µmol/L. | [574] | | $\begin{array}{c} b\text{-}Bi_2O_3/g\text{-}C_3N_4 \\ Fe_3O_4/Bi_2O_3/g\text{-}C_3N_4 \end{array}$ | Detection of chlorpyrifos
Determination of Cd ²⁺ and Pb ²⁺ | The linear detection range and detection limit of this sensor were $0.1-80$ ng mL ⁻¹ a03 μ g mL ⁻¹ , respectively. The minimum quantity for Cd ²⁺ and Pb ²⁺ that can be detected is 3×10^{-9} and 1×10^{-9} mol/L, respectively. | [575]
[576] | | WO_3/g - C_3N_4 | Detection of phosmet | The limit of detection (LOD) and limit of quantification (LOQ) of this device was calculated 3.6 nM and 11.2 nM, respectively. | [577] | | WO_3/g - C_3N_4/MnO_2
CuO - g - C_3N_4 | Detection of oxytetracycline cathodic
Aflatoxin B1 sensing | This sensor exhibited a wide detection range from 1 pM to 150 nM and a low detection limit of 0.1 pM. The limit of detection of 6.8 pg mL ⁻¹ for AFB1. | [578]
[579] | Nanomaterials **2022**, 12, 294 45 of 73 Zhao and coworkers illustrated that g- C_3N_4 /ZnO/cellulose (CNZCel) shows the high thermal stability of the composite and photo-excited carriers separation efficiency and decreases the recombination rate [202]. Besides, the nanocomposite revealed excellent antibacterial activity against Escherichia coli (E. coli) and Gram-positive bacteria Staphylococcus aureus (S. aureus). The presence of ZnO in the structure can efficiently enhance the antibacterial activities against E. coli and S. aureus. Compared to the other materials, these ternary composites demonstrated better antibacterial performance (Figure 22a,b). The effect of the g- C_3N_4 content on the antibacterial property against E. coli and S. aureus in this composite is also investigated, which is shown in Figure 22c,d [202]. The mechanism of antibacterial activity generates electron-hole pairs under illumination, which can provide enormous reactive oxygen species (ROS), such as ${}^{\bullet}O_2{}^{-}$, ${}^{\bullet}OH_2$ and H_2O_2 , needed for the inhibition of E. coli and S. aureus growth. **Figure 22.** (a) Plots of bacterial counts of g- C_3N_4 / Z_1O /cellulose-0.45 (0.45 corresponds to the mass of g- C_3N_4 addition), Z_1O /cellulose, Z_1O , g- C_3N_4 , and blank sample against S. aureus and (b) E. coli; (c) bacterial counts of g- C_3N_4 / Z_1O /cellulose composites against S. aureus and (d) E. coli. Reproduced from Reference [202]. Table 6 mentioned some additional studies on the disinfection ability of g-C₃N₄-metal oxide-based nanomaterials. *Nanomaterials* **2022**, 12, 294 $\textbf{Table 6.} \ \ \text{Number of researches on the disinfection ability of the } g\text{-}C_3N_4 \ \text{metal oxide-based nanomaterials.}$ | Photocatalyst | Source of Light | Application | Highest Photocatalytic Rate | Ref | |--|--|---|--|-------| | g-C ₃ N ₄ /TiO ₂ /Ag | Xe lamp with a 420 nm cutoff filter $(\lambda > 420 \text{ nm})$ | Bactericidal efficiency against E. coli | the optimal bacterial inhibition of g-C $_3N_4$ /TiO $_2$ /Ag was 84% | [102] | | $g-C_3N_4/Cu_2O$ | 300 W xenon lamp
with 400 nm cutoff filter ($\lambda > 400$ nm) | Inactivation efficiencies of <i>E. coli</i> as well as Fusarium graminearum | g- C_3N_4 with 45% Cu_2O composition revealed the inactivation efficiencies of ~7 log <i>E. coli</i> | [584] | | TiO_2/g - C_3N_4/SnO_2 | 300 W xenon lamp with 420 nm cutoff filter ($\lambda > 420$ nm) | Bactericidal efficiency against <i>E. coli</i> | TiO_2/g - C_3N_4/SnO_2 structure showed a good <i>E. coli</i> disinfection efficiency under visible and UV irradiation, with \sim -6.7 log <i>E. coli</i> and -8.2 log <i>E. coli</i> , respectively. | [314] | | α -Fe $_2$ O $_3$ /CeO $_2$ decorated g-C $_3$ N $_4$ | 500 W Xe light with the cut-off filter of ~420 nm (λ > 420 nm) | Antibacterial activities against <i>S. aureus</i> (G+) and <i>E. coli</i> (G−) bacteria | α -Fe ₂ O ₃ /CeO ₂ decorated g-C ₃ N ₄ exhibited perfect antibacterial to <i>E. coli</i> and <i>S.aureus</i> activity with the maximum zone of inhibition (ZOI) of 11 \pm 0.5, 12 \pm 0. | [585] | | $g\text{-}C_3N_4\text{-}m\text{-}Bi_2O_4$ | 500 W halogen lamp with UV-cut off filter ($\lambda > 420 \text{ nm}$) | Bactericidal efficiency <i>E. coli</i> and <i>S.aureus</i> bacteria | The ZOI value for E.coli and <i>S. aureus</i> bacterial strains was \sim 11 \pm 0.5 mm and 12 $-$ 13 \pm 0.5. | [586] | | $Ag/ZnO/g$ - C_3N_4 | 300 W xenon arc lamp | Bactericidal efficiency against E. coli | The <i>E. coli</i> disinfection efficiency of Ag/ZnO/g-C ₃ N ₄ structure is \sim 7.4 log <i>E. coli</i> . | [190] | | Ag/AgO-g-C ₃ N ₄ | 100 W tungsten lamp | Bactericidal efficiency against E. coli | The 1, 2, 3, and 4 mg of catalyst showed low quantitative <i>E. coli</i> growth inhibition, which was ~17% and 65%, 97%, 99%, respectively. | [587] | | Cu ₂ O-g-C ₃ N ₄ | 36 W fluorescent lamp with the cut-off filter of ~400 nm (λ > 400 nm) | Bactericidal efficiency against B. subtilis, E. coli, S. aureus and P. aeruginosa | The maximum ZOI for Cu_2O - g - C_3N_4 to B . subtilis $E.coli$, S . aureus and P . aeruginosa is 22 ± 1.67 , 15 ± 1.08 , 11 ± 1.22 , 6 ± 0.09 , respectively. | [587] | | g-C ₃ N ₄ / TiO ₂ Kaolinite | Xenon lamp with a 400 nm cut-off filter | Disinfection ability towards S. aureus | The disinfection efficiency of g-C ₃ N ₄ /TiO ₂ /kaolinite is ~4.3 log cfu/mL in 5 h. | [588] | | TiO_2/g - C_3N_4 | 500 W xenon arc lamp with a 400 nm cut-off filter | Anti-fouling ability of E. coli | TiO_2/g - C_3N_4 showed an excellent <i>E. coli</i> removal with a permeate flux of 2 times higher than that of filtration alone. | [589] | | TiO_2/g - C_3N_4 | - | Bactericidal efficiency against E. coli | The bacterial survival rate for the TiO_2 nanotube/g- C_3N_4 nanofilms is ~16%. | [590] | | g-C ₃ N ₄ /Ag-TiO ₂ | Xenon lamp | Bactericidal efficiency against both
Gram-negative 18 Escherichia-coli
and Gram-positive
Staphylococcus-aureus | The presence of Ag in g- C_3N_4/Ag -TiO $_2$ structure could enhance water disinfection under visible light. | [591] | | $g\text{-}C_3N_4/\text{MoS}_2\text{-Bi}_2O_3$ | 300 W xenon arc lamp | Bactericidal efficiency against <i>E. coli</i> | g- C_3N_4/Bi_2O_4 with the ratio of 1:0.5, could entirely inactivate 6-log10 cfu/mL <i>E. coli</i> . | [586] | Nanomaterials **2022**, 12, 294 47 of 73 ## 6.4. Other Applications Due to the specific properties of g-C₃N₄-based heterojunctions, these composites can be used in many other applications [150,247,585,592]. With reference to the high energy demand for electronic devices and vehicles, rechargeable lithium-ion batteries (LIBs) have captured enormous attention among many researchers [319,320,593-595]. Anode materials, which are a significant part of the LIBs, should have improved specific capacity, high stability. SnO_2 is a new type of lithiophilic material with high specific capacity (1494 mAh g⁻¹), low potential for Li⁺ insertion, increased number of sources, and etc. [320,593,596–602]; however, it suffers from significant volume expansion (~300%) during the charge-discharge cycling, leading to fast capacity fading. SnO₂ nanosheets with 20–25 nm thickness dispersed in the g-C₃N₄ showing the potential lithium storage for LIBs. SnO₂@C₃N₄ nanocomposites can also be prepared by a scalable solid-state reaction [319]. Tran et al. used the hydrothermal method to grow SnO₂ onto the graphite oxide/g-C₃N₄ [320]. This composite showed an excellent reversible capacity and cycling performance for lithium storage, which may attribute to the existence of g-C₃N₄ or graphite oxide-g-C₃N₄. SnO₂@g-C₃N₄ based nanocomposites provide a suitable substitute for next-generation high-power and low-cost LIBs [319]. Zn₂GeO₄ nanoparticles demonstrate high capacity and act as spacers to prevent the g-C₃N₄ sheets from stacking, leading to the expanded interlayer and exposed vacancies for higher Li-ion storage. Besides, g-C₃N₄ layers, in turn, reduce the expansion of the particles and provide more stable solid electrolyte interphase, results in highly reversible lithium storage capacity, which is 1370 mA h $\rm g^{-1}$ at 200 mA $\rm g^{-1}$ after 140 cycles with a significant rate capability of 950 mA h g^{-1} at 2000 mA g^{-1} [595]. The SnO₂ nanosheets with g-C₃N₄ can enhance lithium storage capabilities and cycling performance [593]. Other g-C₃N₄-metal oxide nanocomposites can also be used in the supercapacitor that can be used with batteries to mitigate the power delivery problems associated with batteries [596–598]. The bare g-C₃N₄, g-C₃N₄/CuO, g-C₃N₄/Co₃O₄ electrode-based device exhibited a specific capacitance of 72 F g^{-1} , 95 F g^{-1} , and 201 F g^{-1} , respectively [599]. Besides, the energy density of g-C₃N₄/CuO and g-C₃N₄/Co₃O₄ at the constant power density of 1 kW·kg⁻ are 13.2 W·h·kg⁻¹, and 27.9 W·h·kg⁻¹, respectively. Moreover, the excellent theoretical capacities of V₂O₅ for the next generation supercapacitors makes the porous g-C₃N₄@V₂O₅ good candidate with a high specific capacity of about 457 Fg⁻¹ at 0.5 Ag⁻¹ with high cycling performance (~84% after 500 cycles) [600]. Photocatalytic nitrogen fixation, which is a clean and sustainable method for the production of NH₃, is another application of g-C₃N₄-based materials. However, insignificant surface-active sites, poor stability, and high recombination rate of carriers have restricted the efficiency of g-C₃N₄ for nitrogen fixation activities. The carrier separation should be enhanced by doping with other elements or compositing with various metal oxides. Finally, nitrogen gas should completely adsorb on the photocatalyst for the reduction steps [603]. It is shown that the cyano group (-C \equiv NC) in cyano group modified g-C₃N₄ enhance the photocatalytic applications for N₂ fixation up to 128 times [604]. As we discussed earlier, iodine and sulfur are atoms that can improve the carriers' activities in the bulk g-C₃N₄ [605]. To be more specific, ultrathin sulfur-doped g-C₃N₄ porous nanosheets revealed a superior photocatalytic nitrogen fixation rate with 5.99 mM·h⁻¹·g⁻¹ for 4 h under simulated sunlight irradiation [606]. Zhang et al. demonstrated that B atoms change the band structures and WO₃ enhances the photocatalytic activities. The quantum efficiency (QE) of the prepared composites is 0.71% for nitrogen fixation at 400 nm with a yield of 450.94 μ mol g⁻¹ h⁻¹ under visible light [606]. In another work, Liu and coworkers mentioned that the phosphorus-doped 1 T-MoS₂ as co-catalyst decorated nitrogen-doped g-C₃N₄ nanosheets speed up the N₂ reduction rate to 689.76 μ mol L⁻¹ g⁻¹·h⁻¹ in deionized water under simulated sunlight irradiation, which is 2.59, 1.65, 1.47, and 1.30 times higher than that of pure g-C₃N₄, 1 T-MoS₂@g-C₃N₄, 1 T-MoS₂@N doped g-C₃N₄, and P doped 1 T-MoS₂@g-C₃N₄, respectively. It is noteworthy to note that MoS₂ mainly includes semiconductive 2H phase and metal octahedral 1 T phase with promising conductivity and suitable photocatalysis since this phase provides a large number of active Nanomaterials **2022**, 12, 294 48 of 73 sites on the base and edge [607]. Researchers also used metal oxides with g- C_3N_4 -based composites to improve nitrogen fixation productivity. $TiO_2/SrTiO_3/g-C_3N_4$ ternary heterojunction nanofibers demonstrated N_2 fixation value under-stimulated sunlight irradiation is 2192 µmol g^{-1} h^{-1} L^{-1} , which is 1.9 and 3.3 times better than those of $TiO_2/g-C_3N_4$ nanofibers and $SrTiO_3/g-C_3N_4$ nanofibers, respectively [605,608]. Oxidized $g-C_3N_4$ can also enhance the chemo selective and unselective oxidative processes, utilized in organic reactions to provide synthons required in several value-added preparations [609]. It is interesting to mention that $g-C_3N_4$ -metal oxide-based heterojunction can be widely used to detect of different biological materials, gasses, heavy metals, organic and inorganic materials [547,610]. $g-C_3N_4$ -metal oxide-based composites can also be widely used for other applications, especially supercapacitors and desulfurization [107,611–613]. # 7. Conclusions, Limitations and Challenges To fix inadequate light-harvesting of the bare g- C_3N_4 , many researchers used doping elements to improve the efficiency, while combining g- C_3N_4 with other materials, such as metal oxides are another approach to deal with this issue. The investigation of g- C_3N_4 —metal oxide-based heterojunctions with engineered bandgaps, and modified surface to enhance the abortion spectrum towards the visible-light region, reduction of the charge carrier recombination, and increasing the surface adsorption and reaction are among the main scopes of investigations of g- C_3N_4 based materials. Among all types of heterojunctions mentioned in the review paper, almost all g- C_3N_4 —metal oxide-based nanocomposites have a Type II or a Z-scheme system, which have been proven to be outstanding for different
applications. The applications highlighted included water splitting, CO_2 reduction, photodegradation of organic pollutants, nitrogen fixation, catalysis, sensing, bacterial disinfection, energy storage, etc. Several types of carbon-based nanomaterials such as carbon-based quantum dots (CDs) (carbon quantum dots (CQDs) and graphene quantum dots (GQDs)), which are discussed in our previous work, can be used as sensors [214]. One kind of carbon-based nanomaterials is g- C_3N_4 , which is widely used to detect different cells in human biological fluids, gasses, humidity, heavy metals, etc. Nevertheless, these applications also can be enormously challenging and give plenty of room for research and development, and there are great demands for fast and accurate diagnostic methods for both clinical and commercial applications. As a result, it is suggested to develop systems for clinical use to detect different diseases outside the body, especially the newly emerging one, COVID- 19, mainly due to its high chemical stability and excellent efficiency in absorbing the light and promising photocatalytic performance. In addition, the detection of different heavy metals and ions is one of the most crucial factors for contaminant removal and water treatment. Since g- C_3N_4 -metal oxide photocatalysts have exhibited the superior potential to detect different materials, it seems critical to extending investigations on the efficiency of these heterojunctions for detection of Cu^{2+} , Hg^{2+} , Cr (VI), and Ag^+ . The need for using solar energy has increased among many researchers, as energy resources are going to be depleted. Researchers require suitable semiconductors for different catalytic reactions, such as H_2 and O_2 generation by water splitting, CO_2 reduction to hydrocarbon fuels, etc. In order to have a future practical application in this area, we have to resolve some issues about the conversion of solar energy to fuel. The cocatalysis and quantum efficiency are among the most important properties for H_2O splitting and CO_2 reduction, which for the g- C_3N_4 -metal oxide composites, researchers do not have enough knowledge. The enhanced photocatalytic activity of the mentioned nanocomposites in this review under visible light encourages researchers to use these heterojunctions in antibacterial and antiviral applications. Inactivation originates from direct hole oxidation and ${}^{\bullet}O_2{}^{-}$, ${}^{\bullet}OH$, and H_2O_2 , which are produced in a reductive way, and dependent on the type of microorganisms. Because several research works have been conducted on water disinfection and microbial control in the laboratories, it is necessary to have more practical exploration on full-scale water treatment. Nanomaterials **2022**, 12, 294 49 of 73 **Author Contributions:** A.A.: Investigation, Reviewing papers, Writing the first draft. K.G.: Conceptualization, Supervision, Writing-Reviewing and Editing, Funding acquisition. All authors have read and agreed to the published version of the manuscript. **Funding:** This research received was funded by NSERC Discovery Grant of Dr. Ghandi to support the PhD of Amirhossein Alaghmandfard at University of Guelph. Institutional Review Board Statement: Not applicable. **Informed Consent Statement:** Not applicable. **Data Availability Statement:** The data presented in this study are available on request from the corresponding author. Conflicts of Interest: The authors declare no conflict of interest. #### References 1. Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Metal-Free Catalysis of Sustainable Friedel–Crafts Reactions: Direct Activation of Benzene by Carbon Nitrides to Avoid the Use of Metal Chlorides and Halogenated Compounds. *Chem. Commun.* **2006**, 43, 4530–4532. [CrossRef] [PubMed] - 2. Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C₃N₄)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? *Chem. Rev.* **2016**, *116*, 7159–7329. [CrossRef] [PubMed] - Liu, X.; Ma, R.; Zhuang, L.; Hu, B.; Chen, J.; Liu, X.; Wang, X. Recent Developments of Doped g-C₃N₄ Photocatalysts for the Degradation of Organic Pollutants. Crit. Rev. Environ. Sci. Technol. 2020, 51, 751–790. [CrossRef] - 4. Taha, M.M.; Ghanem, L.G.; Hamza, M.A.; Allam, N.K. Highly Stable Supercapacitor Devices Based on Three-Dimensional Bioderived Carbon Encapsulated g-C₃N₄ Nanosheets. *ACS Appl. Energy Mater.* **2021**, *4*, 10344–10355. [CrossRef] - 5. Jiang, H.; Li, Y.; Wang, D.; Hong, X.; Liang, B. Recent Advances in Heteroatom Doped Graphitic Carbon Nitride (g-C₃N₄) and g-C₃N₄/Metal Oxide Composite Photocatalysts. *Curr. Org. Chem.* **2020**, *24*, 673–693. [CrossRef] - 6. Wang, L.; Wang, C.; Hu, X.; Xue, H.; Pang, H. Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. *Chem. Asian J.* **2016**, *11*, 3305–3328. [CrossRef] [PubMed] - 7. Ren, Y.; Zeng, D.; Ong, W.-J. Interfacial Engineering of Graphitic Carbon Nitride (g-C₃N₄)-Based Metal Sulfide Heterojunction Photocatalysts for Energy Conversion: A Review. *Chin. J. Catal.* **2019**, *40*, 289–319. [CrossRef] - 8. Ismael, M. A Review on Graphitic Carbon Nitride (g-C₃N₄) Based Nanocomposites: Synthesis, Categories, and Their Application in Photocatalysis. *J. Alloys Compd.* **2020**, *846*, 156446. [CrossRef] - 9. Inagaki, M.; Tsumura, T.; Kinumoto, T.; Toyoda, M. Graphitic Carbon Nitrides (g-C₃N₄) with Comparative Discussion to Carbon Materials. *Carbon* **2019**, *141*, 580–607. [CrossRef] - 10. Chu, Y.-C.; Lin, T.-J.; Lin, Y.-R.; Chiu, W.-L.; Nguyen, B.-S.; Hu, C. Influence of P, S, O-Doping on g-C₃N₄ for Hydrogel Formation and Photocatalysis: An Experimental and Theoretical Study. *Carbon* **2020**, *169*, 338–348. [CrossRef] - 11. Wei, T.; Xu, J.; Kan, C.; Zhang, L.; Zhu, X. Au Tailored on g-C₃N₄/TiO₂ Heterostructure for Enhanced Photocatalytic Performance. *J. Alloys Compd.* **2022**, *894*, 162338. [CrossRef] - 12. Gotipamul, P.P.; Vattikondala, G.; Rajan, K.D.; Khanna, S.; Rathinam, M.; Chidambaram, S. Impact of Piezoelectric Effect on the Heterogeneous Visible Photocatalysis of g-C₃N₄/Ag/ZnO Tricomponent. *Chemosphere* **2022**, 287, 132298. [CrossRef] - 13. Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C₃N₄-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [CrossRef] - 14. Zou, W.; Deng, B.; Hu, X.; Zhou, Y.; Pu, Y.; Yu, S.; Ma, K.; Sun, J.; Wan, H.; Dong, L. Crystal-Plane-Dependent Metal Oxide-Support Interaction in CeO₂ / g-C₃N₄ for Photocatalytic Hydrogen Evolution. *Appl. Catal. B Environ.* **2018**, 238, 111–118. [CrossRef] - 15. Li, J.; Yuan, H.; Zhu, Z. Improved Photoelectrochemical Performance of Z-Scheme g-C₃N₄/Bi₂O₃/BiPO₄ Heterostructure and Degradation Property. *Appl. Surf. Sci.* **2016**, *385*, 34–41. [CrossRef] - Liu, C.; Qiu, Y.; Zhang, J.; Liang, Q.; Mitsuzaki, N.; Chen, Z. Construction of CdS Quantum Dots Modified g-C₃N₄/ZnO Heterostructured Photoanode for Efficient Photoelectrochemical Water Splitting. *J. Photochem. Photobiol. A Chem.* 2019, 371, 109–117. [CrossRef] - 17. Sun, Q.; Lv, K.; Zhang, Z.; Li, M.; Li, B. Effect of Contact Interface between TiO₂ and g-C₃N₄ on the Photoreactivity of g-C₃N₄/TiO₂ Photocatalyst:(0 0 1) vs (1 0 1) Facets of TiO₂. *Appl. Catal. B Environ.* **2015**, 164, 420–427. - 18. Liang, B.; Han, D.; Sun, C.; Zhang, W.; Qin, Q. Synthesis of SnO/ g-C₃N₄ Visible Light Driven Photocatalysts via Grinding Assisted Ultrasonic Route. *Ceram. Int.* **2018**, 44, 7315–7318. [CrossRef] - 19. Dai, L.; Chang, D.W.; Baek, J.; Lu, W. Carbon Nanomaterials for Advanced Energy Conversion and Storage. *small* **2012**, *8*, 1130–1166. [CrossRef] - 20. Gong, Y.; Wang, J.; Wei, Z.; Zhang, P.; Li, H.; Wang, Y. Combination of Carbon Nitride and Carbon Nanotubes: Synergistic Catalysts for Energy Conversion. *ChemSusChem* **2014**, *7*, 2303–2309. [CrossRef] - 21. Mao, Z.; Chen, J.; Yang, Y.; Wang, D.; Bie, L.; Fahlman, B.D. Novel g-C₃N₄/CoO Nanocomposites with Significantly Enhanced Visible-Light Photocatalytic Activity for H₂ Evolution. *ACS Appl. Mater. Interfaces* **2017**, *9*, 12427–12435. [CrossRef] Nanomaterials **2022**, 12, 294 50 of 73 22. Zou, Y.; Shi, J.-W.; Ma, D.; Fan, Z.; Lu, L.; Niu, C. In Situ Synthesis of C-Doped TiO₂@ g-C₃N₄ Core-Shell Hollow Nanospheres with Enhanced Visible-Light Photocatalytic Activity for H₂ Evolution. *Chem. Eng. J.* **2017**, 322, 435–444. [CrossRef] - 23. Hasanvandian, F.; Moradi, M.; Samani, S.A.; Kakavandi, B.; Setayesh, S.R.; Noorisepehr, M. Effective Promotion of g–C₃N₄ Photocatalytic Performance via Surface Oxygen Vacancy and Coupling with Bismuth-Based Semiconductors towards Antibiotics Degradation. *Chemosphere* **2022**, 287, 132273. [CrossRef] - 24. Zhang, C.; Qin, D.; Zhou, Y.; Qin, F.; Wang, H.; Wang, W.; Yang, Y.; Zeng, G. Dual Optimization Approach to Mo Single Atom Dispersed g-C₃N₄ Photocatalyst: Morphology and Defect Evolution. *Appl. Catal. B Environ.* **2022**, 303, 120904. [CrossRef] - 25. Zhang, S.; Gu, P.; Ma, R.; Luo, C.; Wen, T.; Zhao, G.; Cheng, W.; Wang, X. Recent Developments in Fabrication and Structure Regulation of Visible-Light-Driven g-C₃N₄-Based Photocatalysts towards Water Purification: A Critical Review. *Catal. Today* **2019**, 335, 65–77. [CrossRef] - 26. Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J.M. Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and Their Use as Metal-Free Catalysts. *J. Mater. Chem.* **2008**, *18*, 4893–4908. [CrossRef] - 27. Ye, L.; Wang, D.; Chen, S. Fabrication and Enhanced Photoelectrochemical Performance of MoS2/S-Doped g-C₃N₄ Heterojunction Film. *ACS Appl. Mater. Interfaces* **2016**, *8*, 5280–5289. [CrossRef] [PubMed] - 28. Arumugam, M.; Tahir, M.; Praserthdam, P. Effect of Nonmetals (B, O, P, and S) Doped with Porous g-C₃N₄ for
Improved Electron Transfer towards Photocatalytic CO₂ Reduction with Water into CH₄. *Chemosphere* **2022**, *286*, 131765. [CrossRef] [PubMed] - 29. Yang, S.; Sun, Q.; Han, W.; Shen, Y.; Ni, Z.; Zhang, S.; Chen, L.; Zhang, L.; Cao, J.; Zheng, H. A Simple and High Efficient Composite Based on g-C₃N₄ for Super Rapid Removal of Multiple Organic Dyes in Water under Sunlight. *Catal. Sci. Technol.* 2022, in press. - Zhang, C.; Li, Y.; Shuai, D.; Shen, Y.; Xiong, W.; Wang, L. Graphitic Carbon Nitride (g-C₃N₄)-Based Photocatalysts for Water Disinfection and Microbial Control: A Review. Chemosphere 2019, 214, 462–479. [CrossRef] [PubMed] - 31. Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation Performance of g-C₃N₄ Fabricated by Directly Heating Melamine. *Langmuir* **2009**, 25, 10397–10401. [CrossRef] - 32. Praus, P.; Svoboda, L.; Ritz, M.; Troppová, I.; Šihor, M.; Kočí, K. Graphitic Carbon Nitride: Synthesis, Characterization and Photocatalytic Decomposition of Nitrous Oxide. *Mater. Chem. Phys.* **2017**, *193*, 438–446. [CrossRef] - 33. Giannakopoulou, T.; Papailias, I.; Todorova, N.; Boukos, N.; Liu, Y.; Yu, J.; Trapalis, C. Tailoring the Energy Band Gap and Edges' Potentials of g-C₃N₄/TiO₂ Composite Photocatalysts for NOx Removal. *Chem. Eng. J.* **2017**, *310*, 571–580. [CrossRef] - 34. Tay, Q.; Kanhere, P.; Ng, C.F.; Chen, S.; Chakraborty, S.; Huan, A.C.H.; Sum, T.C.; Ahuja, R.; Chen, Z. Defect Engineered g-C₃N₄ for Efficient Visible Light Photocatalytic Hydrogen Production. *Chem. Mater.* **2015**, 27, 4930–4933. [CrossRef] - 35. Mo, Z.; She, X.; Li, Y.; Liu, L.; Huang, L.; Chen, Z.; Zhang, Q.; Xu, H.; Li, H. Synthesis of g-C₃N₄ at Different Temperatures for Superior Visible/UV Photocatalytic Performance and Photoelectrochemical Sensing of MB Solution. *RSC Adv.* **2015**, *5*, 101552–101562. [CrossRef] - 36. Paul, D.R.; Sharma, R.; Nehra, S.P.; Sharma, A. Effect of Calcination Temperature, PH and Catalyst Loading on Photodegradation Efficiency of Urea Derived Graphitic Carbon Nitride towards Methylene Blue Dye Solution. *RSC Adv.* **2019**, *9*, 15381–15391. [CrossRef] - 37. Fan, X.; Xing, Z.; Shu, Z.; Zhang, L.; Wang, L.; Shi, J. Improved Photocatalytic Activity of g-C₃N₄ Derived from Cyanamide–Urea Solution. *RSC Adv.* **2015**, *5*, 8323–8328. [CrossRef] - 38. Liu, H.; Yu, D.; Sun, T.; Du, H.; Jiang, W.; Muhammad, Y.; Huang, L. Fabrication of Surface Alkalinized g-C₃N₄ and TiO₂ Composite for the Synergistic Adsorption-Photocatalytic Degradation of Methylene Blue. *Appl. Surf. Sci.* **2019**, 473, 855–863. [CrossRef] - 39. Li, F.; Zhao, R.; Yang, B.; Wang, W.; Liu, Y.; Gao, J.; Gong, Y. Facial Synthesis of Dandelion-like g-C₃N₄/Ag with High Performance of Photocatalytic Hydrogen Production. *Int. J. Hydrogen Energy* **2019**, *44*, 30185–30195. [CrossRef] - 40. Hu, C.; Hung, W.-Z.; Wang, M.-S.; Lu, P.-J. Phosphorus and Sulfur Codoped g-C₃N₄ as an Efficient Metal-Free Photocatalyst. *Carbon* **2018**, *127*, 374–383. [CrossRef] - 41. Chen, Y.; Wang, B.; Lin, S.; Zhang, Y.; Wang, X. Activation of N→ Π* Transitions in Two-Dimensional Conjugated Polymers for Visible Light Photocatalysis. *J. Phys. Chem. C* **2014**, *118*, 29981–29989. [CrossRef] - 42. Dias, E.M.; Christoforidis, K.C.; Francas, L.; Petit, C. Tuning Thermally Treated Graphitic Carbon Nitride for H₂ Evolution and CO₂ Photoreduction: The Effects of Material Properties and Mid-Gap States. *ACS Appl. Energy Mater.* **2018**, 1, 6524–6534. [CrossRef] - 43. Ding, Z.; Chen, X.; Antonietti, M.; Wang, X. Synthesis of Transition Metal-modified Carbon Nitride Polymers for Selective Hydrocarbon Oxidation. *ChemSusChem* **2011**, *4*, 274–281. [CrossRef] - 44. Yuan, Y.; Zhang, L.; Xing, J.; Utama, M.I.B.; Lu, X.; Du, K.; Li, Y.; Hu, X.; Wang, S.; Genç, A. High-Yield Synthesis and Optical Properties of g-C₃N₄. *Nanoscale* **2015**, *7*, 12343–12350. [CrossRef] [PubMed] - 45. Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. *J. Am. Chem. Soc.* **2009**, *131*, 1680–1681. [CrossRef] [PubMed] - 46. Creighton, J.R.; Ho, P. Introduction to Chemical Vapor Deposition (CVD). Chem. Vap. Depos. 2001, 2, 1–22. Nanomaterials **2022**, 12, 294 51 of 73 47. Xu, Z.; Guan, L.; Li, H.; Sun, J.; Ying, Z.; Wu, J.; Xu, N. Structure Transition Mechanism of Single-Crystalline Silicon, g-C₃N₄, and Diamond Nanocone Arrays Synthesized by Plasma Sputtering Reaction Deposition. *J. Phys. Chem. C* 2015, 119, 29062–29070. [CrossRef] - 48. Zhang, J.; Wang, Y.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. Efficient Visible-Light Photocatalytic Hydrogen Evolution and Enhanced Photostability of Core/Shell CdS/g-C₃N₄ Nanowires. *ACS Appl. Mater. Interfaces* **2013**, *5*, 10317–10324. [CrossRef] - 49. Sano, T.; Tsutsui, S.; Koike, K.; Hirakawa, T.; Teramoto, Y.; Negishi, N.; Takeuchi, K. Activation of Graphitic Carbon Nitride (g-C₃N₄) by Alkaline Hydrothermal Treatment for Photocatalytic NO Oxidation in Gas Phase. *J. Mater. Chem. A* **2013**, *1*, 6489–6496. [CrossRef] - 50. Cui, Y.; Ding, Z.; Fu, X.; Wang, X. Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures for Photoredox Catalysis. *Angew. Chemie* **2012**, *124*, 11984–11988. [CrossRef] - 51. Muniandy, L.; Adam, F.; Mohamed, A.R.; Iqbal, A.; Rahman, N.R.A. Cu²⁺ Coordinated Graphitic Carbon Nitride (Cu-g-C₃N₄) Nanosheets from Melamine for the Liquid Phase Hydroxylation of Benzene and VOCs. *Appl. Surf. Sci.* **2017**, *398*, 43–55. [CrossRef] - 52. Hu, C.; Chu, Y.-C.; Lin, Y.-R.; Yang, H.-C.; Wang, K.-H. Photocatalytic Dye and Cr (VI) Degradation Using a Metal-Free Polymeric g-C₃N₄ Synthesized from Solvent-Treated Urea. *Polymers.* **2019**, *11*, 182. [CrossRef] - 53. Liang, L.; Cong, Y.; Wang, F.; Yao, L.; Shi, L. Hydrothermal Pre-Treatment Induced Cyanamide to Prepare Porous g-C₃N₄ with Boosted Photocatalytic Performance. *Diam. Relat. Mater.* **2019**, *98*, 107499. [CrossRef] - 54. Cao, J.; Fan, H.; Wang, C.; Ma, J.; Dong, G.; Zhang, M. Facile Synthesis of Carbon Self-Doped g-C₃N₄ for Enhanced Photocatalytic Hydrogen Evolution. *Ceram. Int.* **2020**, *46*, 7888–7895. [CrossRef] - 55. Hong, Y.; Liu, E.; Shi, J.; Lin, X.; Sheng, L.; Zhang, M.; Wang, L.; Chen, J. A Direct One-Step Synthesis of Ultrathin g-C₃N₄ Nanosheets from Thiourea for Boosting Solar Photocatalytic H₂ Evolution. *Int. J. Hydrogen Energy* **2019**, 44, 7194–7204. [CrossRef] - 56. Wehrstedt, K.-D.; Wildner, W.; Güthner, T.; Holzrichter, K.; Mertschenk, B.; Ulrich, A. Safe Transport of Cyanamide. *J. Hazard. Mater.* 2009, 170, 829–835. [CrossRef] [PubMed] - 57. Pham, T.-T.; Shin, E.W. Influence of g-C₃N₄ Precursors in g-C₃N₄/NiTiO₃ Composites on Photocatalytic Behavior and the Interconnection between g-C₃N₄ and NiTiO₃. *Langmuir* **2018**, *34*, 13144–13154. [CrossRef] - 58. Guan, C.; Jiang, J.; Pang, S.; Chen, X.; Webster, R.D.; Lim, T.-T. Facile Synthesis of Pure g-C₃N₄ Materials for Peroxymonosulfate Activation to Degrade Bisphenol A: Effects of Precursors and Annealing Ambience on Catalytic Oxidation. *Chem. Eng. J.* **2020**, 387, 123726. [CrossRef] - 59. Jung, H.; Pham, T.-T.; Shin, E.W. Effect of g-C₃N₄ Precursors on the Morphological Structures of g-C₃N₄/ZnO Composite Photocatalysts. *J. Alloys Compd.* **2019**, 788, 1084–1092. [CrossRef] - Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of Thiourea into Carbon Nitride Semiconductors as Visible Light Photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091. [CrossRef] - 61. Xue, J.; Ma, S.; Zhou, Y.; Wang, Q. Au-Loaded Porous Graphitic C₃N₄/Graphene Layered Composite as a Ternary Plasmonic Photocatalyst and Its Visible-Light Photocatalytic Performance. *Rsc Adv.* **2015**, *5*, 88249–88257. [CrossRef] - 62. Edgar, I.C.; Johnstone, S.M.; Milton, M. Urea to Melamine Process. U.S. Patent 3,095,416, 25 June 1963. - 63. Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on g-C₃N₄-Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [CrossRef] - 64. Mishra, A.; Mehta, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Graphitic Carbon Nitride (g-C₃N₄)–Based Metal-Free Photocatalysts for Water Splitting: A Review. *Carbon* **2019**, *149*, 693–721. [CrossRef] - 65. Teixeira, I.F.; Barbosa, E.C.M.; Tsang, S.C.E.; Camargo, P.H.C. Carbon Nitrides and Metal Nanoparticles: From Controlled Synthesis to Design Principles for Improved Photocatalysis. *Chem. Soc. Rev.* **2018**, *47*, 7783–7817. [CrossRef] [PubMed] - 66. Kumar, S.; Karthikeyan, S.; Lee, A.F. g-C₃N₄-Based Nanomaterials for Visible Light-Driven Photocatalysis. *Catalysts* **2018**, *8*, 74. [CrossRef] - 67. Ai, Z.; Shao, Y.; Chang, B.; Zhang, L.; Shen, J.; Wu, Y.; Huang, B.; Hao, X. Rational Modulation of Pn Homojunction in P-Doped g-C₃N₄ Decorated with Ti₃C₂ for Photocatalytic Overall Water Splitting. *Appl. Catal. B Environ.* **2019**, 259, 118077. [CrossRef] - 68. Pan, Y.; Li, D.; Jiang, H. Sodium-Doped C₃N₄/MOF Heterojunction Composites with Tunable Band Structures for Photocatalysis: Interplay between Light Harvesting and Electron Transfer. *Chem. Eur. J.* **2018**, 24, 18403–18407. [CrossRef] [PubMed] - 69. Putri, L.K.; Ng, B.-J.; Er, C.-C.; Ong, W.-J.; Chang, W.S.; Mohamed, A.R.; Chai, S.-P. Insights on the Impact of Doping Levels in Oxygen-Doped GC₃N₄ and Its Effects on Photocatalytic Activity. *Appl. Surf. Sci.* **2020**, *504*, 144427. [CrossRef] - 70. Sudrajat, H. A One-Pot, Solid-State Route for Realizing Highly Visible Light Active Na-Doped GC₃N₄ Photocatalysts. *J. Solid State Chem.* **2018**, 257, 26–33. [CrossRef] - 71. Wang, L.; Guo, X.; Chen, Y.; Ai, S.; Ding, H. Cobalt-Doped g-C₃N₄ as a Heterogeneous Catalyst for Photo-Assisted Activation of Peroxymonosulfate for the Degradation of Organic Contaminants. *Appl. Surf. Sci.* **2019**, 467, 954–962. [CrossRef] - 72. Li, G.; Wang, R.; Wang, B.; Zhang, J. Sm-Doped Mesoporous
g-C₃N₄ as Efficient Catalyst for Degradation of Tylosin: Influencing Factors and Toxicity Assessment. *Appl. Surf. Sci.* **2020**, *517*, 146212. [CrossRef] - 73. Bellardita, M.; García-López, E.I.; Marcì, G.; Krivtsov, I.; García, J.R.; Palmisano, L. Selective Photocatalytic Oxidation of Aromatic Alcohols in Water by Using P-Doped g-C₃N₄. *Appl. Catal. B Environ.* **2018**, 220, 222–233. [CrossRef] - 74. Wu, M.; Zhang, J.; He, B.; Wang, H.; Wang, R.; Gong, Y. In-Situ Construction of Coral-like Porous P-Doped g-C₃N₄ Tubes with Hybrid 1D/2D Architecture and High Efficient Photocatalytic Hydrogen Evolution. *Appl. Catal. B Environ.* **2019**, 241, 159–166. [CrossRef] Nanomaterials **2022**, 12, 294 52 of 73 75. Ranjbakhsh, E.; Izadyar, M.; Nakhaeipour, A.; Habibi-Yangjeh, A. P-doped g-C₃N₄ as an Efficient Photocatalyst for CO₂ Conversion into Value-added Materials: A Joint Experimental and Theoretical Study. *Int. J. Quantum Chem.* **2020**, 120, e26388. [CrossRef] - 76. Chen, P.; Chen, L.; Ge, S.; Zhang, W.; Wu, M.; Xing, P.; Rotamond, T.B.; Lin, H.; Wu, Y.; He, Y. Microwave Heating Preparation of Phosphorus Doped g-C₃N₄ and Its Enhanced Performance for Photocatalytic H₂ Evolution in the Help of Ag₃PO₄ Nanoparticles. *Int. J. Hydrogen Energy* **2020**, *45*, 14354–14367. [CrossRef] - 77. Cao, S.; Fan, B.; Feng, Y.; Chen, H.; Jiang, F.; Wang, X. Sulfur-Doped g-C₃N₄ Nanosheets with Carbon Vacancies: General Synthesis and Improved Activity for Simulated Solar-Light Photocatalytic Nitrogen Fixation. *Chem. Eng. J.* **2018**, *353*, 147–156. [CrossRef] - 78. Chen, Y.; Li, W.; Jiang, D.; Men, K.; Li, Z.; Li, L.; Sun, S.; Li, J.; Huang, Z.-H.; Wang, L.-N. Facile Synthesis of Bimodal Macroporous g-C₃N₄ /SnO₂ Nanohybrids with Enhanced Photocatalytic Activity. *Sci. Bull.* **2019**, *64*, 44–53. [CrossRef] - 79. Long, D.; Chen, Z.; Rao, X.; Zhang, Y. Sulfur-Doped g-C₃N₄ and BiPO₄ Nanorod Hybrid Architectures for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. ACS Appl. *Energy Mater.* **2020**, *3*, 5024–5030. - 80. Oh, W.-D.; Lok, L.-W.; Veksha, A.; Giannis, A.; Lim, T.-T. Enhanced Photocatalytic Degradation of Bisphenol A with Ag-Decorated S-Doped g-C₃N₄ under Solar Irradiation: Performance and Mechanistic Studies. *Chem. Eng. J.* **2018**, *333*, 739–749. [CrossRef] - 81. Sun, C.; Zhang, H.; Liu, H.; Zheng, X.; Zou, W.; Dong, L.; Qi, L. Enhanced Activity of Visible-Light Photocatalytic H₂ Evolution of Sulfur-Doped g-C₃N₄ Photocatalyst via Nanoparticle Metal Ni as Cocatalyst. *Appl. Catal. B Environ.* **2018**, 235, 66–74. [CrossRef] - 82. Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Hierarchical Porous O-doped g-C₃N₄ with Enhanced Photocatalytic CO₂ Reduction Activity. *Small* **2017**, *13*, 1603938. [CrossRef] [PubMed] - 83. Wang, H.; Guan, Y.; Hu, S.; Pei, Y.; Ma, W.; Fan, Z. Hydrothermal Synthesis of Band Gap-Tunable Oxygen-Doped g-C₃N₄ with Outstanding "Two-Channel" Photocatalytic H₂O₂ Production Ability Assisted by Dissolution–Precipitation Process. *Nano* **2019**, 14, 1950023. [CrossRef] - 84. Zeng, Y.; Liu, X.; Liu, C.; Wang, L.; Xia, Y.; Zhang, S.; Luo, S.; Pei, Y. Scalable One-Step Production of Porous Oxygen-Doped g-C₃N₄ Nanorods with Effective Electron Separation for Excellent Visible-Light Photocatalytic Activity. *Appl. Catal. B Environ.* **2018**, 224, 1–9. [CrossRef] - 85. Zhang, Y.; Chen, Z.; Li, J.; Lu, Z.; Wang, X. Self-Assembled Synthesis of Oxygen-Doped g-C₃N₄ Nanotubes in Enhancement of Visible-Light Photocatalytic Hydrogen. *J. Energy Chem.* **2021**, *54*, 36–44. [CrossRef] - 86. Panneri, S.; Ganguly, P.; Mohan, M.; Nair, B.N.; Mohamed, A.A.P.; Warrier, K.G.; Hareesh, U.S. Photoregenerable, Bifunctional Granules of Carbon-Doped g-C₃N₄ as Adsorptive Photocatalyst for the Efficient Removal of Tetracycline Antibiotic. *ACS Sustain. Chem. Eng.* **2017**, *5*, 1610–1618. [CrossRef] - 87. Babu, P.; Mohanty, S.; Naik, B.; Parida, K. Serendipitous Assembly of Mixed Phase BiVO₄ on B-Doped g-C₃N₄: An Appropriate p–n Heterojunction for Photocatalytic O₂ Evolution and Cr (VI) Reduction. *Inorg. Chem.* **2019**, *58*, 12480–12491. [CrossRef] - 88. Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Wu, Z.; Yu, H.; Mo, D.; Wang, H.; Xiao, Z.; Zhou, C. Nitrogen Self-Doped g-C₃N₄ Nanosheets with Tunable Band Structures for Enhanced Photocatalytic Tetracycline Degradation. *J. Colloid Interface Sci.* **2019**, 536, 17–29. [CrossRef] [PubMed] - 89. Zhu, D.; Zhou, Q. Nitrogen Doped g-C₃N₄ with the Extremely Narrow Band Gap for Excellent Photocatalytic Activities under Visible Light. *Appl. Catal. B Environ.* **2021**, 281, 119474. [CrossRef] - 90. Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X. Potassium-Doped g-C₃N₄ Achieving Efficient Visible-Light-Driven CO₂ Reduction. *ACS Sustain. Chem. Eng.* **2020**, *8*, 8214–8222. [CrossRef] - 91. Zhang, R.; Niu, S.; Zhang, X.; Jiang, Z.; Zheng, J.; Guo, C. Combination of Experimental and Theoretical Investigation on Ti-Doped g-C₃N₄ with Improved Photo-Catalytic Activity. *Appl. Surf. Sci.* **2019**, *489*, 427–434. [CrossRef] - 92. Wang, J.-C.; Cui, C.-X.; Kong, Q.-Q.; Ren, C.-Y.; Li, Z.; Qu, L.; Zhang, Y.; Jiang, K. Mn-Doped g-C₃N₄ Nanoribbon for Efficient Visible-Light Photocatalytic Water Splitting Coupling with Methylene Blue Degradation. *ACS Sustain. Chem. Eng.* **2018**, *6*, 8754–8761. [CrossRef] - 93. Faisal, M.; Ismail, A.A.; Harraz, F.A.; Al-Sayari, S.A.; El-Toni, A.M.; Al-Assiri, M.S. Synthesis of Highly Dispersed Silver Doped g-C₃N₄ Nanocomposites with Enhanced Visible-Light Photocatalytic Activity. *Mater. Des.* **2016**, *98*, 223–230. [CrossRef] - 94. Hu, J.; Zhang, P.; An, W.; Liu, L.; Liang, Y.; Cui, W. In-Situ Fe-Doped g-C₃N₄ Heterogeneous Catalyst via Photocatalysis-Fenton Reaction with Enriched Photocatalytic Performance for Removal of Complex Wastewater. *Appl. Catal. B Environ.* **2019**, 245, 130–142. [CrossRef] - 95. Babu, B.; Shim, J.; Yoo, K. Efficient Solar-Light-Driven Photoelectrochemical Water Oxidation of One-Step in-Situ Synthesized Co-Doped g-C₃N₄ Nanolayers. *Ceram. Int.* **2020**, *46*, 16422–16430. [CrossRef] - 96. Huang, J.; Li, D.; Li, R.; Zhang, Q.; Chen, T.; Liu, H.; Liu, Y.; Lv, W.; Liu, G. An Efficient Metal-Free Phosphorus and Oxygen Co-Doped g-C₃N₄ Photocatalyst with Enhanced Visible Light Photocatalytic Activity for the Degradation of Fluoroquinolone Antibiotics. *Chem. Eng. J.* **2019**, 374, 242–253. [CrossRef] - 97. Zhou, P.; Meng, X.; Li, L.; Sun, T. P, S Co-Doped g-C₃N₄ Isotype Heterojunction Composites for High-Efficiency Photocatalytic H₂ Evolution. *J. Alloys Compd.* **2020**, *827*, 154259. [CrossRef] - 98. Cui, Y.; Wang, H.; Yang, C.; Li, M.; Zhao, Y.; Chen, F. Post-Activation of in Situ BF Codoped g-C₃N₄ for Enhanced Photocatalytic H₂ Evolution. *Appl. Surf. Sci.* **2018**, 441, 621–630. [CrossRef] - 99. Fang, W.; Liu, J.; Yu, L.; Jiang, Z.; Shangguan, W. Novel (Na, O) Co-Doped g-C₃N₄ with Simultaneously Enhanced Absorption and Narrowed Bandgap for Highly Efficient Hydrogen Evolution. *Appl. Catal. B Environ.* **2017**, 209, 631–636. [CrossRef] Nanomaterials **2022**, 12, 294 53 of 73 100. Chen, C.; Xie, M.; Kong, L.; Lu, W.; Feng, Z.; Zhan, J. Mn₃O₄ Nanodots Loaded g-C₃N₄ Nanosheets for Catalytic Membrane Degradation of Organic Contaminants. *J. Hazard. Mater.* **2020**, *390*, 122146. [CrossRef] [PubMed] - 101. Surikanti, G.R.; Bajaj, P.; Sunkara, M.V. g-C₃N₄-Mediated Synthesis of Cu₂O To Obtain Porous Composites with Improved Visible Light Photocatalytic Degradation of Organic Dyes. *ACS Omega* **2019**, *4*, 17301–17316. [CrossRef] - 102. Yan, D.; Wu, X.; Pei, J.; Wu, C.; Wang, X.; Zhao, H. Construction of g-C₃N₄/TiO₂/Ag Composites with Enhanced Visible-Light Photocatalytic Activity and Antibacterial Properties. *Ceram. Ceram. Int.* **2020**, *46*, 696–702. [CrossRef] - 103. Rabani, I.; Zafar, R.; Subalakshmi, K.; Kim, H.-S.; Bathula, C.; Seo, Y.-S. A Facile Mechanochemical Preparation of Co₃O₄@ g-C₃N₄ for Application in Supercapacitors and Degradation of Pollutants in Water. *J. Hazard. Mater.* **2021**, 407, 124360. [CrossRef] [PubMed] - 104. Mohammadi, R.; Alamgholiloo, H.; Gholipour, B.; Rostamnia, S.; Khaksar, S.; Farajzadeh, M.; Shokouhimehr, M. Visible-Light-Driven Photocatalytic Activity of ZnO/g-C₃N₄ Heterojunction for the Green Synthesis of Biologically Interest Small Molecules of Thiazolidinones. *J. Photochem. Photobiol. A Chem.* **2020**, 402, 112786. [CrossRef] - 105. Bard, A.J.; Fox, M.A. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. *Acc. Chem. Res.* **1995**, *28*, 141–145. [CrossRef] - 106. Thompson, T.L.; Yates, J.T. Surface Science Studies of the Photoactivation of TiO₂ New Photochemical Processes. *Chem. Rev.* **2006**, 106, 4428–4453. [CrossRef] [PubMed] - 107. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [CrossRef] - 108. Tan, Y.; Chen, Y.; Mahimwalla, Z.; Johnson, M.B.; Sharma, T.; Brüning, R.; Ghandi, K. Novel Synthesis of Rutile Titanium Dioxide–Polypyrrole Nano Composites and Their Application in Hydrogen Generation. *Synth. Met.* **2014**, *189*, 77–85. [CrossRef] - 109. Christoforidis, K.C.; Montini, T.; Fittipaldi, M.; Jaén, J.J.D.; Fornasiero, P. Photocatalytic Hydrogen Production by Boron Modified TiO₂/Carbon Nitride Heterojunctions. *ChemCatChem* **2019**, *11*, 6408–6416. [CrossRef] - 110. Crake, A.; Christoforidis, K.C.; Godin, R.; Moss, B.; Kafizas, A.; Zafeiratos, S.; Durrant, J.R.; Petit, C. Titanium Dioxide/Carbon Nitride Nanosheet Nanocomposites for Gas Phase CO₂ Photoreduction under UV-Visible Irradiation. *Appl. Catal. B Environ.* **2019**, 242, 369–378. [CrossRef] - 111. Acharya, R.; Parida, K. A Review on TiO₂/g-C₃N₄ Visible-Light-Responsive Photocatalysts for Sustainable Energy Generation and Environmental Remediation. *J. Environ. Chem. Eng.* **2020**, *8*, 103896. [CrossRef] - 112. Alcudia-Ramos,
M.A.; Fuentez-Torres, M.O.; Ortiz-Chi, F.; Espinosa-González, C.G.; Hernández-Como, N.; García-Zaleta, D.S.; Kesarla, M.K.; Torres-Torres, J.G.; Collins-Martínez, V.; Godavarthi, S. Fabrication of g-C₃N₄/TiO₂ Heterojunction Composite for Enhanced Photocatalytic Hydrogen Production. *Ceram. Int.* **2020**, *46*, 38–45. [CrossRef] - 113. Li, G.; Nie, X.; Gao, Y.; An, T. Can Environmental Pharmaceuticals Be Photocatalytically Degraded and Completely Mineralized in Water Using g-C₃N₄/TiO₂ under Visible Light Irradiation?—Implications of Persistent Toxic Intermediates. *Appl. Catal. B Environ.* **2016**, *180*, 726–732. [CrossRef] - 114. Li, G.; Nie, X.; Chen, J.; Jiang, Q.; An, T.; Wong, P.K.; Zhang, H.; Zhao, H.; Yamashita, H. Enhanced Visible-Light-Driven Photocatalytic Inactivation of Escherichia Coli Using g-C₃N₄ /TiO₂ Hybrid Photocatalyst Synthesized Using a Hydrothermal-Calcination Approach. *Water Res.* **2015**, *86*, 17–24. [CrossRef] [PubMed] - 115. Elbanna, O.; Fujitsuka, M.; Majima, T. g-C₃N₄/TiO₂ Mesocrystals Composite for H₂ Evolution under Visible-Light Irradiation and Its Charge Carrier Dynamics. *ACS Appl. Mater. Interfaces* **2017**, *9*, 34844–34854. [CrossRef] [PubMed] - 116. Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P. Photocatalytic Decomposition of N₂O over TiO₂/g-C₃N₄ Photocatalysts Heterojunction. *Appl. Surf. Sci.* **2017**, *396*, 1685–1695. [CrossRef] - 117. Jiang, G.; Yang, X.; Wu, Y.; Li, Z.; Han, Y.; Shen, X. A Study of Spherical TiO₂/g-C₃N₄ Photocatalyst: Morphology, Chemical Composition and Photocatalytic Performance in Visible Light. *Mol. Catal.* **2017**, 432, 232–241. [CrossRef] - 118. Miranda, C.; Mansilla, H.; Yáñez, J.; Obregón, S.; Colón, G. Improved Photocatalytic Activity of g-C₃N₄/TiO₂ Composites Prepared by a Simple Impregnation Method. *J. Photochem. Photobiol. A Chem.* **2013**, 253, 16–21. [CrossRef] - 119. Zhang, L.; He, X.; Xu, X.; Liu, C.; Duan, Y.; Hou, L.; Zhou, Q.; Ma, C.; Yang, X.; Liu, R. Highly Active TiO₂/g-C₃N₄/G Photocatalyst with Extended Spectral Response towards Selective Reduction of Nitrobenzene. *Appl. Catal. B Environ.* **2017**, 203, 1–8. [CrossRef] - 120. Wang, J.; Wang, G.; Wang, X.; Wu, Y.; Su, Y.; Tang, H. 3D/2D Direct Z-Scheme Heterojunctions of Hierarchical TiO₂ Microflowers/g-C₃N₄ Nanosheets with Enhanced Charge Carrier Separation for Photocatalytic H₂ Evolution. *Carbon* **2019**, 149, 618–626. [CrossRef] - 121. Boonprakob, N.; Wetchakun, N.; Phanichphant, S.; Waxler, D.; Sherrell, P.; Nattestad, A.; Chen, J.; Inceesungvorn, B. Enhanced Visible-Light Photocatalytic Activity of g-C₃N₄/TiO₂ Films. *J. Colloid Interface Sci.* **2014**, 417, 402–409. [CrossRef] - 122. Li, C.; Lou, Z.; Yang, Y.; Wang, Y.; Lu, Y.; Ye, Z.; Zhu, L. Hollowsphere Nanoheterojunction of g-C₃N₄@ TiO₂ with High Visible Light Photocatalytic Property. *Langmuir* **2019**, *35*, 779–786. [CrossRef] - 123. Wei, H.; McMaster, W.A.; Tan, J.Z.Y.; Cao, L.; Chen, D.; Caruso, R.A. Mesoporous TiO₂/g-C₃N₄ Microspheres with Enhanced Visible-Light Photocatalytic Activity. *J. Phys. Chem. C* **2017**, *121*, 22114–22122. [CrossRef] - 124. Zou, Y.; Yang, B.; Liu, Y.; Ren, Y.; Ma, J.; Zhou, X.; Cheng, X.; Deng, Y. Controllable Interface-Induced Co-Assembly toward Highly Ordered Mesoporous Pt@ TiO₂/g-C₃N₄ Heterojunctions with Enhanced Photocatalytic Performance. *Adv. Funct. Mater.* **2018**, 28, 1806214. [CrossRef] Nanomaterials **2022**, 12, 294 54 of 73 125. Li, K.; Huang, Z.; Zeng, X.; Huang, B.; Gao, S.; Lu, J. Synergetic Effect of Ti³⁺ and Oxygen Doping on Enhancing Photoelectrochemical and Photocatalytic Properties of TiO₂ / g-C₃N₄ Heterojunctions. *ACS Appl. Mater. Interfaces* **2017**, *9*, 11577–11586. [CrossRef] [PubMed] - 126. Rathi, A.K.; Kmentová, H.; Naldoni, A.; Goswami, A.; Gawande, M.B.; Varma, R.S.; Kment, S.; Zbořil, R. Significant Enhancement of Photoactivity in Hybrid TiO₂ / g-C₃N₄ Nanorod Catalysts Modified with Cu–Ni-Based Nanostructures. *ACS Appl. Nano Mater.* **2018**, *1*, 2526–2535. [CrossRef] - 127. Liu, C.; Raziq, F.; Li, Z.; Qu, Y.; Zada, A.; Jing, L. Synthesis of TiO₂/g-C₃N₄ Nanocomposites with Phosphate–Oxygen Functional Bridges for Improved Photocatalytic Activity. *Chin. J. Catal.* **2017**, *38*, 1072–1078. [CrossRef] - 128. Li, Y.; Wang, R.; Li, H.; Wei, X.; Feng, J.; Liu, K.; Dang, Y.; Zhou, A. Efficient and Stable Photoelectrochemical Seawater Splitting with TiO₂@g-C₃N₄ Nanorod Arrays Decorated by Co-Pi. *J. Phys. Chem. C* **2015**, *119*, 20283–20292. [CrossRef] - 129. Kholikov, B.; Hussain, J.; Zeng, H. Gold Modified TiO₂ / g-C₃N₄ for Enhanced Photocatalytic Activities to Evolved H₂ Fuel. *Inorg. Chem. Commun.* **2021**, *131*, 108787. [CrossRef] - 130. Wang, C.; Zhao, Y.; Xu, H.; Li, Y.; Wei, Y.; Liu, J.; Zhao, Z. Efficient Z-Scheme Photocatalysts of Ultrathin g-C₃N₄-Wrapped Au/TiO₂-Nanocrystals for Enhanced Visible-Light-Driven Conversion of CO₂ with H₂O. *Appl. Catal. B Environ.* **2020**, 263, 118314. [CrossRef] - 131. Zada, A.; Qu, Y.; Ali, S.; Sun, N.; Lu, H.; Yan, R.; Zhang, X.; Jing, L. Improved Visible-Light Activities for Degrading Pollutants on TiO₂ / g-C₃N₄ Nanocomposites by Decorating SPR Au Nanoparticles and 2, 4-Dichlorophenol Decomposition Path. *J. Hazard. Mater.* 2018, 342, 715–723. [CrossRef] [PubMed] - 132. Wang, C.; Rao, Z.; Mahmood, A.; Wang, X.; Wang, Y.; Xie, X.; Sun, J. Improved Photocatalytic Oxidation Performance of Gaseous Acetaldehyde by Ternary g-C₃N₄/Ag-TiO₂ Composites under Visible Light. *J. Colloid Interface Sci.* **2021**, 602, 699–711. [CrossRef] - 133. Wang, W.; Zhang, D.; Sun, P.; Ji, Z.; Duan, J. High Efficiency Photocatalytic Degradation of Indoor Formaldehyde by Ag/g-C₃N₄/TiO₂ Composite Catalyst with ZSM-5 as the Carrier. *Microporous Mesoporous Mater.* **2021**, 322, 111134. [CrossRef] - 134. Yu, B.; Meng, F.; Khan, M.W.; Qin, R.; Liu, X. Facile Synthesis of AgNPs Modified TiO₂@ g-C₃N₄ Heterojunction Composites with Enhanced Photocatalytic Activity under Simulated Sunlight. *Mater. Res. Bull.* **2020**, *121*, 110641. [CrossRef] - 135. Chen, Y.; Huang, W.; He, D.; Situ, Y.; Huang, H. Construction of Heterostructured g-C₃N₄/Ag/TiO₂ Microspheres with Enhanced Photocatalysis Performance under Visible-Light Irradiation. *ACS Appl. Mater. Interfaces* **2014**, *6*, 14405–14414. [CrossRef] [PubMed] - 136. Li, G.; Wu, Y.; Zhang, M.; Chu, B.; Huang, W.; Fan, M.; Dong, L.; Li, B. Enhanced Removal of Toxic Cr (VI) in Wastewater by Synthetic TiO₂/g-C₃N₄ Microspheres/RGO Photocatalyst under Irradiation of Visible Light. *Ind. Eng. Chem. Res.* **2019**, *58*, 8979–8989. [CrossRef] - 137. Zhang, C.; Zhou, Y.; Bao, J.; Fang, J.; Zhao, S.; Zhang, Y.; Sheng, X.; Chen, W. Structure Regulation of ZnS@ g-C₃N₄/TiO₂ Nanospheres for Efficient Photocatalytic H₂ Production under Visible-Light Irradiation. *Chem. Eng. J.* **2018**, 346, 226–237. [CrossRef] - 138. Hu, M.; Xing, Z.; Cao, Y.; Li, Z.; Yan, X.; Xiu, Z.; Zhao, T.; Yang, S.; Zhou, W. Ti³⁺ Self-Doped Mesoporous Black TiO₂/SiO₂/g-C₃N₄ Sheets Heterojunctions as Remarkable Visible-Lightdriven Photocatalysts. *Appl. Catal. B Environ.* **2018**, 226, 499–508. [CrossRef] - 139. Obregón, S.; Zhang, Y.; Colón, G. Cascade Charge Separation Mechanism by Ternary Heterostructured BiPO4/TiO₂/g-C₃N₄ Photocatalyst. *Appl. Catal. B Environ.* **2016**, *184*, 96–103. [CrossRef] - 140. Zhao, H.; Tian, C.; Mei, J.; Yang, S.; Wong, P.K. Faster Electron Injection and Higher Interface Reactivity in g-C₃N₄/Fe₂O₃ Nanohybrid for Efficient Photo-Fenton-like Activity toward Antibiotics Degradation. *Environ. Res.* **2021**, *195*, 110842. [CrossRef] [PubMed] - 141. Sun, X.-Y.; Zhang, F.-J.; Kong, C. Porous g-C₃N₄/WO₃ Photocatalyst Prepared by Simple Calcination for Efficient Hydrogen Generation under Visible Light. Colloids Surfaces A Physicochem. *Eng. Asp.* **2020**, *594*, 124653. [CrossRef] - 142. Zhang, Z.; Sun, Y.; Wang, Y.; Yang, Y.; Wang, P.; Shi, L.; Feng, L.; Fang, S.; Liu, Q.; Ma, L. Synthesis and Photocatalytic Activity of g-C₃N₄ /ZnO Composite Microspheres under Visible Light Exposure. *Ceram. Int.* **2022**, *48*, 3293–3302. [CrossRef] - 143. Moradi, S.; Isari, A.A.; Hayati, F.; Kalantary, R.R.; Kakavandi, B. Co-Implanting of TiO₂ and Liquid-Phase-Delaminated g-C₃N₄ on Multi-Functional Graphene Nanobridges for Enhancing Photocatalytic Degradation of Acetaminophen. *Chem. Eng. J.* **2021**, 414, 128618. [CrossRef] - 144. Jo, W.-K.; Natarajan, T.S. Influence of TiO₂ Morphology on the Photocatalytic Efficiency of Direct Z-Scheme g-C₃N₄/TiO₂ Photocatalysts for Isoniazid Degradation. *Chem. Eng. J.* **2015**, 281, 549–565. [CrossRef] - 145. Saravanan, R.; Gupta, V.K.; Mosquera, E.; Gracia, F. Preparation and Characterization of V₂O₅/ZnO Nanocomposite System for Photocatalytic Application. *J. Mol. Liq.* **2014**, *198*, 409–412. [CrossRef] - 146. Landry, C.J.; Burns, F.P.; Baerlocher, F.; Ghandi, K. Novel Solid-State Microbial Sensors Based on ZnO Nanorod Arrays. *Adv. Funct. Mater.* **2018**, *28*, 1706309. [CrossRef] - 147. Kumar, S.; Baruah, A.; Tonda, S.; Kumar, B.; Shanker, V.; Sreedhar, B. Cost-Effective and Eco-Friendly Synthesis of Novel and Stable N-Doped ZnO/g-C₃N₄ Core–Shell Nanoplates with Excellent Visible-Light Responsive Photocatalysis. *Nanoscale* **2014**, *6*, 4830–4842. [CrossRef] - 148. Uma, R.; Ravichandran, K.; Sriram, S.; Sakthivel, B. Cost-Effective Fabrication of ZnO/g-C₃N₄ Composite Thin Films for Enhanced Photocatalytic Activity against Three Different Dyes (MB, MG and RhB). *Mater. Chem. Phys.* **2017**, 201, 147–155. [CrossRef] Nanomaterials **2022**, 12, 294 55 of 73 149. Zhang, N.; Gao, J.; Huang, C.; Liu, W.; Tong, P.; Zhang, L. In Situ Hydrothermal Growth of ZnO/g-C₃N₄ Nanoflowers Coated Solid-Phase Microextraction Fibers Coupled with GC-MS for Determination of Pesticides Residues. *Anal. Chim. Acta* **2016**, 934, 122–131. [CrossRef] - 150. Mohammadi, I.; Zeraatpisheh, F.; Ashiri, E.; Abdi, K. Solvothermal Synthesis
of g-C₃N₄ and ZnO Nanoparticles on TiO₂ Nanotube as Photoanode in DSSC. *Int. J. Hydrogen Energy* **2020**, *45*, 18831–18839. [CrossRef] - 151. Jang, E.; Kim, D.W.; Hong, S.H.; Park, Y.M.; Park, T.J. Visible Light-Driven g-C₃N₄@ ZnO Heterojunction Photocatalyst Synthesized via Atomic Layer Deposition with a Specially Designed Rotary Reactor. *Appl. Surf. Sci.* **2019**, *487*, 206–210. [CrossRef] - 152. Fageria, P.; Nazir, R.; Gangopadhyay, S.; Barshilia, H.C.; Pande, S. Graphitic-Carbon Nitride Support for the Synthesis of Shape-Dependent ZnO and Their Application in Visible Light Photocatalysts. *Rsc Adv.* **2015**, *5*, 80397–80409. [CrossRef] - 153. Tan, X.; Wang, X.; Hang, H.; Zhang, D.; Zhang, N.; Xiao, Z.; Tao, H. Self-Assembly Method Assisted Synthesis of g-C₃N₄/ZnO Heterostructure Nanocomposites with Enhanced Photocatalytic Performance. *Opt. Mater.* **2019**, *96*, 109266. [CrossRef] - 154. Jung, H.; Pham, T.-T.; Shin, E.W. Interactions between ZnO Nanoparticles and Amorphous g-C₃N₄ Nanosheets in Thermal Formation of g-C₃N₄/ZnO Composite Materials: The Annealing Temperature Effect. *Appl. Surf. Sci.* **2018**, *458*, 369–381. [CrossRef] - 155. Liu, W.; Wang, M.; Xu, C.; Chen, S. Facile Synthesis of g-C₃N₄/ZnO Composite with Enhanced Visible Light Photooxidation and Photoreduction Properties. *Chem. Eng. J.* **2012**, 209, 386–393. [CrossRef] - 156. Zhang, X.; Ling, S.; Ji, H.; Xu, L.; Huang, Y.; Hua, M.; Xia, J.; Li, H. Metal Ion-Containing Ionic Liquid Assisted Synthesis and Enhanced Photoelectrochemical Performance of g-C₃N₄/ZnO Composites. *Mater. Technol.* **2018**, *33*, 185–192. [CrossRef] - 157. Zhou, J.; Zhang, M.; Zhu, Y. Preparation of Visible Light-Driven g-C₃N₄@ ZnO Hybrid Photocatalyst via Mechanochemistry. *Phys. Chem. Chem. Phys.* **2014**, *16*, 17627–17633. [CrossRef] [PubMed] - 158. Paul, D.R.; Gautam, S.; Panchal, P.; Nehra, S.P.; Choudhary, P.; Sharma, A. ZnO-Modified g-C₃N₄: A Potential Photocatalyst for Environmental Application. *ACS Omega* **2020**, *5*, 3828–3838. [CrossRef] [PubMed] - 159. Kuang, P.-Y.; Su, Y.-Z.; Chen, G.-F.; Luo, Z.; Xing, S.-Y.; Li, N.; Liu, Z.-Q. g-C₃N₄ Decorated ZnO Nanorod Arrays for Enhanced Photoelectrocatalytic Performance. *Appl. Surf. Sci.* **2015**, *358*, 296–303. [CrossRef] - 160. Ramachandra, M.; Devi Kalathiparambil Rajendra Pai, S.; Resnik Jaleel UC, J.; Pinheiro, D. Improved Photocatalytic Activity of g-C₃N₄/ZnO: A Potential Direct Z-Scheme Nanocomposite. *ChemistrySelect* **2020**, *5*, 11986–11995. [CrossRef] - 161. Xing, H.; Ma, H.; Fu, Y.; Xue, M.; Zhang, X.; Dong, X.; Zhang, X. Preparation of g-C₃N₄/ZnO Composites and Their Enhanced Photocatalytic Activity. *Mater. Technol.* **2015**, *30*, 122–127. [CrossRef] - 162. Ismael, M. The Photocatalytic Performance of the ZnO/ g-C₃N₄ Composite Photocatalyst toward Degradation of Organic Pollutants and Its Inactivity toward Hydrogen Evolution: The Influence of Light Irradiation and Charge Transfer. *Chem. Phys. Lett.* **2020**, 739, 136992. [CrossRef] - 163. Fang, Q.; Li, B.; Li, Y.-Y.; Huang, W.-Q.; Peng, W.; Fan, X.; Huang, G.-F. 0D/2D Z-Scheme Heterojunctions of g-C₃N₄ Quantum Dots/ZnO Nanosheets as a Highly Efficient Visible-Light Photocatalyst. *Adv. Powder Technol.* **2019**, *30*, 1576–1583. [CrossRef] - 164. Wang, J.; Yang, Z.; Gao, X.; Yao, W.; Wei, W.; Chen, X.; Zong, R.; Zhu, Y. Core-Shell g-C₃N₄@ ZnO Composites as Photoanodes with Double Synergistic Effects for Enhanced Visible-Light Photoelectrocatalytic Activities. *Appl. Catal. B Environ.* **2017**, 217, 169–180. [CrossRef] - 165. Mathialagan, A.; Manavalan, M.; Venkatachalam, K.; Mohammad, F.; Oh, W.C.; Sagadevan, S. Fabrication and Physicochemical Characterization of g-C₃N₄/ZnO Composite with Enhanced Photocatalytic Activity under Visible Light. *Opt. Mater.* **2020**, *100*, 109643. [CrossRef] - 166. Liu, W.; Wang, M.; Xu, C.; Chen, S.; Fu, X. Significantly Enhanced Visible-Light Photocatalytic Activity of g-C₃N₄ via ZnO Modification and the Mechanism Study. *J. Mol. Catal. A Chem.* **2013**, *368*, 9–15. [CrossRef] - 167. Wang, L.; Ma, C.; Guo, Z.; Lv, Y.; Chen, W.; Chang, Z.; Yuan, Q.; Ming, H.; Wang, J. In-Situ Growth of g-C₃N₄ Layer on ZnO Nanoparticles with Enhanced Photocatalytic Performances under Visible Light Irradiation. *Mater. Lett.* **2017**, *188*, 347–350. [CrossRef] - 168. Zhong, Q.; Lan, H.; Zhang, M.; Zhu, H.; Bu, M. Preparation of Heterostructure g-C₃N₄/ZnO Nanorods for High Photocatalytic Activity on Different Pollutants (MB, RhB, Cr (VI) and Eosin). *Ceram. Int.* **2020**, *46*, 12192–12199. [CrossRef] - 169. Ahmad, I. Comparative Study of Metal (Al, Mg, Ni, Cu and Ag) Doped ZnO/g-C₃N₄ Composites: Efficient Photocatalysts for the Degradation of Organic Pollutants. *Sep. Purif. Technol.* **2020**, 251, 117372. [CrossRef] - 170. Ta, Q.T.H.; Namgung, G.; Noh, J.-S. Facile Synthesis of Porous Metal-Doped ZnO/g-C₃N₄ Composites for Highly Efficient Photocatalysts. *J. Photochem. Photobiol. A Chem.* **2019**, *368*, 110–119. - 171. Jin, C.; Li, W.; Chen, Y.; Li, R.; Huo, J.; He, Q.; Wang, Y. Efficient Photocatalytic Degradation and Adsorption of Tetracycline over Type-II Heterojunctions Consisting of ZnO Nanorods and K-Doped Exfoliated g-C₃N₄ Nanosheets. *Ind. Eng. Chem. Res.* **2020**, *59*, 2860–2873. [CrossRef] - 172. Qamar, M.A.; Shahid, S.; Javed, M.; Iqbal, S.; Sher, M.; Akbar, M.B. Highly Efficient g-C₃N₄ /Cr-ZnO Nanocomposites with Superior Photocatalytic and Antibacterial Activity. *J. Photochem. Photobiol. A Chem.* **2020**, 401, 112776. [CrossRef] - 173. Neena, D.; Humayun, M.; Zuo, W.; Liu, C.S.; Gao, W.; Fu, D.J. Hierarchical Hetero-Architectures of in-Situ g-C₃N₄-Coupled Fe-Doped ZnO Micro-Flowers with Enhanced Visible-Light Photocatalytic Activities. *Appl. Surf. Sci.* **2020**, *506*, 145017. [CrossRef] - 174. Sun, M.; Chen, Z.; Jiang, X.; Feng, C.; Zeng, R. Optimized Preparation of Co-Pi Decorated g-C₃N₄ @ ZnO Shell-Core Nanorod Array for Its Improved Photoelectrochemical Performance and Stability. *J. Alloys Compd.* **2019**, *780*, 540–551. [CrossRef] Nanomaterials **2022**, 12, 294 56 of 73 175. Kumar, S.; Kumar, A.; Kumar, A.; Balaji, R.; Krishnan, V. Highly Efficient Visible Light Active 2D-2D Nanocomposites of N-ZnO-g-C₃N₄ for Photocatalytic Degradation of Diverse Industrial Pollutants. *ChemistrySelect* **2018**, *3*, 1919–1932. [CrossRef] - 176. Liu, X.; Liu, L.; Yao, Z.; Yang, Z.; Xu, H. Enhanced Visible-Light-Driven Photocatalytic Hydrogen Evolution and NO Photo-Oxidation Capacity of ZnO/g-C₃N₄ with N Dopant. *Colloids Surfaces A Physicochem. Eng. Asp.* **2020**, 599, 124869. [CrossRef] - 177. Mohamed, M.A.; Zain, M.F.M.; Minggu, L.J.; Kassim, M.B.; Jaafar, J.; Amin, N.A.S.; Mastuli, M.S.; Wu, H.; Wong, R.J.; Ng, Y.H. Bio-Inspired Hierarchical Hetero-Architectures of in-Situ C-Doped g-C₃N₄ Grafted on C, N Co-Doped ZnO Micro-Flowers with Booming Solar Photocatalytic Activity. *J. Ind. Eng. Chem.* **2019**, 77, 393–407. [CrossRef] - 178. Kong, J.-Z.; Zhai, H.-F.; Zhang, W.; Wang, S.-S.; Zhao, X.-R.; Li, M.; Li, H.; Li, A.-D.; Wu, D. Visible Light-Driven Photocatalytic Performance of N-Doped ZnO/g-C₃N₄ Nanocomposites. *Nanoscale Res. Lett.* **2017**, *12*, 1–10. [CrossRef] [PubMed] - 179. Qin, J.; Yang, C.; Cao, M.; Zhang, X.; Rajendran, S.; Limpanart, S.; Ma, M.; Liu, R. Two-Dimensional Porous Sheet-like Carbon-Doped ZnO/ g-C₃N₄ Nanocomposite with High Visible-Light Photocatalytic Performance. *Mater. Lett.* **2017**, *189*, 156–159. [CrossRef] - 180. Zhu, Y.-P.; Li, M.; Liu, Y.-L.; Ren, T.-Z.; Yuan, Z.-Y. Carbon-Doped ZnO Hybridized Homogeneously with Graphitic Carbon Nitride Nanocomposites for Photocatalysis. *J. Phys. Chem. C* 2014, 118, 10963–10971. [CrossRef] - 181. Xing, Z.; Chen, Y.; Liu, C.; Yang, J.; Xu, J.; Situ, Y.; Huang, H. Synthesis of Core-Shell ZnO/Oxygen Doped g-C₃N₄ Visible Light Driven Photocatalyst via Hydrothermal Method. *J. Alloys Compd.* **2017**, 708, 853–861. [CrossRef] - 182. Chen, X.-Y.; Pan, Q.-J.; Guo, Y.-R. One-Pot Synthesis of the g-C₃N₄/S-Doped ZnO Composite with Assistance of Sodium Lignosulfonate and Its Enhanced Photodegradation on Organic Pollutants. *Mater. Res. Bull.* **2018**, 107, 164–170. [CrossRef] - 183. Liu, S.; Li, F.; Li, Y.; Hao, Y.; Wang, X.; Li, B.; Liu, R. Fabrication of Ternary g-C₃N₄/Al₂O₃/ZnO Heterojunctions Based on Cascade Electron Transfer toward Molecular Oxygen Activation. *Appl. Catal. B Environ.* **2017**, 212, 115–128. [CrossRef] - 184. Mohamed, N.A.; Safaei, J.; Ismail, A.F.; Khalid, M.N.; Jailani, M.F.A.M.; Noh, M.F.M.; Arzaee, N.A.; Zhou, D.; Sagu, J.S.; Teridi, M.A.M. Boosting Photocatalytic Activities of BiVO4 by Creation of g-C₃N₄/ZnO@ BiVO₄ Heterojunction. *Mater. Res. Bull.* **2020**, 125, 110779. [CrossRef] - 185. Patnaik, S.; Sahoo, D.P.; Mohapatra, L.; Martha, S.; Parida, K. ZnCr₂O₄@ ZnO/g-C₃N₄: A Triple-Junction Nanostructured Material for Effective Hydrogen and Oxygen Evolution under Visible Light. *Energy Technol.* **2017**, *5*, 1687–1701. [CrossRef] - 186. Dong, Z.; Wu, Y.; Thirugnanam, N.; Li, G. Double Z-Scheme ZnO/ZnS/g-C₃N₄ Ternary Structure for Efficient Photocatalytic H₂ Production. *Appl. Surf. Sci.* **2018**, *430*, 293–300. [CrossRef] - 187. Xiao, J.; Zhang, X.; Li, Y. A Ternary g-C₃N₄/Pt/ZnO Photoanode for Efficient Photoelectrochemical Water Splitting. *Int. J. Hydrogen Energy* **2015**, 40, 9080–9087. [CrossRef] - 188. Azimi, E.B.; Badiei, A.; Sadr, M.H. Dramatic Visible Photocatalytic Performance of g-C₃N₄-Based Nanocomposite Due to the Synergistic Effect of AgBr and ZnO Semiconductors. *J. Phys. Chem. Solids* **2018**, 122, 174–183. [CrossRef] - 189. Adhikari, S.P.; Pant, H.R.; Kim, J.H.; Kim, H.J.; Park, C.H.; Kim, C.S. One Pot Synthesis and Characterization of Ag-ZnO/g-C₃N₄ Photocatalyst with Improved Photoactivity and Antibacterial Properties. Colloids Surfaces A Physicochem. *Eng. Asp.* **2015**, *482*, 477–484. [CrossRef] - 190. Ma, S.; Zhan, S.; Xia, Y.; Wang, P.; Hou, Q.; Zhou, Q.
Enhanced Photocatalytic Bactericidal Performance and Mechanism with Novel Ag/ZnO/g-C₃N₄ Composite under Visible Light. *Catal. Today* **2019**, 330, 179–188. [CrossRef] - 191. Panneri, S.; Ganguly, P.; Nair, B.N.; Mohamed, A.A.P.; Warrier, K.G.; Hareesh, U.N.S. Copyrolysed C₃N₄-Ag/ZnO Ternary Heterostructure Systems for Enhanced Adsorption and Photocatalytic Degradation of Tetracycline. *Eur. J. Inorg. Chem.* **2016**, 31, 5068–5076. [CrossRef] - 192. Lee, S.J.; Begildayeva, T.; Jung, H.J.; Koutavarapu, R.; Yu, Y.; Choi, M.; Choi, M.Y. Plasmonic ZnO/Au/g-C₃N₄ Nanocomposites as Solar Light Active Photocatalysts for Degradation of Organic Contaminants in Wastewater. *Chemosphere* **2021**, 263, 128262. [CrossRef] - 193. Thang, N.Q.; Sabbah, A.; Chen, L.-C.; Chen, K.-H.; Thi, C.M.; Van Viet, P. Localized Surface Plasmonic Resonance Role of Silver Nanoparticles in the Enhancement of Long-Chain Hydrocarbons of the CO₂ Reduction over Ag-GC₃N₄/ZnO Nanorods Photocatalysts. *Chem. Eng. Sci.* **2021**, 229, 116049. [CrossRef] - 194. Zhang, Z.; Li, X.; Chen, H.; Shao, G.; Zhang, R.; Lu, H. Synthesis and Properties of Ag/ZnO/g-C₃N₄ Ternary Micro/Nano Composites by Microwave-Assisted Method. *Mater. Res. Express* **2018**, *5*, 15021. [CrossRef] - 195. Wei, X.; Liu, H.; Li, T.; Jiang, Z.; Hu, W.; Niu, Q.; Chen, J. Three-Dimensional Flower Heterojunction g-C₃N₄/Ag/ZnO Composed of Ultrathin Nanosheets with Enhanced Photocatalytic Performance. *J. Photochem. Photobiol. A Chem.* **2020**, 390, 112342. [CrossRef] - 196. Rong, X.; Qiu, F.; Jiang, Z.; Rong, J.; Pan, J.; Zhang, T.; Yang, D. Preparation of Ternary Combined ZnO-Ag₂O/Porous g-C₃N₄ Composite Photocatalyst and Enhanced Visible-Light Photocatalytic Activity for Degradation of Ciprofloxacin. *Chem. Eng. Res. Des.* **2016**, *111*, 253–261. [CrossRef] - 197. Zhu, P.; Hu, M.; Duan, M.; Xie, L.; Zhao, M. High Visible Light Response Z-Scheme Ag₃PO₄/g-C₃N₄/ZnO Composite Photocatalyst for Efficient Degradation of Tetracycline Hydrochloride: Preparation, Properties and Mechanism. *J. Alloys Compd.* **2020**, *840*, 155714. [CrossRef] - 198. Feng, Y.; Wang, Y.; Li, M.; Lv, S.; Li, W.; Li, Z. Novel Visible Light Induced Ag₂S/g-C₃N₄/ZnO Nanoarrays Heterojunction for Efficient Photocatalytic Performance. *Appl. Surf. Sci.* **2018**, 462, 896–903. [CrossRef] Nanomaterials **2022**, 12, 294 57 of 73 199. Kumaresan, N.; Sinthiya, M.M.A.; Kumar, M.P.; Ravichandran, S.; Babu, R.R.; Sethurman, K.; Ramamurthi, K. Investigation on the g-C₃N₄ Encapsulated ZnO Nanorods Heterojunction Coupled with GO for Effective Photocatalytic Activity under Visible Light Irradiation. *Arab. J. Chem.* **2020**, *13*, 2826–2843. [CrossRef] - 200. Iqbal, S.; Bahadur, A.; Javed, M.; Hakami, O.; Irfan, R.M.; Ahmad, Z.; AlObaid, A.; Al-Anazy, M.M.; Baghdadi, H.B.; Abd-Rabboh, H.S.M. Design Ag-Doped ZnO Heterostructure Photocatalyst with Sulfurized Graphitic C₃N₄ Showing Enhanced Photocatalytic Activity. *Mater. Sci. Eng. B* **2021**, 272, 115320. [CrossRef] - 201. Xiang, Y.; Zhou, Q.; Li, Z.; Cui, Z.; Liu, X.; Liang, Y.; Zhu, S.; Zheng, Y.; Yeung, K.W.K.; Wu, S. A Z-Scheme Heterojunction of ZnO/CDots/C₃N₄ for Strengthened Photoresponsive Bacteria-Killing and Acceleration of Wound Healing. *J. Mater. Sci. Technol.* **2020**, *57*, 1–11. [CrossRef] - 202. Zhao, S.-W.; Zheng, M.; Sun, H.-L.; Li, S.-J.; Pan, Q.-J.; Guo, Y.-R. Construction of Heterostructured g-C₃N₄/ZnO/Cellulose and Its Antibacterial Activity: Experimental and Theoretical Investigations. *Dalt. Trans.* **2020**, *49*, 3723–3734. [CrossRef] [PubMed] - 203. Raza, W.; Faraz, M. Novel g-C₃N₄/Fe-ZnO/RGO Nanocomposites with Boosting Visible Light Photocatalytic Activity for MB, Cr (VI), and Outstanding Catalytic Activity toward Para-Nitrophenol Reduction. *Nanotechnology* **2020**, *31*, 325603. [CrossRef] [PubMed] - 204. Meng, F.; Chang, Y.; Qin, W.; Yuan, Z.; Zhao, J.; Zhang, J.; Han, E.; Wang, S.; Yang, M.; Shen, Y. ZnO-Reduced Graphene Oxide Composites Sensitized with Graphitic Carbon Nitride Nanosheets for Ethanol Sensing. *ACS Appl. Nano Mater.* 2019, 2, 2734–2742. [CrossRef] - 205. Guo, F.; Shi, W.; Guan, W.; Huang, H.; Liu, Y. Carbon Dots/g-C₃N₄/ZnO Nanocomposite as Efficient Visible-Light Driven Photocatalyst for Tetracycline Total Degradation. *Sep. Purif. Technol.* **2017**, *173*, 295–303. [CrossRef] - 206. Wang, J.; Luo, Z.; Song, Y.; Zheng, X.; Qu, L.; Qian, J.; Wu, Y.; Wu, X.; Wu, Z. Remediation of Phenanthrene Contaminated Soil by g-C₃N₄/Fe₃O₄ Composites and Its Phytotoxicity Evaluation. *Chemosphere* **2019**, 221, 554–562. [CrossRef] [PubMed] - 207. Zhu, Z.; Yu, Y.; Dong, H.; Liu, Z.; Li, C.; Huo, P.; Yan, Y. Intercalation Effect of Attapulgite in G–C₃N₄ Modified with Fe₃O₄ Quantum Dots to Enhance Photocatalytic Activity for Removing 2-Mercaptobenzothiazole under Visible Light. *ACS Sustain. Chem. Eng.* **2017**, *5*, 10614–10623. [CrossRef] - 208. Lima, M.J.; Sampaio, M.J.; Silva, C.G.; Silva, A.M.T.; Faria, J.L. Magnetically Recoverable Fe₃O₄/g-C₃N₄ Composite for Photocatalytic Production of Benzaldehyde under UV-Led Radiation. *Catal. Today* **2019**, 328, 293–299. [CrossRef] - 209. Wang, M.; Cui, S.; Yang, X.; Bi, W. Synthesis of g-C₃N₄/Fe₃O₄ Nanocomposites and Application as a New Sorbent for Solid Phase Extraction of Polycyclic Aromatic Hydrocarbons in Water Samples. *Talanta* **2015**, *132*, 922–928. [CrossRef] - 210. Xu, Q.; Zhu, B.; Jiang, C.; Cheng, B.; Yu, J. Constructing 2D/2D Fe₂O₃/g-C₃N₄ Direct Z-scheme Photocatalysts with Enhanced H₂ Generation Performance. *Sol. Rrl* **2018**, *2*, 1800006. [CrossRef] - 211. Ye, S.; Qiu, L.-G.; Yuan, Y.-P.; Zhu, Y.-J.; Xia, J.; Zhu, J.-F. Facile Fabrication of Magnetically Separable Graphitic Carbon Nitride Photocatalysts with Enhanced Photocatalytic Activity under Visible Light. *J. Mater. Chem. A* 2013, 1, 3008–3015. [CrossRef] - 212. Kumar, S.; Jain, S.; Lamba, B.Y. A Review on Synthesis, Characterisation and Surface Modification of Magnetic Nanoparticle and Its Composite for Removal of Heavy Metals from Wastewater. *Int. J. Environ. Anal. Chem.* **2021**, 1–16. [CrossRef] - 213. Ahmadi, R.; Hosseini, H.R.M. An Investigation on the Optimum Conditions of Synthesizing a Magnetite Based Ferrofluid as MRI Contrast Agent Using Taguchi Method. *Mater. Sci. Pol.* **2013**, *31*, 253–258. [CrossRef] - 214. Alaghmandfard, A.; Sedighi, O.; Rezaei, N.T.; Abedini, A.A.; Khachatourian, A.M.; Toprak, M.S.; Seifalian, A. Recent Advances in the Modification of Carbon-Based Quantum Dots for Biomedical Applications. *Mater. Sci. Eng. C* 2020, 120, 111756. [CrossRef] - 215. Alaghmandfard, A.; Madaah Hosseini, H.R. A Facile, Two-Step Synthesis and Characterization of Fe₃O₄–LCysteine–Graphene Quantum Dots as a Multifunctional Nanocomposite. *Appl. Nanosci.* **2021**, *11*, 849–860. [CrossRef] - 216. Liu, S.; Wang, S.; Jiang, Y.; Zhao, Z.; Jiang, G.; Sun, Z. Synthesis of Fe₂O₃ Loaded Porous g-C₃N₄ Photocatalyst for Photocatalytic Reduction of Dinitrogen to Ammonia. *Chem. Eng. J.* **2019**, *373*, 572–579. [CrossRef] - 217. Ding, Q.; Lam, F.L.Y.; Hu, X. Complete Degradation of Ciprofloxacin over g-C₃N₄ -Iron Oxide Composite via Heterogeneous Dark Fenton Reaction. *J. Environ. Manag.* **2019**, 244, 23–32. [CrossRef] [PubMed] - 218. Papich, M.G. Ciprofloxacin Pharmacokinetics in Clinical Canine Patients. J. Vet. Intern. Med. 2017, 31, 1508–1513. [CrossRef] - 219. Duan, B.; Mei, L. A Z-Scheme Fe₂O₃/g-C₃N₄ Heterojunction for Carbon Dioxide to Hydrocarbon Fuel under Visible Illuminance. *J. Colloid Interface Sci.* **2020**, *5*75, 265–273. [CrossRef] [PubMed] - 220. Geng, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Z-Scheme 2D/2D α-Fe₂O₃/g-C₃N₄ Heterojunction for Photocatalytic Oxidation of Nitric Oxide. *Appl. Catal. B Environ.* **2021**, 280, 119409. [CrossRef] - 221. Cheng, R.; Zhang, L.; Fan, X.; Wang, M.; Li, M.; Shi, J. One-Step Construction of FeO_x Modified g-C₃N₄ for Largely Enhanced Visible-Light Photocatalytic Hydrogen Evolution. *Carbon* **2016**, *101*, 62–70. [CrossRef] - 222. Wang, J.; Qin, C.; Wang, H.; Chu, M.; Zada, A.; Zhang, X.; Li, J.; Raziq, F.; Qu, Y.; Jing, L. Exceptional Photocatalytic Activities for CO_2 Conversion on AlO Bridged g- C_3N_4/α -Fe $_2O_3$ z-Scheme Nanocomposites and Mechanism Insight with Isotopes Z. *Appl. Catal. B Environ.* **2018**, 221, 459–466. [CrossRef] - 223. Christoforidis, K.C.; Montini, T.; Bontempi, E.; Zafeiratos, S.; Jaén, J.J.D.; Fornasiero, P. Synthesis and Photocatalytic Application of Visible-Light Active β-Fe₂O₃/g-C₃N₄ Hybrid Nanocomposites. *Appl. Catal. B Environ.* **2016**, *187*, 171–180. [CrossRef] - 224. Hassanzadeh-Tabrizi, S.A.; Nguyen, C.-C.; Do, T.-O. Synthesis of Fe₂O₃/Pt/Au Nanocomposite Immobilized on g-C₃N₄ for Localized Plasmon Photocatalytic Hydrogen Evolution. *Appl. Surf. Sci.* **2019**, *489*, 741–754. [CrossRef] Nanomaterials **2022**, 12, 294 58 of 73 225. Ghandi, K.; Wang, F.; Landry, C.; Mostafavi, M. Naked Gold Nanoparticles and Hot Electrons in Water. Sci. Rep. 2018, 8, 1–6. [CrossRef] - 226. Wei, Y.; Li, X.; Zhang, Y.; Yan, Y.; Huo, P.; Wang, H. g-C₃N₄ Quantum Dots and Au Nano Particles Co-Modified CeO₂/Fe₃O₄ Micro-Flowers Photocatalyst for Enhanced CO₂ Photoreduction. Renew. *Energy* **2021**, *179*, 756–765. - 227. Liu, L.; Wang, M.; Wang, C. In-Situ Synthesis of Graphitic Carbon Nitride/Iron Oxide—Copper Composites and Their Application in the Electrochemical Detection of Glucose. Electrochim. *Acta* 2018, 265, 275–283. [CrossRef] - 228. Zhang, M.; Huang, G.; Huang, J.; Chen, W. Three-Dimensional Multi-Walled Carbon Nanotubes@ g-C₃N₄@ Fe₃O₄nanocomposites-Based Magnetic Solid Phase Extraction for the Determination of Polycyclic Aromatic Hydrocarbons in Water Samples. *Microchem. J.* 2018, 142, 385–393. [CrossRef] - 229. Wang, L.; Sun, Q.; Dou, Y.; Zhang, Z.; Yan, T.; Li, Y. Fabricating a Novel Ternary Recyclable Fe₃O₄/Graphene/Sulfur-Doped g-C₃N₄ Composite Catalyst for Enhanced Removal of Ranitidine
under Visible-Light Irradiation and Reducing of Its N-Nitrosodimethylamine Formation Potential. *J. Hazard. Mater.* 2021, 413, 125288. [CrossRef] - 230. Rashid, J.; Parveen, N.; Haq, T.U.; Iqbal, A.; Talib, S.H.; Awan, S.U.; Hussain, N.; Zaheer, M. g-C₃N₄/CeO₂/Fe₃O₄Ternary Composite as an Efficient Bifunctional Catalyst for Overall Water Splitting. *ChemCatChem* **2018**, *10*, 5587–5592. [CrossRef] - 231. Zhu, Z.; Huo, P.; Lu, Z.; Yan, Y.; Liu, Z.; Shi, W.; Li, C.; Dong, H. Fabrication of Magnetically Recoverable Photocatalysts Using g-C₃N₄ for Effective Separation of Charge Carriers through like-Z-Scheme Mechanism with Fe₃O₄ Mediator. *Chem. Eng. J.* **2018**, 331, 615–625. [CrossRef] - 232. Mishra, P.; Behera, A.; Kandi, D.; Ratha, S.; Parida, K. Novel Magnetic Retrievable Visible-Light-Driven Ternary Fe₃O₄@ NiFe₂O₄/Phosphorus-Doped g-C₃N₄ Nanocomposite Photocatalyst with Significantly Enhanced Activity through a Double-Z-Scheme System. *Inorg. Chem.* **2020**, *59*, 4255–4272. [CrossRef] - 233. Ji, H.; Jing, X.; Xu, Y.; Yan, J.; Li, H.; Li, Y.; Huang, L.; Zhang, Q.; Xu, H.; Li, H. Magnetic g-C₃N₄/NiFe₂O₄ Hybrids with Enhanced Photocatalytic Activity. *RSC Adv.* **2015**, *5*, 57960–57967. [CrossRef] - 234. Palanivel, B.; Ayappan, C.; Jayaraman, V.; Chidambaram, S.; Maheswaran, R.; Mani, A. Inverse Spinel NiFe₂O₄ Deposited g-C₃N₄ Nanosheet for Enhanced Visible Light Photocatalytic Activity. *Mater. Sci. Semicond. Process.* **2019**, *100*, 87–97. [CrossRef] - 235. Patnaik, S.; Das, K.K.; Mohanty, A.; Parida, K. Enhanced Photo Catalytic Reduction of Cr (VI) over Polymer-Sensitized g-C₃N₄ /ZnFe₂O₄ and Its Synergism with Phenol Oxidation under Visible Light Irradiation. *Catal. Today* **2018**, *315*, 52–66. [CrossRef] - 236. Ismael, M.; Wu, Y. A Facile Synthesis Method for Fabrication of LaFeO₃/g-C₃N₄ Nanocomposite as Efficient Visible-Light-Driven Photocatalyst for Photodegradation of RhB and 4-CP. *New J. Chem.* **2019**, *43*, 13783–13793. [CrossRef] - 237. Khasevani, S.G.; Gholami, M.R. Synthesis of BiOI/ZnFe₂O₄–Metal–Organic Framework and g-C₃N₄-Based Nanocomposites for Applications in Photocatalysis. *Ind. Eng. Chem. Res.* **2019**, *58*, 9806–9818. [CrossRef] - 238. Yu, W.; Chen, J.; Shang, T.; Chen, L.; Gu, L.; Peng, T. Direct Z-Scheme g-C₃N₄/WO₃ Photocatalyst with Atomically Defined Junction for H₂ Production. *Appl. Catal. B Environ.* **2017**, 219, 693–704. [CrossRef] - 239. Zhang, H.; Feng, Z.; Zhu, Y.; Wu, Y.; Wu, T. Photocatalytic Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural to 2, 5-Diformylfuran on WO₃/g-C₃N₄ Composite under Irradiation of Visible Light. *J. Photochem. Photobiol. A Chem.* **2019**, 371, 1–9. [CrossRef] - 240. Zhao, Z.; Sun, Y.; Dong, F. Graphitic Carbon Nitride Based Nanocomposites: A Review. Nanoscale 2015, 7, 15–37. [CrossRef] - 241. Cheng, C.; Shi, J.; Hu, Y.; Guo, L. WO₃/g-C₃N₄ Composites: One-Pot Preparation and Enhanced Photocatalytic H₂ Production under Visible-Light Irradiation. *Nanotechnology* **2017**, *28*, 164002. [CrossRef] [PubMed] - 242. Yan, H.; Zhu, Z.; Long, Y.; Li, W. Single-Source-Precursor-Assisted Synthesis of Porous WO₃/g-C₃N₄ with Enhanced Photocatalytic Property. *Colloids Surfaces A Physicochem. Eng. Asp.* **2019**, 582, 123857. [CrossRef] - 243. Huang, S.; Long, Y.; Ruan, S.; Zeng, Y.-J. Enhanced Photocatalytic CO₂ Reduction in Defect-Engineered Z-Scheme WO_{3-x}/ g-C₃N₄ Heterostructures. *ACS Omega* **2019**, *4*, 15593–15599. [CrossRef] - 244. Zhang, X.; He, S. WOx/g-C₃N₄ Layered Heterostructures with Controlled Crystallinity towards Superior Photocatalytic Degradation and H₂ Generation. *Carbon* **2020**, *156*, 488–498. [CrossRef] - 245. Han, X.; Xu, D.; An, L.; Hou, C.; Li, Y.; Zhang, Q.; Wang, H. WO₃/g-C₃N₄ Two-Dimensional Composites for Visible-Light Driven Photocatalytic Hydrogen Production. *Int. J. Hydrogen Energy* **2018**, *43*, 4845–4855. [CrossRef] - 246. Vijayakumar, S.; Vadivel, S. Fiber Optic Ethanol Gas Sensor Based WO₃ and WO₃/GC₃N₄ Nanocomposites by a Novel Microwave Technique. *Opt. Laser Technol.* **2019**, *118*, 44–51. [CrossRef] - 247. Zhao, R.; Li, X.; Su, J.; Gao, X. Preparation of WO₃ / g-C₃N₄ Composites and Their Application in Oxidative Desulfurization. *Appl. Surf. Sci.* **2017**, 392, 810–816. [CrossRef] - 248. Cadan, F.M.; Ribeiro, C.; Azevedo, E.B. Improving g-C₃N₄: WO₃ Z-Scheme Photocatalytic Performance under Visible Light by Multivariate Optimization of g-C₃N₄ Synthesis. *Appl. Surf. Sci.* **2021**, 537, 147904. [CrossRef] - 249. Singh, J.; Arora, A.; Basu, S. Synthesis of Coral like WO₃ / g-C₃N₄ Nanocomposites for the Removal of Hazardous Dyes under Visible Light. *J. Alloys Compd.* **2019**, *808*, 151734. [CrossRef] - 250. Li, X.; Song, X.; Ma, C.; Cheng, Y.; Shen, D.; Zhang, S.; Liu, W.; Huo, P.; Wang, H. Direct Z-Scheme WO₃/Graphitic Carbon Nitride Nanocomposites for the Photoreduction of CO₂. ACS Appl. Nano Mater. **2020**, *3*, 1298–1306. [CrossRef] - 251. Chang, F.; Zheng, J.; Wu, F.; Wang, X.; Deng, B. Binary Composites WO₃/g-C₃N₄ in Porous Morphology: Facile Construction, Characterization, and Reinforced Visible Light Photocatalytic Activity. *Colloids Surfaces A Physicochem. Eng. Asp.* **2019**, 563, 11–21. [CrossRef] Nanomaterials **2022**, 12, 294 59 of 73 252. Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO₃/g-C₃N₄ Step-Scheme H₂-Production Photocatalyst. *Appl. Catal. B Environ.* **2019**, 243, 556–565. [CrossRef] - 253. Karimi-Nazarabad, M.; Goharshadi, E.K. Highly Efficient Photocatalytic and Photoelectrocatalytic Activity of Solar Light Driven WO₃/g-C₃N₄ Nanocomposite. *Sol. Energy Mater. Sol. Cells* **2017**, *160*, 484–493. [CrossRef] - 254. Chai, B.; Liu, C.; Yan, J.; Ren, Z.; Wang, Z. In-Situ Synthesis of WO₃ Nanoplates Anchored on g-C₃N₄ Z-Scheme Photocatalysts for Significantly Enhanced Photocatalytic Activity. *Appl. Surf. Sci.* **2018**, 448, 1–8. [CrossRef] - 255. Tahir, B.; Tahir, M.; Nawawi, M.G.M. Highly STable 3D/2D WO₃/g-C₃N₄ Z-Scheme Heterojunction for Stimulating Photocatalytic CO₂ Reduction by H₂O/H₂ to CO and CH₄4 under Visible Light. *J. CO₂ Util.* **2020**, *41*, 101270. [CrossRef] - 256. Zhang, X.; Wang, X.; Meng, J.; Liu, Y.; Ren, M.; Guo, Y.; Yang, Y. Robust Z-Scheme g-C₃N₄/WO₃ Heterojunction Photocatalysts with Morphology Control of WO₃ for Efficient Degradation of Phenolic Pollutants. *Sep. Purif. Technol.* **2021**, 255, 117693. [CrossRef] - 257. Borthakur, S.; Basyach, P.; Kalita, L.; Sonowal, K.; Tiwari, A.; Chetia, P.; Saikia, L. Sunlight Assisted Degradation of a Pollutant Dye in Water by a WO₃@ g-C₃N₄ Nanocomposite Catalyst. *New J. Chem.* **2020**, *44*, 2947–2960. [CrossRef] - 258. Jing, H.; Ou, R.; Yu, H.; Zhao, Y.; Lu, Y.; Huo, M.; Huo, H.; Wang, X. Engineering of g-C₃N₄ Nanoparticles/WO₃ Hollow Microspheres Photocatalyst with Z-Scheme Heterostructure for Boosting Tetracycline Hydrochloride Degradation. *Sep. Purif. Technol.* **2021**, 255, 117646. [CrossRef] - 259. Xiao, T.; Tang, Z.; Yang, Y.; Tang, L.; Zhou, Y.; Zou, Z. In Situ Construction of Hierarchical WO₃/g-C₃N₄ Composite Hollow Microspheres as a Z-Scheme Photocatalyst for the Degradation of Antibiotics. *Appl. Catal. B Environ.* **2018**, 220, 417–428. [CrossRef] - 260. Liu, X.; Jin, A.; Jia, Y.; Xia, T.; Deng, C.; Zhu, M.; Chen, C.; Chen, X. Synergy of Adsorption and Visible-Light Photocatalytic Degradation of Methylene Blue by a Bifunctional Z-Scheme Heterojunction of WO₃/g-C₃N₄. *Appl. Surf. Sci.* **2017**, 405, 359–371. [CrossRef] - 261. Zhuang, H.; Cai, Z.; Xu, W.; Huang, M.; Liu, X. In Situ Construction of WO₃/G-C₃N₄ Composite Photocatalyst with 2D–2D Heterostructure for Enhanced Visible Light Photocatalytic Performance. *New J. Chem.* **2019**, 43, 17416–17422. [CrossRef] - 262. Meng, J.; Pei, J.; He, Z.; Wu, S.; Lin, Q.; Wei, X.; Li, J.; Zhang, Z. Facile Synthesis of g-C₃N₄ Nanosheets Loaded with WO₃ Nanoparticles with Enhanced Photocatalytic Performance under Visible Light Irradiation. *RSC Adv.* **2017**, 7, 24097–24104. [CrossRef] - 263. Wang, P.; Lu, N.; Su, Y.; Liu, N.; Yu, H.; Li, J.; Wu, Y. Fabrication of WO₃@ g-C₃N₄ with Core@ Shell Nanostructure for Enhanced Photocatalytic Degradation Activity under Visible Light. *Appl. Surf. Sci.* **2017**, 423, 197–204. [CrossRef] - 264. Zhao, C.; Ran, F.; Dai, L.; Li, C.; Zheng, C.; Si, C. Cellulose-Assisted Construction of High Surface Area Z-Scheme C-Doped g-C₃N₄/WO₃ for Improved Tetracycline Degradation. *Carbohydr. Polym.* **2021**, 255, 117343. [CrossRef] - 265. Mallikarjuna, K.; Kumar, M.K.; Kim, H. Synthesis of Oxygen-Doped-g-C₃N₄/WO₃ Porous Structures for Visible Driven Photocatalytic H₂ Production. Phys. E Low-dimensional Syst. *Nanostructures* **2021**, *126*, 114428. - 266. Sun, L.; Li, B.; Chu, X.; Sun, N.; Qu, Y.; Zhang, X.; Khan, I.; Bai, L.; Jing, L. Synthesis of Si–O-Bridged g-C₃N₄/WO₃ 2D-Heterojunctional Nanocomposites as Efficient Photocatalysts for Aerobic Alcohol Oxidation and Mechanism Insight. *ACS Sustain. Chem. Eng.* **2019**, 7, 9916–9927. [CrossRef] - 267. Li, H.; Yu, H.; Quan, X.; Chen, S.; Zhang, Y. Uncovering the Key Role of the Fermi Level of the Electron Mediator in a Z-Scheme Photocatalyst by Detecting the Charge Transfer Process of WO₃-Metal-GC₃N₄ (Metal = Cu, Ag, Au). *ACS Appl. Mater. Interfaces* **2016**, *8*, 2111–2119. [CrossRef] - 268. Chen, J.; Xiao, X.; Wang, Y.; Ye, Z. Ag Nanoparticles Decorated WO₃/g-C₃N₄ 2D/2D Heterostructure with Enhanced Photocatalytic Activity for Organic Pollutants Degradation. *Appl. Surf. Sci.* **2019**, 467, 1000–1010. [CrossRef] - 269. Fan, G.; Ning, R.; Yan, Z.; Luo, J.; Du, B.; Zhan, J.; Liu, L.; Zhang, J. Double Photoelectron-Transfer Mechanism in Ag—AgCl/WO₃/g-C₃N₄ Photocatalyst with Enhanced Visible-Light Photocatalytic Activity for Trimethoprim Degradation. *J. Hazard. Mater.* **2021**, *403*, 123964. [CrossRef] - 270. Truc, N.T.T.; Pham, T.-D.; Van Thuan, D.; Tran, D.T.; Nguyen, M.V.; Dang, N.M.; Trang, H.T. Superior Activity of Cu-NiWO₄ /
g-C₃N₄ Z Direct System for Photocatalytic Decomposition of VOCs in Aerosol under Visible Light. *J. Alloys Compd.* **2019**, 798, 12–18. [CrossRef] - 271. Ahmed, K.E.; Kuo, D.-H.; Zeleke, M.A.; Zelekew, O.A.; Abay, A.K. Synthesis of Sn-WO₃/g-C₃N₄ Composites with Surface Activated Oxygen for Visible Light Degradation of Dyes. *J. Photochem. Photobiol. A Chem.* **2019**, 369, 133–141. [CrossRef] - 272. Tahir, B.; Tahir, M.; Mohd Nawawi, M.G. Well-Designed 3D/2D/2D WO₃/Bt/g-C₃N₄ Z-Scheme Heterojunction for Tailoring Photocatalytic CO₂ Methanation with 2D-Layered Bentonite-Clay as the Electron Moderator under Visible Light. *Energy Fuels* **2020**, *34*, 14400–14418. - 273. Ouyang, K.; Xu, B.; Yang, C.; Wang, H.; Zhan, P.; Xie, S. Synthesis of a Novel Z-Scheme Ag/WO₃/g-C₃N₄ Nanophotocatalyst for Degradation of Oxytetracycline Hydrochloride under Visible Light. *Mater. Sci. Semicond. Process.* **2022**, 137, 106168. [CrossRef] - 274. Qin, Y.; Lu, J.; Meng, F.; Lin, X.; Feng, Y.; Yan, Y.; Meng, M. Rationally Constructing of a Novel 2D/2D WO₃/Pt/g-C₃N₄ Schottky-Ohmic Junction towards Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution and Mechanism Insight. *J. Colloid Interface Sci.* 2021, 586, 576–587. [CrossRef] [PubMed] Nanomaterials **2022**, 12, 294 60 of 73 275. Liu, F.; Feng, S.; Wu, Y.; Lv, X.; Wang, H.; Chen, S.-M.; Hao, Q.; Cao, Y.; Lei, W.; Tong, Z. Label-Free Photoelectrochemical Immunosensor for Aflatoxin B1 Detection Based on the Z-Scheme Heterojunction of g-C₃N₄/Au/WO₃. *Biosens. Bioelectron.* **2021**, 189, 113373. - 276. Li, J.; Hao, H.; Zhu, Z. Construction of g-C₃N₄-WO₃-Bi₂WO₆ Double Z-Scheme System with Enhanced Photoelectrochemical Performance. *Mater. Lett.* **2016**, *168*, 180–183. [CrossRef] - 277. Sadiq, M.M.J.; Shenoy, U.S.; Bhat, D.K. Synthesis of BaWO₄/NRGO–g-C₃N₄ Nanocomposites with Excellent Multifunctional Catalytic Performance via Microwave Approach. *Front. Mater. Sci.* **2018**, 12, 247–263. [CrossRef] - 278. Huang, R.; Gu, X.; Sun, W.; Chen, L.; Du, Q.; Guo, X.; Li, J.; Zhang, M.; Li, C. In Situ Synthesis of Cu⁺ Self-Doped CuWO₄/g-C₃N₄ Heterogeneous Fenton-like Catalysts: The Key Role of Cu⁺ in Enhancing Catalytic Performance. *Sep. Purif. Technol.* **2020**, 250, 117174. [CrossRef] - 279. Jia, J.; Jiang, C.; Zhang, X.; Li, P.; Xiong, J.; Zhang, Z.; Wu, T.; Wang, Y. Urea-Modified Carbon Quantum Dots as Electron Mediator Decorated g-C₃N₄/WO₃ with Enhanced Visible-Light Photocatalytic Activity and Mechanism Insight. *Appl. Surf. Sci.* **2019**, 495, 143524. [CrossRef] - 280. He, K.; Xie, J.; Luo, X.; Wen, J.; Ma, S.; Li, X.; Fang, Y.; Zhang, X. Enhanced Visible Light Photocatalytic H₂ Production over Z-Scheme g-C₃N₄ Nansheets/WO₃ Nanorods Nanocomposites Loaded with Ni (OH) _x Cocatalysts. *Chin. J. Catal.* **2017**, *38*, 240–252. [CrossRef] - 281. Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Chen, X.; Yu, H.; Wang, H.; Wu, Z.; Zhang, J.; Xiong, T. In-Situ Synthesis of Direct Solid-State Dual Z-Scheme WO₃/g-C₃N₄/Bi₂O₃ Photocatalyst for the Degradation of Refractory Pollutant. *Appl. Catal. B Environ.* **2018**, 227, 376–385. [CrossRef] - 282. Ali, S.; Humayun, M.; Pi, W.; Yuan, Y.; Wang, M.; Khan, A.; Yue, P.; Shu, L.; Zheng, Z.; Fu, Q. Fabrication of BiFeO3-g-C₃N₄-WO₃ Z-Scheme Heterojunction as Highly Efficient Visible-Light Photocatalyst for Water Reduction and 2, 4-Dichlorophenol Degradation: Insight Mechanism. *J. Hazard. Mater.* **2020**, 397, 122708. [CrossRef] - 283. Bilal Tahir, M.; Nadeem Riaz, K.; Asiri, A.M. Boosting the Performance of Visible Light-driven WO₃/g-C₃N₄ Anchored with BiVO₄ Nanoparticles for Photocatalytic Hydrogen Evolution. *Int. J. Energy Res.* **2019**, *43*, 5747–5758. [CrossRef] - 284. Beyhaqi, A.; Zeng, Q.; Chang, S.; Wang, M.; Azimi, S.M.T.; Hu, C. Construction of G–C₃N₄/WO₃/MoS₂ Ternary Nanocomposite with Enhanced Charge Separation and Collection for Efficient Wastewater Treatment under Visible Light. *Chemosphere* **2020**, 247, 125784. [CrossRef] - 285. Cai, Z.; Huang, L.; Quan, X.; Zhao, Z.; Shi, Y.; Puma, G.L. Acetate Production from Inorganic Carbon (HCO3-) in Photo-Assisted Biocathode Microbial Electrosynthesis Systems Using WO₃/MoO₃/g-C₃N₄ Heterojunctions and Serratia Marcescens Species. *Appl. Catal. B Environ.* **2020**, 267, 118611. [CrossRef] - 286. Ibrahim, Y.O.; Gondal, M.A. Visible-Light-Driven Photocatalytic Performance of a Z-Scheme Based TiO₂/WO₃/g-C₃N₄ Ternary Heterojunctions. *Mol. Catal.* **2021**, *505*, 111494. [CrossRef] - 287. Zou, Y.; Xie, Y.; Yu, S.; Chen, L.; Cui, W.; Dong, F.; Zhou, Y. SnO₂ Quantum Dots Anchored on g-C₃N₄ for Enhanced Visible-Light Photocatalytic Removal of NO and Toxic NO₂ Inhibition. *Appl. Surf. Sci.* **2019**, *496*, 143630. [CrossRef] - 288. Wang, Q.; Tian, J.; Wei, L.; Liu, Y.; Yang, C. Z-Scheme Heterostructure of Fe-Doped SnO₂ Decorated Layered g-C₃N₄ with Enhanced Photocatalytic Activity under Simulated Solar Light Irradiation. *Opt. Mater.* **2020**, *101*, 109769. [CrossRef] - 289. He, Y.; Zhang, L.; Fan, M.; Wang, X.; Walbridge, M.L.; Nong, Q.; Wu, Y.; Zhao, L. Z-Scheme SnO_{2-x}/g-C₃N₄ Composite as an Efficient Photocatalyst for Dye Degradation and Photocatalytic CO₂ Reduction. *Sol. Energy Mater. Sol. Cells* **2015**, 137, 175–184. [CrossRef] - 290. Cao, J.; Qin, C.; Wang, Y.; Zhang, H.; Zhang, B.; Gong, Y.; Wang, X.; Sun, G.; Bala, H.; Zhang, Z. Synthesis of g-C₃N₄ Nanosheet Modified SnO₂ Composites with Improved Performance for Ethanol Gas Sensing. *RSC Adv.* **2017**, 7, 25504–25511. [CrossRef] - 291. Wang, X.; He, Y.; Xu, L.; Xia, Y.; Gang, R. SnO₂ Particles as Efficient Photocatalysts for Organic Dye Degradation Grown In-Situ on g-C₃N₄ Nanosheets by Microwave-Assisted Hydrothermal Method. *Mater. Sci. Semicond. Process.* **2021**, 121, 105298. [CrossRef] - 292. Zhu, K.; Lv, Y.; Liu, J.; Wang, W.; Wang, C.; Li, S.; Wang, P.; Zhang, M.; Meng, A.; Li, Z. Facile Fabrication of g-C₃N₄/SnO₂ Composites and Ball Milling Treatment for Enhanced Photocatalytic Performance. *J. Alloys Compd.* **2019**, *802*, 13–18. [CrossRef] - 293. Seza, A.; Soleimani, F.; Naseri, N.; Soltaninejad, M.; Montazeri, S.M.; Sadrnezhaad, S.K.; Mohammadi, M.R.; Moghadam, H.A.; Forouzandeh, M.; Amin, M.H. Novel Microwave-Assisted Synthesis of Porous g-C₃N₄/SnO₂ Nanocomposite for Solar Water-Splitting. *Appl. Surf. Sci.* **2018**, *440*, 153–161. [CrossRef] - 294. Bian, H.; Wang, A.; Li, Z.; Li, Z.; Diao, Y.; Lu, J.; Li, Y.Y. g-C₃N₄-Modified Water-Crystallized Mesoporous SnO₂ for Enhanced Photoelectrochemical Properties. *Part. Part. Syst. Charact.* **2018**, *35*, 1800155. [CrossRef] - 295. Ji, H.; Fan, Y.; Yan, J.; Xu, Y.; She, X.; Gu, J.; Fei, T.; Xu, H.; Li, H. Construction of SnO₂/Graphene-like GC₃N₄ with Enhanced Visible Light Photocatalytic Activity. *RSC Adv.* **2017**, *7*, 36101–36111. [CrossRef] - 296. Zang, Y.; Li, L.; Li, X.; Lin, R.; Li, G. Synergistic Collaboration of g-C₃N₄/SnO₂ Composites for Enhanced Visible-Light Photocatalytic Activity. *Chem. Eng. J.* **2014**, 246, 277–286. [CrossRef] - 297. Zhang, T.; Chang, F.; Qi, Y.; Zhang, X.; Yang, J.; Liu, X.; Li, S. A Facile One-Pot and Alkali-Free Synthetic Procedure for Binary SnO₂/g-C₃N₄ Composites with Enhanced Photocatalytic Behavior. *Mater. Sci. Semicond. Process.* **2020**, *115*, 105112. [CrossRef] - 298. Peng, F.; Ni, Y.; Zhou, Q.; Kou, J.; Lu, C.; Xu, Z. New g-C₃N₄ Based Photocatalytic Cement with Enhanced Visible-Light Photocatalytic Activity by Constructing Muscovite Sheet/SnO₂ Structures. *Constr. Build. Mater.* **2018**, *179*, 315–325. [CrossRef] Nanomaterials **2022**, 12, 294 61 of 73 299. Babu, B.; Cho, M.; Byon, C.; Shim, J. Sunlight-Driven Photocatalytic Activity of SnO₂ QDs-g-C₃N₄ Nanolayers. *Mater. Lett.* **2018**, 212, 327–331. [CrossRef] - 300. Shen, H.; Zhao, X.; Duan, L.; Liu, R.; Li, H. Enhanced Visible Light Photocatalytic Activity in SnO₂@ g-C₃N₄ Core-Shell Structures. *Mater. Sci. Eng. B* **2017**, 218, 23–30. [CrossRef] - 301. Wang, X.; Ren, P. Flower-like SnO₂/g-C₃N₄ Heterojunctions: The Face-to-Face Contact Interface and Improved Photocatalytic Properties. *Adv. Powder Technol.* **2018**, 29, 1153–1157. [CrossRef] - 302. Singh, J.; Kumari, P.; Basu, S. Degradation of Toxic Industrial Dyes Using SnO₂/g-C₃N₄ Nanocomposites: Role of Mass Ratio on Photocatalytic Activity. *J. Photochem. Photobiol. A Chem.* **2019**, *371*, 136–143. [CrossRef] - 303. Chen, X.; Zhou, B.; Yang, S.; Wu, H.; Wu, Y.; Wu, L.; Pan, J.; Xiong, X. In Situ Construction of an SnO₂/g-C₃N₄ Heterojunction for Enhanced Visible-Light Photocatalytic Activity. *Rsc Adv.* **2015**, *5*, 68953–68963. [CrossRef] - 304. Yang, L.; Huang, J.; Shi, L.; Cao, L.; Liu, H.; Liu, Y.; Li, Y.; Song, H.; Jie, Y.; Ye, J. Sb Doped SnO₂-Decorated Porous g-C₃N₄ Nanosheet Heterostructures with Enhanced Photocatalytic Activities under Visible Light Irradiation. *Appl. Catal. B Environ.* **2018**, 221, 670–680. [CrossRef] - 305. Raziq, F.; Qu, Y.; Humayun, M.; Zada, A.; Yu, H.; Jing, L. Synthesis of SnO₂/BP Codoped g-C₃N₄ Nanocomposites as Efficient Cocatalyst-Free Visible-Light Photocatalysts for CO₂ Conversion and Pollutant Degradation. *Appl. Catal. B Environ.* **2017**, 201, 486–494. [CrossRef] - 306. Jourshabani, M.; Shariatinia, Z.; Badiei, A. In Situ Fabrication of SnO₂/S-Doped g-C₃N₄ Nanocomposites and Improved Visible Light Driven Photodegradation of Methylene Blue. *J. Mol. Liq.* **2017**, 248, 688–702. [CrossRef] - 307. Guo, W.; Huang, L.; Zhang, J.; He, Y.; Zeng, W. Ni-Doped SnO₂/g-C₃N₄ Nanocomposite with Enhanced Gas Sensing Performance for the Eff; Ective Detection of Acetone in Diabetes Diagnosis. *Sens. Actuators B Chem.* **2021**, 334, 129666. [CrossRef] - 308. Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Yuvakkumar, R.; Velauthapillai, D.; Ahamad, T.; Khan, M.A.M.; Mohammed, M.K.A.; Vijayaprabhu, N.; Ravi, G. The Bifunctional Performance Analysis of Synthesized Ce Doped SnO₂/g-C₃N₄ Composites for Asymmetric Supercapacitor and Visible Light Photocatalytic
Applications. *J. Alloys Compd.* **2021**, *866*, 158807. [CrossRef] - 309. Zada, A.; Humayun, M.; Raziq, F.; Zhang, X.; Qu, Y.; Bai, L.; Qin, C.; Jing, L.; Fu, H. Exceptional Visible-light-driven Cocatalyst-free Photocatalytic Activity of g-C₃N₄ by Well Designed Nanocomposites with Plasmonic Au and SnO₂. *Adv. Energy Mater.* **2016**, *6*, 1601190. [CrossRef] - 310. Yuan, F.; Sun, Z.; Li, C.; Tan, Y.; Zhang, X.; Zheng, S. Multi-Component Design and in-Situ Synthesis of Visible-Light-Driven SnO₂/g-C₃N₄/Diatomite Composite for High-Efficient Photoreduction of Cr (VI) with the Aid of Citric Acid. *J. Hazard. Mater.* **2020**, 396, 122694. [CrossRef] - 311. Babu, B.; Koutavarapu, R.; Shim, J.; Yoo, K. Enhanced Visible-Light-Driven Photoelectrochemical and Photocatalytic Performance of Au-SnO₂ Quantum Dot-Anchored g-C₃N₄ Nanosheets. *Sep. Purif. Technol.* **2020**, 240, 116652. [CrossRef] - 312. Peng, L.; Zheng, R.; Feng, D.; Yu, H.; Dong, X. Synthesis of Eco-Friendly Porous g-C₃N₄/SiO₂/SnO₂ Composite with Excellent Visible-Light Responsive Photocatalysis. *Arab. J. Chem.* **2020**, *13*, 4275–4285. [CrossRef] - 313. Wu, J.; Zhang, Y.; Zhou, J.; Wang, K.; Zheng, Y.-Z.; Tao, X. Uniformly Assembling N-Type Metal Oxide Nanostructures (TiO₂ Nanoparticles and SnO₂ Nanowires) onto P Doped g-C₃N₄ Nanosheets for Efficient Photocatalytic Water Splitting. *Appl. Catal. B Environ.* **2020**, 278, 119301. [CrossRef] - 314. Faraji, M.; Mohaghegh, N.; Abedini, A. Ternary Composite of TiO₂ Nanotubes/Ti Plates Modified by g-C₃N₄ and SnO₂ with Enhanced Photocatalytic Activity for Enhancing Antibacterial and Photocatalytic Activity. J. Photochem. *Photobiol. B Biol.* **2018**, 178, 124–132. [CrossRef] [PubMed] - 315. Liu, X.-P.; Huang, B.; Mao, C.-J.; Chen, J.-S.; Jin, B.-K. Electrochemiluminescence Aptasensor for Lincomycin Antigen Detection by Using a SnO₂/Chitosan/g-C₃N₄ Nanocomposite. *Talanta* **2021**, 233, 122546. [CrossRef] - 316. Ali, G.; Zaidi, S.J.A.; Basit, M.A.; Park, T.J. Synergetic Performance of Systematically Designed g-C₃N₄/RGO/SnO₂ Nanocomposite for Photodegradation of Rhodamine-B Dye. *Appl. Surf. Sci.* **2021**, *570*, 151140. [CrossRef] - 317. Seo, Y.J.; Das, P.K.; Arunachalam, M.; Ahn, K.-S.; Ha, J.-S.; Kang, S.H. Drawing the Distinguished Graphite Carbon Nitride (g-C₃N₄) on SnO₂ Nanoflake Film for Solar Water Oxidation. *Int. J. Hydrogen Energy* **2020**, *45*, 22567–22575. [CrossRef] - 318. Wu, H.; Yu, S.; Wang, Y.; Han, J.; Wang, L.; Song, N.; Dong, H.; Li, C. A Facile One-Step Strategy to Construct 0D/2D SnO₂/g-C₃N₄ Heterojunction Photocatalyst for High-Efficiency Hydrogen Production Performance from Water Splitting. *Int. J. Hydrogen Energy* **2020**, 45, 30142–30152. [CrossRef] - 319. Versaci, D.; Amici, J.; Francia, C.; Bodoardo, S. Simple Approach Using g-C₃N₄ to Enable SnO₂ Anode High Rate Performance for Li Ion Battery. *Solid State Ionics* **2020**, *346*, 115210. [CrossRef] - 320. Tran, H.H.; Nguyen, P.H.; Le, M.L.P.; Kim, S.-J.; Vo, V. SnO₂ Nanosheets/Graphite Oxide/g-C₃N₄ Composite as Enhanced Performance Anode Material for Lithium Ion Batteries. *Chem. Phys. Lett.* **2019**, 715, 284–292. [CrossRef] - 321. Cao, J.; Qin, C.; Wang, Y.; Zhang, B.; Gong, Y.; Zhang, H.; Sun, G.; Bala, H.; Zhang, Z. Calcination Method Synthesis of SnO₂/g-C₃N₄ Composites for a High-Performance Ethanol Gas Sensing Application. *Nanomaterials* **2017**, 7, 98. [CrossRef] - 322. Akhundi, A.; Habibi-Yangjeh, A. A Simple Large-Scale Method for Preparation of g-C₃N₄/SnO₂ Nanocomposite as Visible-Light-Driven Photocatalyst for Degradation of an Organic Pollutant. *Mater. Express* **2015**, *5*, 309–318. [CrossRef] - 323. Liu, X.; Liu, X. SnO₂ Nanocrystallines Decorated g-C₃N₄ Composites with Enhanced Visible-Light Photocatalytic Activity. *Integr. Ferroelectr.* **2019**, 197, 121–132. [CrossRef] Nanomaterials **2022**, 12, 294 62 of 73 324. Li, Q.; He, Y.; Peng, R. One-Step Synthesis of SnO 2 Nanoparticles-Loaded Graphitic Carbon Nitride and Their Application in Thermal Decomposition of Ammonium Perchlorate. *New J. Chem.* **2015**, *39*, 8703–8707. [CrossRef] - 325. Liu, Q.; Fan, C.; Tang, H.; Sun, X.; Yang, J.; Cheng, X. One-Pot Synthesis of g-C₃N₄/V₂O₅ Composites for Visible Light-Driven Photocatalytic Activity. *Appl. Surf. Sci.* **2015**, *358*, 188–195. [CrossRef] - 326. Jayaraman, T.; Raja, S.A.; Priya, A.; Jagannathan, M.; Ashokkumar, M. Synthesis of a Visible-Light Active V₂O₅–GC₃N₄ Heterojunction as an Efficient Photocatalytic and Photoelectrochemical Material. *New J. Chem.* **2015**, *39*, 1367–1374. [CrossRef] - 327. Jin, C.; Wang, M.; Li, Z.; Kang, J.; Zhao, Y.; Han, J.; Wu, Z. Two Dimensional Co₃O₄/g-C₃N₄ Z-Scheme Heterojunction: Mechanism Insight into Enhanced Peroxymonosulfate-Mediated Visible Light Photocatalytic Performance. *Chem. Eng. J.* **2020**, *398*, 125569. [CrossRef] - 328. Wu, H.; Li, C.; Che, H.; Hu, H.; Hu, W.; Liu, C.; Ai, J.; Dong, H. Decoration of Mesoporous Co₃O₄ Nanospheres Assembled by Monocrystal Nanodots on g-C₃N₄ to Construct Z-Scheme System for Improving Photocatalytic Performance. *Appl. Surf. Sci.* **2018**, 440, 308–319. [CrossRef] - 329. Qiao, Q.; Yang, K.; Ma, L.-L.; Huang, W.-Q.; Zhou, B.-X.; Pan, A.; Hu, W.; Fan, X.; Huang, G.-F. Facile in Situ Construction of Mediator-Free Direct Z-Scheme g-C₃N₄/CeO₂ Heterojunctions with Highly Efficient Photocatalytic Activity. *J. Phys. D. Appl. Phys.* 2018, 51, 275302. [CrossRef] - 330. Huang, L.; Li, Y.; Xu, H.; Xu, Y.; Xia, J.; Wang, K.; Li, H.; Cheng, X. Synthesis and Characterization of CeO₂/g-C₃N₄ Composites with Enhanced Visible-Light Photocatatalytic Activity. *Rsc Adv.* **2013**, *3*, 22269–22279. [CrossRef] - 331. Zou, W.; Shao, Y.; Pu, Y.; Luo, Y.; Sun, J.; Ma, K.; Tang, C.; Gao, F.; Dong, L. Enhanced Visible Light Photocatalytic Hydrogen Evolution via Cubic CeO₂ Hybridized g-C₃N₄ Composite. *Appl. Catal. B Environ.* **2017**, 218, 51–59. [CrossRef] - 332. Li, Y.; Wu, S.; Huang, L.; Xu, H.; Zhang, R.; Qu, M.; Gao, Q.; Li, H. g-C₃N₄ Modified Bi₂O₃ Composites with Enhanced Visible-Light Photocatalytic Activity. *J. Phys. Chem. Solids* **2015**, *76*, 112–119. [CrossRef] - 333. Zhang, J.; Hu, Y.; Jiang, X.; Chen, S.; Meng, S.; Fu, X. Design of a Direct Z-Scheme Photocatalyst: Preparation and Characterization of Bi₂O₃/g-C₃N₄ with High Visible Light Activity. *J. Hazard. Mater.* **2014**, 280, 713–722. [CrossRef] [PubMed] - 334. Wang, D.; Yu, X.; Feng, Q.; Lin, X.; Huang, Y.; Huang, X.; Li, X.; Chen, K.; Zhao, B.; Zhang, Z. In-Situ Growth of β-Bi₂O₃ Nanosheets on g-C₃N₄ to Construct Direct Z-Scheme Heterojunction with Enhanced Photocatalytic Activities. *J. Alloys Compd.* **2021**, 859, 157795. [CrossRef] - 335. Wang, X.; Liu, C.; Li, X.; Li, F.; Li, Y.; Zhao, J.; Liu, R. Construction of g-C₃N₄/Al₂O₃ Hybrids via in-Situ Acidification and Exfoliation with Enhanced Photocatalytic Activity. *Appl. Surf. Sci.* **2017**, 394, 340–350. [CrossRef] - 336. Yang, Z.-L.; Zhang, Z.-Y.; Fan, W.-L.; Hu, C.; Zhang, L.; Qi, J.-J. High-Performance g-C₃N₄ Added Carbon-Based Perovskite Solar Cells Insulated by Al₂O₃ Layer. Sol. *Energy* **2019**, *193*, 859–865. - 337. Shi, J.-W.; Zou, Y.; Cheng, L.; Ma, D.; Sun, D.; Mao, S.; Sun, L.; He, C.; Wang, Z. In-Situ Phosphating to Synthesize Ni2P Decorated NiO/g-C₃N₄ Pn Junction for Enhanced Photocatalytic Hydrogen Production. *Chem. Eng. J.* **2019**, *378*, 122161. [CrossRef] - 338. Li, F.; Zhao, Y.; Wang, Q.; Wang, X.; Hao, Y.; Liu, R.; Zhao, D. Enhanced Visible-Light Photocatalytic Activity of Active Al₂O₃/g-C₃N₄ Heterojunctions Synthesized via Surface Hydroxyl Modification. *J. Hazard. Mater.* **2015**, 283, 371–381. [CrossRef] [PubMed] - 339. Tzvetkov, G.; Tsvetkov, M.; Spassov, T. Ammonia-Evaporation-Induced Construction of Three-Dimensional NiO/g-C₃N₄ Composite with Enhanced Adsorption and Visible Light-Driven Photocatalytic Performance. *Superlattices Microstruct.* **2018**, 119, 122–133. [CrossRef] - 340. Sumathi, M.; Prakasam, A.; Anbarasan, P.M. Fabrication of Hexagonal Disc Shaped Nanoparticles g-C₃N₄ /NiO Heterostructured Nanocomposites for Efficient Visible Light Photocatalytic Performance. *J. Clust. Sci.* **2019**, *30*, 757–766. [CrossRef] - 341. Huang, L.; Xu, H.; Zhang, R.; Cheng, X.; Xia, J.; Xu, Y.; Li, H. Synthesis and Characterization of g-C₃N₄/MoO₃ Photocatalyst with Improved Visible-Light Photoactivity. *Appl. Surf. Sci.* **2013**, 283, 25–32. [CrossRef] - 342. Zhang, X.; Yi, J.; Chen, H.; Mao, M.; Liu, L.; She, X.; Ji, H.; Wu, X.; Yuan, S.; Xu, H. Construction of a Few-Layer g-C₃N₄/α-MoO₃ Nanoneedles All-Solid-State Z-Scheme Photocatalytic System for Photocatalytic Degradation. *J. Energy Chem.* **2019**, 29, 65–71. [CrossRef] - 343. Liu, L.; Qi, Y.; Hu, J.; An, W.; Lin, S.; Liang, Y.; Cui, W. Stable Cu₂O@ g-C₃N₄ Core@ Shell Nanostructures: Efficient Visible-Light Photocatalytic Hydrogen Evolution. *Mater. Lett.* **2015**, *158*, 278–281. [CrossRef] - 344. Han, S.; Hu, X.; Yang, W.; Qian, Q.; Fang, X.; Zhu, Y. Constructing the Band Alignment of Graphitic Carbon Nitride (g-C₃N₄)/Copper (I) Oxide (Cu₂O) Composites by Adjusting the Contact Facet for Superior Photocatalytic Activity. ACS Appl. *Energy Mater.* **2018**, *2*, 1803–1811. [CrossRef] - 345. Liu, H.; Zhu, X.; Han, R.; Dai, Y.; Sun, Y.; Lin, Y.; Gao, D.; Wang, X.; Luo, C. Study on the Internal Electric Field in the Cu₂O/g-C₃N₄ p–n Heterojunction Structure for Enhancing Visible Light Photocatalytic Activity. *New J. Chem.* **2020**, 44, 1795–1805. [CrossRef] - 346. Singh, P.K.; Bhardiya, S.R.; Asati, A.; Rai, V.K.; Singh, M.; Rai, A. Cu/Cu₂O@ g-C₃N₄: Recyclable Photocatalyst under Visible Light to Access 2-Aryl-/Benzimidazoles/Benzothiazoles in Water. *ChemistrySelect* **2020**, *5*, 14270–14275. [CrossRef] - 347. Liang, S.; Zhou, Y.; Cai, Z.; She, C. Preparation of Porous g-C₃N₄/Ag/Cu₂O: A New Composite with Enhanced Visible-light Photocatalytic Activity. *Appl. Organomet. Chem.* **2016**, *30*, 932–938. [CrossRef] - 348.
Chaudhary, P.; Ingole, P.P. In-Situ Solid-State Synthesis of 2D/2D Interface between Ni/NiO Hexagonal Nanosheets Supported on g-C₃N₄ for Enhanced Photo-Electrochemical Water Splitting. *Int. J. Hydrogen Energy* **2020**, *45*, 16060–16070. [CrossRef] Nanomaterials **2022**, 12, 294 63 of 73 349. Zhou, C.; Liu, Z.; Fang, L.; Guo, Y.; Feng, Y.; Yang, M. Kinetic and Mechanistic Study of Rhodamine B Degradation by H₂O₂ and Cu/Al₂O₃/g-C₃N₄ Composite. *Catalysts* **2020**, *10*, 317. [CrossRef] - 350. Bao, Y.; Chen, K. A Novel Z-Scheme Visible Light Driven Cu₂O/Cu/g-C₃N₄ Photocatalyst Using Metallic Copper as a Charge Transfer Mediator. *Mol. Catal.* **2017**, 432, 187–195. [CrossRef] - 351. Zhang, P.; Wang, T.; Zeng, H. Design of Cu-Cu₂O/g-C₃N₄ Nanocomponent Photocatalysts for Hydrogen Evolution under Visible Light Irradiation Using Water-Soluble Erythrosin B Dye Sensitization. *Appl. Surf. Sci.* **2017**, 391, 404–414. [CrossRef] - 352. Liu, C.; Mao, D.; Pan, J.; Qian, J.; Zhang, W.; Chen, F.; Chen, Z.; Song, Y. Fabrication of Highly Efficient Heterostructured Ag-CeO₂/g-C₃N₄ Hybrid Photocatalyst with Enhanced Visible-Light Photocatalytic Activity. *J. Rare Earths* **2019**, *37*, 1269–1278. [CrossRef] - 353. Pinheiro, D.; Devi, K.R.S.; Jose, A.; Karthik, K.; Sugunan, S.; Mohan, M.K. Experimental Design for Optimization of 4-Nitrophenol Reduction by Green Synthesized CeO₂/g-C₃N₄/Ag Catalyst Using Response Surface Methodology. *J. Rare Earths* **2020**, *38*, 1171–1177. [CrossRef] - 354. Yin, H.Y.; Zheng, Y.F.; Wang, L. Au/CeO₂/g-C₃N₄ Nanocomposite Modified Electrode as Electrochemical Sensor for the Determination of Phenol. *J. Nanosci. Nanotechnol.* **2020**, *20*, 5539–5545. [CrossRef] - 355. Tian, N.; Huang, H.; Guo, Y.; He, Y.; Zhang, Y. A g-C₃N₄/Bi₂O₂CO₃ Composite with High Visible-Light-Driven Photocatalytic Activity for Rhodamine B Degradation. *Appl. Surf. Sci.* **2014**, 322, 249–254. [CrossRef] - 356. Mohammad, A.; Karim, M.R.; Khan, M.E.; Khan, M.M.; Cho, M.H. Biofilm-Assisted Fabrication of Ag@ SnO₂-g-C₃N₄ Nanostructures for Visible Light-Induced Photocatalysis and Photoelectrochemical Performance. *J. Phys. Chem. C* **2019**, 123, 20936–20948. [CrossRef] - 357. Saravanakumar, K.; Karthik, R.; Chen, S.-M.; Kumar, J.V.; Prakash, K.; Muthuraj, V. Construction of Novel Pd/CeO₂/g-C₃N₄ Nanocomposites as Efficient Visible-Light Photocatalysts for Hexavalent Chromium Detoxification. *J. Colloid Interface Sci.* **2017**, 504, 514–526. [CrossRef] [PubMed] - 358. Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P.K. Bifunctional S-Scheme g-C₃N₄/Bi/BiVO₄ Hybrid Photocatalysts toward Artificial Carbon Cycling. *Chin. J. Catal.* **2020**, *41*, 140–153. [CrossRef] - 359. Han, C.; Zhang, R.; Ye, Y.; Wang, L.; Ma, Z.; Su, F.; Xie, H.; Zhou, Y.; Wong, P.K.; Ye, L. Chainmail Co-Catalyst of NiO Shell-Encapsulated Ni for Improving Photocatalytic CO₂ Reduction over GC₃N₄. *J. Mater. Chem. A* **2019**, *7*, 9726–9735. [CrossRef] - 360. Zhao, X.; Guan, J.; Li, J.; Li, X.; Wang, H.; Huo, P.; Yan, Y. CeO₂/3D g-C₃N₄ Heterojunction Deposited with Pt Cocatalyst for Enhanced Photocatalytic CO₂ Reduction. *Appl. Surf. Sci.* **2021**, 537, 147891. [CrossRef] - 361. Karimi, M.A.; Atashkadi, M.; Ranjbar, M.; Habibi-Yangjeh, A. Novel Visible-Light-Driven Photocatalyst of NiO/Cd/g-C₃N₄ for Enhanced Degradation of Methylene Blue. *Arab. J. Chem.* **2020**, *13*, 5810–5820. [CrossRef] - 362. Jia, Z.; Lyu, F.; Zhang, L.C.; Zeng, S.; Liang, S.X.; Li, Y.Y.; Lu, J. Pt Nanoparticles Decorated Heterostructured g-C₃N₄/Bi₂ MoO₆ Microplates with Highly Enhanced Photocatalytic Activities under Visible Light. Sci. Rep. 2019, 9, 1–13. [CrossRef] - 363. Guo, Q.; Zhang, C.; Zhang, C.; Xin, S.; Zhang, P.; Shi, Q.; Zhang, D.; You, Y. Co₃O₄ Modified Ag/g-C₃N₄ Composite as a Bifunctional Cathode for Lithium-Oxygen Battery. *J. Energy Chem.* **2020**, *41*, 185–193. [CrossRef] - 364. Xie, Z.; Feng, Y.; Wang, F.; Chen, D.; Zhang, Q.; Zeng, Y.; Lv, W.; Liu, G. Construction of Carbon Dots Modified MoO₃/g-C₃N₄ Z-Scheme Photocatalyst with Enhanced Visible-Light Photocatalytic Activity for the Degradation of Tetracycline. *Appl. Catal. B Environ.* **2018**, 229, 96–104. [CrossRef] - 365. Shi, W.; Wang, J.; Yang, S.; Lin, X.; Guo, F.; Shi, J. Fabrication of a Ternary Carbon Dots/CoO/g-C₃N₄ Nanocomposite Photocatalyst with Enhanced Visible-light-driven Photocatalytic Hydrogen Production. *J. Chem. Technol. Biotechnol.* **2020**, *95*, 2129–2138. [CrossRef] - 366. Kumar, A.; Sharma, S.K.; Sharma, G.; Naushad, M.; Stadler, F.J. CeO₂/g-C₃N₄/V₂O₅ Ternary Nano Hetero-Structures Decorated with CQDs for Enhanced Photo-Reduction Capabilities under Different Light Sources: Dual Z-Scheme Mechanism. *J. Alloys Compd.* 2020, 838, 155692. [CrossRef] - 367. Wang, H.; Yang, Y.; Qu, T.; Kang, Z.; Wang, D. Co₃O₄ and CDots Nanocrystals on g-C₃N₄ as a Synergetic Catalyst for Oxygen Reduction Reaction. *Green Process. Synth.* **2015**, *4*, 411–419. [CrossRef] - 368. Shekardasht, M.B.; Givianrad, M.H.; Gharbani, P.; Mirjafary, Z.; Mehrizad, A. Preparation of a Novel Z-Scheme g-C₃N₄/RGO/Bi₂Fe₄O₉ Nanophotocatalyst for Degradation of Congo Red Dye under Visible Light. *Diam. Relat. Mater.* **2020**, *109*, 108008. [CrossRef] - 369. Gong, L.; Li, X.; Zhang, Q.; Huang, B.; Yang, Q.; Yang, G.; Liu, Y. Ultrafast and Large-Scale Synthesis of Co₃O₄ Quantum Dots-C₃N₄/RGO as an Excellent ORR Electrocatalyst via a Controllable Deflagration Strategy. *Appl. Surf. Sci.* **2020**, 525, 146624. [CrossRef] - 370. Feng, Y.; Yan, T.; Wu, T.; Zhang, N.; Yang, Q.; Sun, M.; Yan, L.; Du, B.; Wei, Q. A Label-Free Photoelectrochemical Aptasensing Platform Base on Plasmon Au Coupling with MOF-Derived In₂O₃@ g-C₃N₄ Nanoarchitectures for Tetracycline Detection. *Sensors Actuators B Chem.* **2019**, 298, 126817. [CrossRef] - 371. Cui, Y.; Nengzi, L.; Gou, J.; Huang, Y.; Li, B.; Cheng, X. Fabrication of Dual Z-Scheme MIL-53 (Fe)/α-Bi₂O₃/g-C₃N₄ Ternary Composite with Enhanced Visible Light Photocatalytic Performance. *Sep. Purif. Technol.* **2020**, 232, 115959. [CrossRef] - 372. Jourshabani, M.; Shariatinia, Z.; Badiei, A. Synthesis and Characterization of Novel Sm₂O₃/S-Doped g-C₃N₄ Nanocomposites with Enhanced Photocatalytic Activities under Visible Light Irradiation. *Appl. Surf. Sci.* **2018**, 427, 375–387. [CrossRef] Nanomaterials **2022**, 12, 294 64 of 73 373. Lan, Y.; Li, Z.; Xie, W.; Li, D.; Yan, G.; Guo, S.; Pan, C.; Wu, J. In Situ Fabrication of I-Doped Bi₂O₂CO₃/g-C₃N₄ Heterojunctions for Enhanced Photodegradation Activity under Visible Light. *J. Hazard. Mater.* **2020**, *385*, 121622. [CrossRef] [PubMed] - 374. Xue, S.; Hou, X.; Xie, W.; Wei, X.; He, D. Dramatic Improvement of Photocatalytic Activity for N-Doped Bi₂O₃/g-C₃N₄ Composites. *Mater. Lett.* **2015**, *161*, *640*–*643*. [CrossRef] - 375. Zhou, P.; Meng, X.; Sun, T. Facile Fabrication of In₂O₃/S-Doped g-C₃N₄ Heterojunction Hybrids for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. *Mater. Lett.* **2020**, 261, 127159. [CrossRef] - 376. Jin, X.; Guan, Q.; Tian, T.; Li, H.; Han, Y.; Hao, F.; Cui, Y.; Li, W.; Zhu, Y.; Zhang, Y. In₂O₃/Boron Doped g-C₃N₄ Heterojunction Catalysts with Remarkably Enhanced Visible-Light Photocatalytic Efficiencies. *Appl. Surf. Sci.* **2020**, 504, 144241. [CrossRef] - 377. Liu, J.-L.; Jiang, J.; Zhang, J.-Q.; Chai, Y.-Q.; Xiao, Q.; Yuan, R. The Combination of Ternary Electrochemiluminescence System of g-C₃N₄ Nanosheet/TEA/Cu@ Cu₂O and G-Quadruplex-Driven Regeneration Strategy for Ultrasensitive Bioanalysis. *Biosens. Bioelectron.* **2020**, *152*, 112006. [CrossRef] - 378. Li, J.; Li, Y.; Zhang, W.; Naraginti, S.; Sivakumar, A.; Zhang, C. Fabrication of Novel Tetrahedral Ag₃PO₄/g-C₃N₄/BiVO₄ Ternary Composite for Efficient Detoxification of Sulfamethoxazole. *Process Saf. Environ. Prot.* **2020**, 143, 340–347. [CrossRef] - 379. Hu, B.; Liu, Y.; Wang, Z.-W.; Song, Y.; Wang, M.; Zhang, Z.; Liu, C.-S. Bimetallic-Organic Framework Derived Porous Co₃O₄/Fe₃O₄/C-Loaded g-C₃N₄ Nanocomposites as Non-Enzymic Electrocatalysis Oxidization toward Ascorbic Acid, Dopamine Acid, and Uric Acid. *Appl. Surf. Sci.* **2018**, *441*, 694–707. [CrossRef] - 380. Wang, Y.; Yu, D.; Wang, W.; Gao, P.; Zhong, S.; Zhang, L.; Zhao, Q.; Liu, B. Synthesizing Co₃O₄-BiVO₄/g-C₃N₄ Heterojunction Composites for Superior Photocatalytic Redox Activity. *Sep. Purif. Technol.* **2020**, 239, 116562. [CrossRef] - 381. Sudrajat, H.; Hartuti, S. Structural Properties and Catalytic Activity of a Novel Ternary CuO/GC₃N₄/Bi₂O₃ Photocatalyst. *J. Colloid Interface Sci.* **2018**, 524, 227–235. [CrossRef] - 382. Zhao, H.; Zhang, J.; Zheng, H. Facile Preparation of Dual Z-Scheme Bi₂O₃/g-C₃N₄/Ag₆Si₂O₇ Photocatalyst for Highly Efficient Visible-Light Photocatalytic Degradation of Organic Pollutants. *Appl. Surf. Sci.* **2020**, 527, 146901. [CrossRef] - 383. Vattikuti, S.V.P.; Police, A.K.R.; Shim, J.; Byon, C. In Situ Fabrication of the Bi₂O₃–V₂O₅ Hybrid Embedded with Graphitic Carbon Nitride Nanosheets: Oxygen Vacancies Mediated Enhanced Visible-Light–Driven Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolution. *Appl. Surf. Sci.* **2018**, *447*, 740–756. [CrossRef] - 384. Wu, S.; Guo, J.; Wang, Y. Bi₂O₂CO₃–Bi₂O₂(OH)NO₃/g-C₃N₄ Heterojunction as a Visible-Light-Driven Photocatalyst with Enhanced Photogenerated Charge Separation. *J. Alloys Compd.* **2020**, *818*, 152852. [CrossRef] - 385. Zhong, S.; Zhou, H.; Shen, M.; Yao, Y.; Gao, Q. Rationally Designed a g-C₃N₄/BiOI/Bi₂O₂CO₃ Composite with Promoted Photocatalytic Activity. *J. Alloys Compd.* **2021**, *853*, 157307. [CrossRef] - 386. Kumar, A.; Kumar, A.; Sharma, G.; Ala'a, H.; Naushad, M.; Ghfar, A.A.; Guo, C.; Stadler, F.J. Biochar-Templated g-C₃N₄/Bi₂O₂CO₃/CoFe₂O₄ Nano-Assembly for Visible and Solar Assisted Photo-Degradation of Paraquat, Nitrophenol Reduction and CO₂ Conversion. *Chem. Eng. J.* **2018**, 339, 393–410. [CrossRef] - 387. Min, Z.; Wang, X.; Li, Y.; Jiang,
J.; Li, J.; Qian, D.; Li, J. A Highly Efficient Visible-Light-Responding Cu₂O-TiO₂/g-C₃N₄ Photocatalyst for Instantaneous Discolorations of Organic Dyes. *Mater. Lett.* **2017**, *193*, 18–21. [CrossRef] - 388. Muñoz-Batista, M.J.; Nasalevich, M.A.; Savenije, T.J.; Kapteijn, F.; Gascon, J.; Kubacka, A.; Fernández-García, M. Enhancing Promoting Effects in g-C₃N₄-Mn⁺/CeO₂-TiO₂ Ternary Composites: Photo-Handling of Charge Carriers. *Appl. Catal. B Environ.* **2015**, *176*, 687–698. [CrossRef] - 389. da Silva Veras, T.; Mozer, T.S.; da Silva César, A. Hydrogen: Trends, Production and Characterization of the Main Process Worldwide. *Int. J. Hydrogen Energy* **2017**, 42, 2018–2033. [CrossRef] - 390. He, R.; Liang, H.; Li, C.; Bai, J. Enhanced Photocatalytic Hydrogen Production over Co₃O₄@ g-C₃N₄ Pn Junction Adhering on One-Dimensional Carbon Fiber. *Colloids Surfaces A Physicochem. Eng. Asp.* **2020**, *586*, 124200. [CrossRef] - 391. Anandan, S.; Wu, J.J.; Bahnemann, D.; Emeline, A.; Ashokkumar, M. Crumpled Cu₂O-g-C₃N₄ Nanosheets for Hydrogen Evolution Catalysis. Colloids Surfaces A Physicochem. *Eng. Asp.* **2017**, *527*, 34–41. [CrossRef] - 392. Shi, J.; Zheng, B.; Mao, L.; Cheng, C.; Hu, Y.; Wang, H.; Li, G.; Jing, D.; Liang, X. MoO₃/g-C₃N₄ Z-Scheme (S-Scheme) System Derived from MoS₂/Melamine Dual Precursors for Enhanced Photocatalytic H₂ Evolution Driven by Visible Light. *Int. J. Hydrogen Energy* **2021**, *46*, 2927–2935. [CrossRef] - 393. Chebanenko, M.I.; Lobinsky, A.A.; Nevedomskiy, V.N.; Popkov, V.I. NiO-Decorated Graphitic Carbon Nitride toward Electrocatalytic Hydrogen Production from Ethanol. *Dalt. Trans.* **2020**, *49*, 12088–12097. [CrossRef] [PubMed] - 394. Ma, X.; Zhang, J.; Wang, B.; Li, Q.; Chu, S. Hierarchical Cu₂O Foam/ g-C₃N₄ Photocathode for Photoelectrochemical Hydrogen Production. *Appl. Surf. Sci.* **2018**, 427, 907–916. [CrossRef] - 395. Paul, A.M.; Sajeev, A.; Nivetha, R.; Gothandapani, K.; Bhardwaj, P.; Govardhan, K.; Raghavan, V.; Jacob, G.; Sellapan, R.; Jeong, S.K. Cuprous Oxide (Cu₂O)/Graphitic Carbon Nitride (g-C₃N₄) Nanocomposites for Electrocatalytic Hydrogen Evolution Reaction. *Diam. Relat. Mater.* **2020**, *107*, 107899. [CrossRef] - 396. Zhang, M.; Qin, J.; Rajendran, S.; Zhang, X.; Liu, R. Heterostructured D-Ti₃C₂/TiO₂/g-C₃N₄ Nanocomposites with Enhanced Visible-light Photocatalytic Hydrogen Production Activity. *ChemSusChem* **2018**, *11*, 4226–4236. [CrossRef] [PubMed] - 397. Wen, P.; Sun, Y.; Li, H.; Liang, Z.; Wu, H.; Zhang, J.; Zeng, H.; Geyer, S.M.; Jiang, L. A Highly Active Three-Dimensional Z-Scheme ZnO/Au/g-C₃N₄ Photocathode for Efficient Photoelectrochemical Water Splitting. *Appl. Catal. B Environ.* **2020**, 263, 118180. [CrossRef] Nanomaterials **2022**, 12, 294 65 of 73 398. Wei, X.; Wang, X.; Pu, Y.; Liu, A.; Chen, C.; Zou, W.; Zheng, Y.; Huang, J.; Zhang, Y.; Yang, Y. Facile Ball-Milling Synthesis of CeO₂/g-C₃N₄ Z-Scheme Heterojunction for Synergistic Adsorption and Photodegradation of Methylene Blue: Characteristics, Kinetics, Models, and Mechanisms. *Chem. Eng. J.* **2020**, 470, 127719. [CrossRef] - 399. Zhang, S.; Yan, J.; Yang, S.; Xu, Y.; Cai, X.; Li, X.; Zhang, X.; Peng, F.; Fang, Y. Electrodeposition of Cu₂O/g-C₃N₄ Heterojunction Film on an FTO Substrate for Enhancing Visible Light Photoelectrochemical Water Splitting. *Chin. J. Catal.* **2017**, *38*, 365–371. [CrossRef] - 400. Ji, C.; Yin, S.-N.; Sun, S.; Yang, S. An in Situ Mediator-Free Route to Fabricate Cu₂O/g-C₃N₄ Type-II Heterojunctions for Enhanced Visible-Light Photocatalytic H₂ Generation. *Appl. Surf. Sci.* **2018**, 434, 1224–1231. [CrossRef] - 401. Liu, L.; Qi, Y.; Hu, J.; Liang, Y.; Cui, W. Efficient Visible-Light Photocatalytic Hydrogen Evolution and Enhanced Photostability of Core@ Shell Cu₂O@ g-C₃N₄ Octahedra. *Appl. Surf. Sci.* **2015**, *351*, 1146–1154. [CrossRef] - 402. Yan, H.; Yang, H. TiO₂–g-C₃N₄ Composite Materials for Photocatalytic H₂ Evolution under Visible Light Irradiation. *J. Alloys Compd.* **2011**, 509, L26–L29. [CrossRef] - 403. Marchal, C.; Cottineau, T.; Méndez-Medrano, M.G.; Colbeau-Justin, C.; Caps, V.; Keller, V. Au/TiO₂/GC₃N₄ Nanocomposites for Enhanced Photocatalytic H₂ Production from Water under Visible Light Irradiation with Very Low Quantities of Sacrificial Agents. *Adv. Energy Mater.* **2018**, *8*, 1702142. [CrossRef] - 404. Geng, R.; Yin, J.; Zhou, J.; Jiao, T.; Feng, Y.; Zhang, L.; Chen, Y.; Bai, Z.; Peng, Q. In Situ Construction of Ag/TiO₂/g-C₃N₄ Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution. *Nanomaterials* **2020**, 10, 1. [CrossRef] [PubMed] - 405. Pan, J.; You, M.; Chi, C.; Dong, Z.; Wang, B.; Zhu, M.; Zhao, W.; Song, C.; Zheng, Y.; Li, C. The Two Dimension Carbon Quantum Dots Modified Porous g-C₃N₄/TiO₂ Nano-Heterojunctions for Visible Light Hydrogen Production Enhancement. *Int. J. Hydrogen Energy* **2018**, 43, 6586–6593. [CrossRef] - 406. Mahala, C.; Sharma, M.D.; Basu, M. ZnO Nanosheets Decorated with Graphite-like Carbon Nitride Quantum Dots as Photoanodes in Photoelectrochemical Water Splitting. *ACS Appl. Nano Mater.* **2020**, *3*, 1999–2007. [CrossRef] - 407. Qin, H.; Zuo, Y.; Jin, J.; Wang, W.; Xu, Y.; Cui, L.; Dang, H. ZnO Nanorod Arrays Grown on g-C₃N₄ Micro-Sheets for Enhanced Visible Light Photocatalytic H₂ Evolution. *RSC Adv.* **2019**, *9*, 24483–24488. [CrossRef] - 408. Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J.R.; Wei, W.D. Surface-Plasmon-Driven Hot Electron Photochemistry. *Chem. Rev.* 2017, 118, 2927–2954. [CrossRef] [PubMed] - 409. Saha, D.; Gismondi, P.; Kolasinski, K.W.; Shumlas, S.L.; Rangan, S.; Eslami, B.; McConnell, A.; Bui, T.; Cunfer, K. Fabrication of Electrospun Nanofiber Composite of g-C₃N₄ and Au Nanoparticles as Plasmonic Photocatalyst. *Surfaces Interfaces* **2021**, 26, 101367. [CrossRef] - 410. Zhang, X.; Chen, Y.L.; Liu, R.-S.; Tsai, D.P. Plasmonic Photocatalysis. Reports Prog. Phys. 2013, 76, 46401. [CrossRef] - 411. Zhao, W.; Dong, Q.; Sun, C.; Xia, D.; Huang, H.; Yang, G.; Wang, G.; Leung, D.Y.C. A Novel Au/g-C₃N₄ Nanosheets/CeO₂ Hollow Nanospheres Plasmonic Heterojunction Photocatalysts for the Photocatalytic Reduction of Hexavalent Chromium and Oxidation of Oxytetracycline Hydrochloride. *Chem. Eng. J.* **2021**, 409, 128185. [CrossRef] - 412. Bashiri, R.; Mohamed, N.M.; Suhaimi, N.A.; Shahid, M.U.; Kait, C.F.; Sufian, S.; Khatani, M.; Mumtaz, A. Photoelectrochemical Water Splitting with Tailored TiO₂/SrTiO₃@ g-C₃N₄ Heterostructure Nanorod in Photoelectrochemical Cell. *Diam. Relat. Mater.* **2018**, *85*, 5–12. [CrossRef] - 413. Wang, S.; Zheng, F.; Weng, Y.; Yuan, G.; Fang, L.; You, L. Enhanced Photoelectrochemical Performance by Interface Engineering in Ternary g-C₃N₄/TiO₂/PbTiO₃ Films. *Adv. Mater. Interfaces* **2020**, 7, 2000185. [CrossRef] - 414. Qu, A.; Xu, X.; Xie, H.; Zhang, Y.; Li, Y.; Wang, J. Effects of Calcining Temperature on Photocatalysis of g-C₃N₄ /TiO₂ Composites for Hydrogen Evolution from Water. *Mater. Res. Bull.* **2016**, *80*, 167–176. [CrossRef] - 415. Jiang, Y.; Sun, Z.; Chen, Q.; Cao, C.; Zhao, Y.; Yang, W.; Zeng, L.; Huang, L. Fabrication of 0D/2D TiO₂ Nanodots/g-C₃N₄ S-Scheme Heterojunction Photocatalyst for Efficient Photocatalytic Overall Water Splitting. *Appl. Surf. Sci.* **2021**, *571*, 151287. [CrossRef] - 416. Liu, J.; Yan, X.-T.; Qin, X.-S.; Wu, S.-J.; Zhao, H.; Yu, W.-B.; Chen, L.-H.; Li, Y.; Su, B.-L. Light-Assisted Preparation of Heterostructured g-C₃N₄/ZnO Nanorods Arrays for Enhanced Photocatalytic Hydrogen Performance. *Catal. Today* **2019**, *355*, 932–936. [CrossRef] - 417. Liu, Y.; Liu, H.; Zhou, H.; Li, T.; Zhang, L. A Z-Scheme Mechanism of N-ZnO/g-C₃N₄ for Enhanced H₂ Evolution and Photocatalytic Degradation. *Appl. Surf. Sci.* **2019**, *466*, 133–140. [CrossRef] - 418. Gu, Y.; Bao, A.; Zhang, X.; Yan, J.; Du, Q.; Zhang, M.; Qi, X. Facile Fabrication of Sulfur-Doped Cu₂O and g-C₃N₄ with Z-Scheme Structure for Enhanced Photocatalytic Water Splitting Performance. *Mater. Chem. Phys.* **2021**, 266, 124542. [CrossRef] - 419. Alhaddad, M.; Navarro, R.M.; Hussein, M.A.; Mohamed, R.M. Bi₂O₃/g-C₃N₄ Nanocomposites as Proficient Photocatalysts for Hydrogen Generation from Aqueous Glycerol Solutions beneath Visible Light. *Ceram. Int.* **2020**, *46*, 24873–24881. [CrossRef] - 420. Ma, R.; Dong, L.; Li, B.; Su, T.; Luo, X.; Qin, Z.; Ji, H. g-C₃N₄/BiYO₃ Composite for Photocatalytic Hydrogen Evolution. *ChemistrySelect* **2018**, *3*, 5891–5899. [CrossRef] - 421. Xu, J.; Yu, H.; Guo, H. Synthesis and Behaviors of g-C₃N₄ Coupled with LaxCo₃-XO₄ Nanocomposite for Improved Photocatalytic Activeity and Stability under Visible Light. *Mater. Res. Bull.* **2018**, *105*, 342–348. [CrossRef] - 422. Li, Y.; Zhu, S.; Kong, X.; Liang, Y.; Li, Z.; Wu, S.; Chang, C.; Luo, S.; Cui, Z. In Situ Synthesis of a Novel Mn₃O₄/g-C₃N₄ Pn Heterostructure Photocatalyst for Water Splitting. *J. Colloid Interface Sci.* **2021**, *586*, 778–784. [CrossRef] [PubMed] Nanomaterials **2022**, 12, 294 66 of 73 423. Song, T.; Zhang, X.; Yang, P. Bifunctional Nitrogen-Doped Carbon Dots in g-C₃N₄/WO_x Heterojunction for Enhanced Photocatalytic Water-Splitting Performance. *Langmuir* **2021**, *37*, 4236–4247. [CrossRef] - 424. Fu, Y.; Zhu, C.; Wang, H.; Dou, Y.; Shi, W.; Shao, M.; Huang, H.; Liu, Y.; Kang, Z. High-Performance NiO/g-C₃N₄ Composites for Visible-Light-Driven Photocatalytic Overall Water Splitting. *Inorg. Chem. Front.* **2018**, *5*, 1646–1652. [CrossRef] - 425. Cao, S.-W.; Liu, X.-F.; Yuan, Y.-P.; Zhang, Z.-Y.; Liao, Y.-S.; Fang, J.; Loo, S.C.J.; Sum, T.C.; Xue, C. Solar-to-Fuels Conversion over In₂O₃/g-C₃N₄ Hybrid Photocatalysts. *Appl. Catal. B Environ.* **2014**, *147*, 940–946. [CrossRef] - 426. Guo, Y.; Chang, B.; Wen, T.; Zhang, S.; Zeng, M.; Hu, N.; Su, Y.; Yang, Z.; Yang, B. A Z-Scheme Photocatalyst for Enhanced Photocatalytic H₂ Evolution, Constructed by Growth of 2D Plasmonic MoO_{3-x}
Nanoplates onto 2D g-C₃N₄ Nanosheets. *J. Colloid Interface Sci.* **2020**, 567, 213–223. [CrossRef] - 427. Hou, H.L.; Gao, F.; Wang, L.; Shang, M.; Yang, Z.; Zheng, J.; Yang, W. Superior Ternary Hybrid Photocatalysts of TiO₂/WO₃/GC₃N₄ Thoroughly Mesoporous Nanofibers for Visible-Lightdriven Hydrogen Evolution. *J. Mater. Chem. A* **2016**, *4*, 6276–6281. [CrossRef] - 428. Hieu, V.Q.; Lam, T.C.; Khan, A.; Vo, T.-T.T.; Nguyen, T.-Q.; Doan, V.D.; Tran, V.A. TiO₂/Ti₃C₂/g-C₃N₄ Ternary Heterojunction for Photocatalytic Hydrogen Evolution. *Chemosphere* **2021**, *285*, 131429. [CrossRef] - 429. Nie, N.; Zhang, L.; Fu, J.; Cheng, B.; Yu, J. Self-Assembled Hierarchical Direct Z-Scheme g-C₃N₄/ZnO Microspheres with Enhanced Photocatalytic CO₂ Reduction Performance. *Appl. Surf. Sci.* **2018**, 441, 12–22. [CrossRef] - 430. Mulik, B.B.; Bankar, B.D.; Munde, A.V.; Chavan, P.P.; Biradar, A.V.; Sathe, B.R. Electrocatalytic and Catalytic CO₂ Hydrogenation on ZnO/g-C₃N₄ Hybrid Nanoelectrodes. *Appl. Surf. Sci.* **2021**, 538, 148120. [CrossRef] - 431. Wang, H.; Li, H.; Chen, Z.; Li, J.; Li, X.; Huo, P.; Wang, Q. TiO₂ Modified g-C₃N₄ with Enhanced Photocatalytic CO₂ Reduction Performance. *Solid State Sci.* **2020**, *100*, 106099. [CrossRef] - 432. Truc, N.T.T.; Bach, L.G.; Hanh, N.T.; Pham, T.-D.; Le Chi, N.T.P.; Tran, D.T.; Nguyen, M.V. The Superior Photocatalytic Activity of Nb Doped TiO₂/g-C₃N₄ Direct Z-Scheme System for Efficient Conversion of CO₂ into Valuable Fuels. *J. Colloid Interface Sci.* **2019**, 540, 1–8. [CrossRef] [PubMed] - 433. Guo, Q.; Fu, L.; Yan, T.; Tian, W.; Ma, D.; Li, J.; Jiang, Y.; Wang, X. Improved Photocatalytic Activity of Porous ZnO Nanosheets by Thermal Deposition Graphene-like g-C₃N₄ for CO₂ Reduction with H₂O Vapor. *Appl. Surf. Sci.* **2020**, *509*, 144773. [CrossRef] - 434. Shen, D.; Li, X.; Ma, C.; Zhou, Y.; Sun, L.; Yin, S.; Huo, P.; Wang, H. Synthesized Z-Scheme Photocatalyst ZnO/g-C₃N₄ for Enhanced Photocatalytic Reduction of CO₂. *New J. Chem.* **2020**, *44*, 16390–16399. [CrossRef] - 435. Liang, M.; Borjigin, T.; Zhang, Y.; Liu, B.; Liu, H.; Guo, H. Controlled Assemble of Hollow Heterostructured g-C₃N₄@ CeO₂ with Rich Oxygen Vacancies for Enhanced Photocatalytic CO₂ Reduction. *Appl. Catal. B Environ.* **2019**, 243, 566–575. [CrossRef] - 436. Tang, J.; Guo, R.; Zhou, W.; Huang, C.; Pan, W. Ball-Flower like NiO/g-C₃N₄ Heterojunction for Efficient Visible Light Photocatalytic CO₂ Reduction. *Appl. Catal. B Environ.* **2018**, 237, 802–810. [CrossRef] - 437. Sun, Z.; Fang, W.; Zhao, L.; Chen, H.; He, X.; Li, W.; Tian, P.; Huang, Z. g-C₃N₄ Foam/Cu₂O QDs with Excellent CO₂ Adsorption and Synergistic Catalytic Effect for Photocatalytic CO₂ Reduction. *Environ. Int.* **2019**, *130*, 104898. [CrossRef] - 438. Truc, N.T.T.; Pham, T.-D.; Nguyen, M.V.; Van Thuan, D.; Thao, P.; Trang, H.T.; Tran, D.T.; Minh, D.N.; Hanh, N.T.; Ngoc, H.M. Advanced NiMoO₄/g-C₃N₄ Z-Scheme Heterojunction Photocatalyst for Efficient Conversion of CO₂ to Valuable Products. *J. Alloys Compd.* **2020**, *842*, 155860. [CrossRef] - 439. Li, M.; Zhang, L.; Wu, M.; Du, Y.; Fan, X.; Wang, M.; Zhang, L.; Kong, Q.; Shi, J. Mesostructured CeO₂/g-C₃N₄ Nanocomposites: Remarkably Enhanced Photocatalytic Activity for CO₂ Reduction by Mutual Component Activations. *Nano Energy* **2016**, *19*, 145–155. [CrossRef] - 440. Li, X.; Jiang, H.; Ma, C.; Zhu, Z.; Song, X.; Wang, H.; Huo, P.; Li, X. Local Surface Plasma Resonance Effect Enhanced Z-Scheme ZnO/Au/g-C₃N₄ Film Photocatalyst for Reduction of CO₂ to CO. *Appl. Catal. B Environ.* **2021**, 283, 119638. [CrossRef] - 441. He, Y.; Wang, Y.; Zhang, L.; Teng, B.; Fan, M. High-Efficiency Conversion of CO₂ to Fuel over ZnO/g-C₃N₄ Photocatalyst. *Appl. Catal. B Environ.* **2015**, *168*, 1–8. [CrossRef] - 442. Reli, M.; Huo, P.; Šihor, M.; Ambrozova, N.; Troppová, I.; Matejova, L.; Lang, J.; Svoboda, L.; Kuśtrowski, P.; Ritz, M. Novel TiO₂/C₃N₄ Photocatalysts for Photocatalytic Reduction of CO₂ and for Photocatalytic Decomposition of N₂O. *J. Phys. Chem. A* **2016**, 120, 8564–8573. [CrossRef] - 443. Tang, Z.; Wang, C.; He, W.; Wei, Y.; Zhao, Z.; Liu, J. The Z-Scheme g-C₃N₄/3DOM-WO₃ Photocatalysts with Enhanced Activity for CO₂ Photoreduction into CO. *Chin. Chem. Lett.* 2021, in press. [CrossRef] - 444. Guo, H.; Wan, S.; Wang, Y.; Ma, W.; Zhong, Q.; Ding, J. Enhanced Photocatalytic CO₂ Reduction over Direct Z-Scheme NiTiO₃/g-C₃N₄ Nanocomposite Promoted by Efficient Interfacial Charge Transfer. *Chem. Eng. J.* **2021**, *412*, 128646. [CrossRef] - 445. Carmen, Z.; Daniela, S. Textile Organic Dyes-Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents-a Critical Overview; IntechOpen: Rijekta, Croatia, 2012. - 446. Clarke, E.A.; Anliker, R. Organic Dyes and Pigments. In Anthropogenic Compounds; Springer: Berlin/Heidelberg, Germany, 1980. - 447. Danish, M.S.S.; Bhattacharya, A.; Stepanova, D.; Mikhaylov, A.; Grilli, M.L.; Khosravy, M.; Senjyu, T. A Systematic Review of Metal Oxide Applications for Energy and Environmental Sustainability. *Metals.* 2020, 10, 1604. [CrossRef] - 448. Devi, K.R.S.; Mathew, S.; Rajan, R.; Georgekutty, J.; Kasinathan, K.; Pinheiro, D.; Sugunan, S. Biogenic Synthesis of g-C₃N₄/Bi₂O₃ Heterojunction with Enhanced Photocatalytic Activity and Statistical Optimization of Reaction Parameters. *Appl. Surf. Sci.* **2019**, 494, 465–476. [CrossRef] Nanomaterials **2022**, 12, 294 67 of 73 449. Lan, Y.; Li, Z.; Li, D.; Xie, W.; Yan, G.; Guo, S. Visible-Light Responsive Z-Scheme Bi@ β-Bi₂O₃/g-C₃N₄ Heterojunction for Efficient Photocatalytic Degradation of 2, 3-Dihydroxynaphthalene. *Chem. Eng. J.* **2020**, 392, 123686. [CrossRef] - 450. Khan, A.A.; Tahir, M.; Bafaqeer, A. Constructing a STable 2D Layered Ti₃C₂ MXene Cocatalyst-Assisted TiO₂/g-C₃N₄/Ti₃C₂ Heterojunction for Tailoring Photocatalytic Bireforming of Methane under Visible Light. *Energy Fuels* **2020**, *34*, 9810–9828. - 451. Ma, J.; Tan, X.; Yu, T.; Li, X. Fabrication of g-C₃N₄/TiO₂ Hierarchical Spheres with Reactive {001} TiO₂ Crystal Facets and Its Visible-Light Photocatalytic Activity. *Int. J. Hydrogen Energy* **2016**, *41*, 3877–3887. [CrossRef] - 452. Rasheed, H.U.; Lv, X.; Wei, W.; Yaseen, W.; Ullah, N.; Xie, J.; Zhu, W. Synthesis and Studies of ZnO Doped with g-C₃N₄ Nanocomposites for the Degradation of Tetracycline Hydrochloride under the Visible Light Irradiation. *J. Environ. Chem. Eng.* **2019**, *7*, 103152. [CrossRef] - 453. Zhu, W.; Sun, F.; Goei, R.; Zhou, Y. Construction of WO₃–g-C₃N₄ Composites as Efficient Photocatalysts for Pharmaceutical Degradation under Visible Light. *Catal. Sci. Technol.* **2017**, *7*, 2591–2600. [CrossRef] - 454. Lu, N.; Wang, P.; Su, Y.; Yu, H.; Liu, N.; Quan, X. Construction of Z-Scheme g-C₃N₄/RGO/WO₃ with in Situ Photoreduced Graphene Oxide as Electron Mediator for Efficient Photocatalytic Degradation of Ciprofloxacin. *Chemosphere* **2019**, *215*, 444–453. [CrossRef] - 455. Truong, H.B.; Huy, B.T.; Ray, S.K.; Lee, Y.-I.; Cho, J.; Hur, J. H₂O₂-Assisted Photocatalysis for Removal of Natural Organic Matter Using Nanosheet C₃N₄-WO₃ Composite under Visible Light and the Hybrid System with Ultrafiltration. *Chem. Eng. J.* **2020**, 399, 125733. [CrossRef] - 456. Shafawi, A.N.; Mahmud, R.A.; Ali, K.A.; Putri, L.K.; Rosli, N.I.M.; Mohamed, A.R. Bi₂O₃ Particles Decorated on Porous g-C₃N₄ Sheets: Enhanced Photocatalytic Activity through a Direct Z-Scheme Mechanism for Degradation of Reactive Black 5 under UV–Vis Light. J. Photochem. *Photobiol. A Chem.* **2020**, 389, 112289. [CrossRef] - 457. Ma, R.; Zhang, S.; Li, L.; Gu, P.; Wen, T.; Khan, A.; Li, S.; Li, B.; Wang, S.; Wang, X. Enhanced Visible-Light-Induced Photoactivity of Type-II CeO₂/g-C₃N₄ Nanosheet toward Organic Pollutants Degradation. ACS Sustain. *Chem. Eng.* **2019**, *7*, 9699–9708. - 458. Barathi, D.; Rajalakshmi, N.; Ranjith, R.; Sangeetha, R.; Meyvel, S. Controllable Synthesis of CeO₂/g-C₃N₄ Hybrid Catalysts and Its Structural, Optical and Visible Light Photocatalytic Activity. *Diam. Relat. Mater.* **2021**, *111*, 108161. [CrossRef] - 459. Cui, S.; Xie, B.; Li, R.; Pei, J.; Tian, Y.; Zhang, J.; Xing, X. g-C₃N₄/CeO₂ Binary Composite Prepared and Its Application in Automobile Exhaust Degradation. *Materials.* **2020**, *13*, 1274. [CrossRef] - 460. Tan, L.; Xu, J.; Zhang, X.; Hang, Z.; Jia, Y.; Wang, S. Synthesis of g-C₃N₄/CeO₂ Nanocomposites with Improved Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate. *Appl. Surf. Sci.* **2015**, *356*, 447–453. [CrossRef] - 461. Chen, G.; Bian, S.; Guo, C.-Y.; Wu, X. Insight into the Z-Scheme Heterostructure WO₃/g-C₃N₄ for Enhanced Photocatalytic Degradation of Methyl Orange. *Mater. Lett.* **2019**, 236, 596–599. [CrossRef] - 462. Guan, R.; Li, J.; Zhang, J.; Zhao, Z.; Wang, D.; Zhai, H.; Sun, D. Photocatalytic Performance and Mechanistic Research of ZnO/g-C₃N₄ on Degradation of Methyl Orange. *ACS omega* **2019**, *4*, 20742–20747. [CrossRef] - 463. Si, Y.; Zhang, X.; Liang, T.; Xu, X.; Qiu, L.; Li, P.; Duo, S. Facile In-Situ Synthesis of 2D/3D g-C₃N₄/Cu₂O Heterojunction for High-Performance Photocatalytic Dye Degradation. *Mater. Res. Express* **2020**, *7*, 15524. [CrossRef] - 464. Tian, Q.; Shen, X.; Wang, Z.; Zhu, B.; Osotsi, M.I.; Xie, X.; Jin, Y.; Chen, Z.; Zhang, L. Growth of Cu₂O Spherical Superstructures on g-C₃N₄ as Efficient Visible-Light-Driven p–n Heterojunction Photocatalysts for Degrading Various Organic Pollutants. *J. Nanosci. Nanotechnol.* **2018**, *18*, 7355–7363. [CrossRef] - 465. Rabé, K.; Liu, L.; Nahyoon, N.A.; Zhang, Y.; Idris, A.M. Enhanced Rhodamine B and Coking Wastewater Degradation and Simultaneous Electricity Generation via Anodic g-C₃N₄/Fe0 (1%)/TiO₂ and Cathodic WO₃ in Photocatalytic Fuel Cell System under Visible Light Irradiation. *Electrochim. Acta* **2019**, 298, 430–439. [CrossRef] - 466. Yu, T.; Liu, L.; Yang, F. Heterojunction between Anodic TiO₂/g-C₃N₄
and Cathodic WO₃/W Nano-Catalysts for Coupled Pollutant Removal in a Self-Biased System. *Chin. J. Catal.* **2017**, *38*, 270–277. [CrossRef] - 467. Tripathi, A.; Narayanan, S. Impact of TiO₂ and TiO₂/g-C₃N₄ Nanocomposite to Treat Industrial Wastewater. *Environ. Nanotechnology, Monit. Manag.* **2018**, *10*, 280–291. [CrossRef] - 468. Pawar, R.C.; Son, Y.; Kim, J.; Ahn, S.H.; Lee, C.S. Integration of ZnO with g-C₃N₄ Structures in Core–Shell Approach via Sintering Process for Rapid Detoxification of Water under Visible Irradiation. *Curr. Appl. Phys.* **2016**, *16*, 101–108. [CrossRef] - 469. Zhang, S.; Su, C.; Ren, H.; Li, M.; Zhu, L.; Ge, S.; Wang, M.; Zhang, Z.; Li, L.; Cao, X. In-Situ Fabrication of g-C₃N₄/ZnO Nanocomposites for Photocatalytic Degradation of Methylene Blue: Synthesis Procedure Does Matter. *Nanomaterials* **2019**, *9*, 215. [CrossRef] - 470. Li, X.; Li, M.; Yang, J.; Li, X.; Hu, T.; Wang, J.; Sui, Y.; Wu, X.; Kong, L. Synergistic Effect of Efficient Adsorption g-C₃N₄/ZnO Composite for Photocatalytic Property. *J. Phys. Chem. Solids* **2014**, *75*, 441–446. [CrossRef] - 471. Kumaresan, N.; Sinthiya, M.M.A.; Sarathbavan, M.; Ramamurthi, K.; Sethuraman, K.; Babu, R.R. Synergetic Effect of g-C₃N₄/ZnO Binary Nanocomposites Heterojunction on Improving Charge Carrier Separation through 2D/1D Nanostructures for Effective Photocatalytic Activity under the Sunlight Irradiation. *Sep. Purif. Technol.* **2020**, 244, 116356. [CrossRef] - 472. Liu, L.; Luo, X.; Li, Y.; Xu, F.; Gao, Z.; Zhang, X.; Song, Y.; Xu, H.; Li, H. Facile Synthesis of Few-Layer g-C₃N₄/ZnO Composite Photocatalyst for Enhancing Visible Light Photocatalytic Performance of Pollutants Removal. *Colloids Surfaces A Physicochem. Eng. Asp.* **2018**, *537*, 516–523. [CrossRef] - 473. Chen, Q.; Hou, H.; Zhang, D.; Hu, S.; Min, T.; Liu, B.; Yang, C.; Pu, W.; Hu, J.; Yang, J. Enhanced Visible-Light Driven Photocatalytic Activity of Hybrid ZnO/g-C₃N₄ by High Performance Ball Milling. *J. Photochem. Photobiol. A Chem.* **2018**, *350*, 1–9. [CrossRef] Nanomaterials **2022**, 12, 294 68 of 73 474. Tang, Q.; Meng, X.; Wang, Z.; Zhou, J.; Tang, H. One-Step Electrospinning Synthesis of TiO₂/g-C₃N₄ Nanofibers with Enhanced Photocatalytic Properties. *Appl. Surf. Sci.* **2018**, 430, 253–262. [CrossRef] - 475. Liu, H.; Zhang, Z.-G.; He, H.-W.; Wang, X.-X.; Zhang, J.; Zhang, Q.-Q.; Tong, Y.-F.; Liu, H.-L.; Ramakrishna, S.; Yan, S.-Y. One-Step Synthesis Heterostructured g-C₃N₄/TiO₂ Composite for Rapid Degradation of Pollutants in Utilizing Visible Light. *Nanomaterials* **2018**, *8*, 842. [CrossRef] [PubMed] - 476. Li, X.; Xiong, J.; Xu, Y.; Feng, Z.; Huang, J. Defect-Assisted Surface Modification Enhances the Visible Light Photocatalytic Performance of g-C₃N₄@ C-TiO₂ Direct Z-Scheme Heterojunctions. *Chin. J. Catal.* **2019**, 40, 424–433. [CrossRef] - 477. Xia, Y.; Xu, L.; Peng, J.; Han, J.; Guo, S.; Zhang, L.; Han, Z.; Komarneni, S. TiO₂@ g-C₃N₄ Core/Shell Spheres with Uniform Mesoporous Structures for High Performance Visible-Light Photocatalytic Application. *Ceram. Int.* **2019**, *45*, 18844–18851. [CrossRef] - 478. Wang, X.; Yang, W.; Li, F.; Xue, Y.; Liu, R.; Hao, Y. In Situ Microwave-Assisted Synthesis of Porous N-TiO₂/g-C₃N₄ Heterojunctions with Enhanced Visible-Light Photocatalytic Properties. *Ind. Eng. Chem. Res.* **2013**, *52*, 17140–17150. [CrossRef] - 479. Song, G.; Chu, Z.; Jin, W.; Sun, H. Enhanced Performance of g-C₃N₄/TiO₂ Photocatalysts for Degradation of Organic Pollutants under Visible Light. *Chin. J. Chem. Eng.* **2015**, 23, 1326–1334. [CrossRef] - 480. Ma, L.; Wang, G.; Jiang, C.; Bao, H.; Xu, Q. Synthesis of Core-Shell TiO₂@ g-C₃N₄ Hollow Microspheres for Efficient Photocatalytic Degradation of Rhodamine B under Visible Light. *Appl. Surf. Sci.* **2018**, 430, 263–272. [CrossRef] - 481. Li, K.; Gao, S.; Wang, Q.; Xu, H.; Wang, Z.; Huang, B.; Dai, Y.; Lu, J. In-Situ-Reduced Synthesis of Ti³⁺ Self-Doped TiO₂/g-C₃N₄ Heterojunctions with High Photocatalytic Performance under LED Light Irradiation. *ACS Appl. Mater. Interfaces* **2015**, 7, 9023–9030. [CrossRef] [PubMed] - 482. Yan, X.; Gao, Q.; Qin, J.; Hui, X.; Ye, Z.; Li, J.; Ma, Z. A Facile Method for Fabricating TiO₂/g-C₃N₄ Hollow Nanotube Heterojunction and Its Visible Light Photocatalytic Performance. *Mater. Lett.* **2018**, 217, 1–4. [CrossRef] - 483. Christoforidis, K.C. g-C₃N₄/Ag₃PO₄ Based Binary and Ternary Heterojunction for Improved Photocatalytic Removal of Organic Pollutants. *Int. J. Environ. Anal. Chem.* published on line only. **2021**. [CrossRef] - 484. Dutta, D.P.; Dagar, D. Efficient Selective Sorption of Cationic Organic Pollutant from Water and Its Photocatalytic Degradation by AIVO₄/g-C₃N₄ Nanocomposite. *J. Nanosci. Nanotechnol.* **2020**, 20, 2179–2194. [CrossRef] - 485. Hong, Y.; Jiang, Y.; Li, C.; Fan, W.; Yan, X.; Yan, M.; Shi, W. In-Situ Synthesis of Direct Solid-State Z-Scheme V₂O₅/g-C₃N₄ Heterojunctions with Enhanced Visible Light Efficiency in Photocatalytic Degradation of Pollutants. *Appl. Catal. B Environ.* **2016**, 180, 663–673. [CrossRef] - 486. Meng, J.; Wang, X.; Liu, Y.; Ren, M.; Zhang, X.; Ding, X.; Guo, Y.; Yang, Y. Acid-Induced Molecule Self-Assembly Synthesis of Z-Scheme WO₃/g-C₃N₄ Heterojunctions for Robust Photocatalysis against Phenolic Pollutants. *Chem. Eng. J.* **2021**, 403, 126354. [CrossRef] - 487. Liang, J.; Li, Y.; Zhang, J.; Li, C.; Yang, X.; Chen, X.; Wang, F.; Chen, C. Crystalline Phase Engineering in WO₃/g-C₃N₄ Composites for Improved Photocatalytic Performance under Visible Light. *Mater. Res. Express* **2020**, *7*, 65503. [CrossRef] - 488. He, R.; Zhou, J.; Fu, H.; Zhang, S.; Jiang, C. Room-Temperature in Situ Fabrication of Bi₂O₃/g-C₃N₄ Direct Z-Scheme Photocatalyst with Enhanced Photocatalytic Activity. *Appl. Surf. Sci.* **2018**, *430*, 273–282. [CrossRef] - 489. Chen, D.; Wu, S.; Fang, J.; Lu, S.; Zhou, G.; Feng, W.; Yang, F.; Chen, Y.; Fang, Z. A Nanosheet-like α-Bi₂O₃/g-C₃N₄ Heterostructure Modified by Plasmonic Metallic Bi and Oxygen Vacancies with High Photodegradation Activity of Organic Pollutants. *Sep. Purif. Technol.* **2018**, 193, 232–241. [CrossRef] - 490. Fan, G.; Ma, Z.; Li, X.; Deng, L. Coupling of Bi₂O₃ Nanoparticles with g-C₃N₄ for Enhanced Photocatalytic Degradation of Methylene Blue. *Ceram. Int.* **2021**, *47*, 5758–5766. [CrossRef] - 491. Ghosh, U.; Pal, A. Fabrication of a Novel Bi₂O₃ Nanoparticle Impregnated Nitrogen Vacant 2D g-C₃N₄ Nanosheet Z Scheme Photocatalyst for Improved Degradation of Methylene Blue Dye under LED Light Illumination. *Appl. Surf. Sci.* **2020**, 507, 144965. [CrossRef] - 492. She, X.; Xu, H.; Wang, H.; Xia, J.; Song, Y.; Yan, J.; Xu, Y.; Zhang, Q.; Du, D.; Li, H. Controllable Synthesis of CeO ₂/g-C₃N₄ Composites and Their Applications in the Environment. *Dalt. Trans.* **2015**, 44, 7021–7031. [CrossRef] - 493. Ghalkhani, M.; Charkhan, H.; Sabbaghan, M. Synthesis and Application of a Powerful Heterogeneous Photo-Fenton Catalyst Based on RGO/g-C₃N₄/Fe₃O₄/TiO₂ Nano-Composite for the Removal of Sewage Contaminants. *J. Electrochem. Soc.* **2020**, *167*, 67515. [CrossRef] - 494. Vattikuti, S.V.P.; Reddy, P.A.K.; Shim, J.; Byon, C. Visible-Light-Driven Photocatalytic Activity of SnO₂–ZnO Quantum Dots Anchored on g-C₃N₄ Nanosheets for Photocatalytic Pollutant Degradation and H₂ Production. *ACS omega* **2018**, *3*, 7587–7602. [CrossRef] [PubMed] - 495. Danish, M.; Muneer, M. Novel ZnSQDs-SnO₂/g-C₃N₄ Nanocomposite with Enhanced Photocatalytic Performance for the Degradation of Different Organic Pollutants in Aqueous Suspension under Visible Light. *J. Phys. Chem. Solids* **2021**, 149, 109785. [CrossRef] - 496. Zhang, Z.; Wu, J.; Liu, D. Co₃O₄/g-C₃N₄ Hybrids for Gas-Phase Hg0 Removal at Low Temperature. *Processes* **2019**, *7*, 279. [CrossRef] - 497. Zhao, X.; Lu, Z.; Ji, R.; Zhang, M.; Yi, C.; Yan, Y. Biomass Carbon Modified Z-Scheme g-C₃N₄/Co₃O₄ Heterojunction with Enhanced Visible-Light Photocatalytic Activity. *Catal. Commun.* **2018**, *112*, 49–52. [CrossRef] Nanomaterials **2022**, 12, 294 69 of 73 498. Yuan, X.; Duan, S.; Wu, G.; Sun, L.; Cao, G.; Li, D.; Xu, H.; Li, Q.; Xia, D. Enhanced Catalytic Ozonation Performance of Highly Stabilized Mesoporous ZnO Doped g-C₃N₄ Composite for Efficient Water Decontamination. *Appl. Catal. A Gen.* **2018**, *551*, 129–138. [CrossRef] - 499. Zuo, S.; Chen, Y.; Liu, W.; Yao, C.; Li, X.; Li, Z.; Ni, C.; Liu, X. A Facile and Novel Construction of Attapulgite/Cu₂O/Cu/g-C₃N₄ with Enhanced Photocatalytic Activity for Antibiotic Degradation. *Ceram. Int.* **2017**, *43*, 3324–3329. [CrossRef] - 500. Raha, S.; Ahmaruzzaman, M. Enhanced Performance of a Novel Superparamagnetic g-C₃N₄/NiO/ZnO/Fe₃O₄ Nanohybrid Photocatalyst for Removal of Esomeprazole: Effects of Reaction Parameters, Co-Existing Substances and Water Matrices. *Chem. Eng. J.* **2020**, *395*, 124969. [CrossRef] - 501. Huo, R.; Yang, X.-L.; Yang, J.-Y.; Yang, S.-Y.; Xu, Y.-H. Self-Assembly Synthesis of BiVO₄/Polydopamine/g-C₃N₄ with Enhanced Visible Light Photocatalytic Performance. Mater. *Res. Bull.* **2018**, *98*, 225–230. [CrossRef] - 502. Ding, J.; Lu, S.; Shen, L.; Yan, R.; Zhang, Y.; Zhang, H. Enhanced Photocatalytic Reduction for the Dechlorination of 2-Chlorodibenzo-p-Dioxin by High-Performance g-C₃N₄/NiO Heterojunction Composites under Ultraviolet-Visible Light Illumination. *J. Hazard. Mater.* **2020**, *384*, 121255. [CrossRef] - 503. Zhao, W.; Yang, X.; Liu, C.; Qian, X.; Wen, Y.; Yang, Q.; Sun, T.; Chang, W.; Liu, X.; Chen, Z. Facile Construction of All-Solid-State Z-Scheme g-C₃N₄/TiO₂ Thin Film for the Efficient Visible-Light Degradation of Organic Pollutant. *Nanomaterials* **2020**, *10*, 600. [CrossRef] - 504. Huang, J.; Li, D.; Li, R.; Chen, P.; Zhang, Q.; Liu, H.; Lv, W.; Liu, G.; Feng, Y. One-Step Synthesis of Phosphorus/Oxygen Co-Doped g-C₃N₄/Anatase TiO₂ Z-Scheme Photocatalyst for Significantly Enhanced Visible-Light Photocatalysis
Degradation of Enrofloxacin. *J. Hazard. Mater.* **2020**, *386*, 121634. [CrossRef] - 505. Hao, J.; Zhang, S.; Ren, F.; Wang, Z.; Lei, J.; Wang, X.; Cheng, T.; Li, L. Synthesis of TiO₂@ g-C₃N₄ Core-Shell Nanorod Arrays with Z-Scheme Enhanced Photocatalytic Activity under Visible Light. *J. Colloid Interface Sci.* **2017**, 508, 419–425. [CrossRef] - 506. Karpuraranjith, M.; Chen, Y.; Rajaboopathi, S.; Ramadoss, M.; Srinivas, K.; Yang, D.; Wang, B. Three-Dimensional Porous MoS2 Nanobox Embedded g-C₃N₄@ TiO₂ Architecture for Highly Efficient Photocatalytic Degradation of Organic Pollutant. *J. Colloid Interface Sci.* **2022**, 605, 613–623. [CrossRef] [PubMed] - 507. Zhou, Q.; Zhao, D.; Sun, Y.; Sheng, X.; Zhao, J.; Guo, J.; Zhou, B. G–C₃N₄–and Polyaniline-Co-Modified TiO₂ Nanotube Arrays for Significantly Enhanced Photocatalytic Degradation of Tetrabromobisphenol A under Visible Light. *Chemosphere* **2020**, 252, 126468. [CrossRef] [PubMed] - 508. Wang, Y.; Rao, L.; Wang, P.; Shi, Z.; Zhang, L. Photocatalytic Activity of N-TiO₂/O-Doped N Vacancy g-C₃N₄ and the Intermediates Toxicity Evaluation under Tetracycline Hydrochloride and Cr (VI) Coexistence Environment. *Appl. Catal. B Environ.* **2020**, 262, 118308. [CrossRef] - 509. Wang, W.; Fang, J.; Shao, S.; Lai, M.; Lu, C. Compact and Uniform TiO₂@ g-C₃N₄ Core-Shell Quantum Heterojunction for Photocatalytic Degradation of Tetracycline Antibiotics. *Appl. Catal. B Environ.* **2017**, 217, 57–64. [CrossRef] - 510. Du, X.; Bai, X.; Xu, L.; Yang, L.; Jin, P. Visible-Light Activation of Persulfate by TiO₂/g-C₃N₄ Photocatalyst toward Efficient Degradation of Micropollutants. *Chem. Eng. J.* **2020**, *384*, 123245. [CrossRef] - 511. Yang, Z.; Yan, J.; Lian, J.; Xu, H.; She, X.; Li, H. g-C₃N₄/TiO₂ Nanocomposites for Degradation of Ciprofloxacin under Visible Light Irradiation. *ChemistrySelect* **2016**, *1*, 5679–5685. [CrossRef] - 512. Ngullie, R.C.; Alaswad, S.O.; Bhuvaneswari, K.; Shanmugam, P.; Pazhanivel, T.; Arunachalam, P. Synthesis and Characterization of Efficient ZnO/g-C₃N₄ Nanocomposites Photocatalyst for Photocatalytic Degradation of Methylene Blue. *Coatings* **2020**, *10*, 500. [CrossRef] - 513. Li, N.; Tian, Y.; Zhao, J.; Zhang, J.; Zuo, W.; Kong, L.; Cui, H. Z-Scheme 2D/3D g-C₃N₄@ ZnO with Enhanced Photocatalytic Activity for Cephalexin Oxidation under Solar Light. *Chem. Eng. J.* **2018**, *352*, 412–422. [CrossRef] - 514. Prabhu, S.; Pudukudy, M.; Harish, S.; Navaneethan, M.; Sohila, S.; Murugesan, K.; Ramesh, R. Facile Construction of Djembe-like ZnO and Its Composite with g-C₃N₄ as a Visible-Light-Driven Heterojunction Photocatalyst for the Degradation of Organic Dyes. Mater. Sci. Semicond. *Process.* **2020**, *106*, 104754. [CrossRef] - 515. Pan, T.; Chen, D.; Xu, W.; Fang, J.; Wu, S.; Liu, Z.; Wu, K.; Fang, Z. Anionic Polyacrylamide-Assisted Construction of Thin 2D-2D WO₃/g-C₃N₄ Step-Scheme Heterojunction for Enhanced Tetracycline Degradation under Visible Light Irradiation. *J. Hazard. Mater.* **2020**, 393, 122366. [CrossRef] [PubMed] - 516. Priya, A.; Senthil, R.A.; Selvi, A.; Arunachalam, P.; Kumar, C.K.S.; Madhavan, J.; Boddula, R.; Pothu, R.; Al-Mayouf, A.M. A Study of Photocatalytic and Photoelectrochemical Activity of As-Synthesized WO₃/g-C₃N₄ Composite Photocatalysts for AO7 Degradation. *Mater. Sci. Energy Technol.* **2020**, *3*, 43–50. [CrossRef] - 517. Navarro-Aguilar, A.I.; Obregón, S.; Sanchez-Martinez, D.; Hernández-Uresti, D.B. An Efficient and Stable WO₃/g-C₃N₄ Photocatalyst for Ciprofloxacin and Orange G Degradation. *J. Photochem. Photobiol. A Chem.* **2019**, 384, 112010. [CrossRef] - 518. Manikandan, V.S.; Harish, S.; Archana, J.; Navaneethan, M. Fabrication of Novel Hybrid Z-Scheme WO₃@g-C₃N₄@ MWCNT Nanostructure for Photocatalytic Degradation of Tetracycline and the Evaluation of Antimicrobial Activity. *Chemosphere* **2021**, 287, 132050. [CrossRef] [PubMed] - 519. Zhou, S.; Wang, Y.; Zhou, K.; Ba, D.; Ao, Y.; Wang, P. In-Situ Construction of Z-Scheme g-C₃N₄/WO₃ Composite with Enhanced Visible-Light Responsive Performance for Nitenpyram Degradation. *Chin. Chem. Lett.* **2021**, 32, 2179–2182. [CrossRef] - 520. Zhang, L.; Wang, G.; Xiong, Z.; Tang, H.; Jiang, C. Fabrication of Flower-like Direct Z-Scheme β-Bi₂O₃/g-C₃N₄ Photocatalyst with Enhanced Visible Light Photoactivity for Rhodamine B Degradation. *Appl. Surf. Sci.* **2018**, 436, 162–171. [CrossRef] Nanomaterials **2022**, 12, 294 70 of 73 521. Hong, Y.; Li, C.; Yin, B.; Li, D.; Zhang, Z.; Mao, B.; Fan, W.; Gu, W.; Shi, W. Promoting Visible-Light-Induced Photocatalytic Degradation of Tetracycline by an Efficient and Stable Beta-Bi₂O₃@ g-C₃N₄ Core/Shell Nanocomposite. *Chem. Eng. J.* **2018**, *338*, 137–146. [CrossRef] - 522. Liu, W.; Zhou, J.; Hu, Z. Nano-Sized g-C₃N₄ Thin Layer@ CeO₂ Sphere Core-Shell Photocatalyst Combined with H₂O₂ to Degrade Doxycycline in Water under Visible Light Irradiation. Sep. Purif. *Technol.* **2019**, 227, 115665. [CrossRef] - 523. Liu, W.; Zhou, J.; Yao, J. Shuttle-like CeO₂/g-C₃N₄ Composite Combined with Persulfate for the Enhanced Photocatalytic Degradation of Norfloxacin under Visible Light. *Ecotoxicol. Environ. Saf.* **2020**, *190*, 110062. [CrossRef] [PubMed] - 524. Huang, Z.; Li, L.; Li, Z.; Li, H.; Wu, J. Synthesis of Novel Kaolin-Supported g-C₃N₄/CeO₂ Composites with Enhanced Photocatalytic Removal of Ciprofloxacin. *Materials.* **2020**, *13*, 3811. [CrossRef] [PubMed] - 525. Wang, S.; Long, J.; Jiang, T.; Shao, L.; Li, D.; Xie, X.; Xu, F. Magnetic Fe₃O₄/CeO₂/g-C₃N₄ Composites with a Visible-Light Response as a High Efficiency Fenton Photocatalyst to Synergistically Degrade Tetracycline. *Sep. Purif. Technol.* **2021**, 278, 119609. [CrossRef] - 526. Han, C.; Ge, L.; Chen, C.; Li, Y.; Xiao, X.; Zhang, Y.; Guo, L. Novel Visible Light Induced Co₃O₄-g-C₃N₄ Heterojunction Photocatalysts for Efficient Degradation of Methyl Orange. *Appl. Catal. B Environ.* **2014**, *147*, 546–553. [CrossRef] - 527. Chen, H.-Y.; Qiu, L.-G.; Xiao, J.-D.; Ye, S.; Jiang, X.; Yuan, Y.-P. Inorganic–Organic Hybrid NiO–g-C₃N₄ Photocatalyst for Efficient Methylene Blue Degradation Using Visible Light. *RSC Adv.* **2014**, *4*, 22491–22496. [CrossRef] - 528. Balasubramanian, P.; Annalakshmi, M.; Chen, S.-M.; Chen, T.-W. Sonochemical Synthesis of Molybdenum Oxide (MoO₃) Microspheres Anchored Graphitic Carbon Nitride (g-C₃N₄) Ultrathin Sheets for Enhanced Electrochemical Sensing of Furazolidone. *Ultrason. Sonochem.* **2019**, *50*, 96–104. [CrossRef] [PubMed] - 529. Adhikari, S.; Kim, D.-H. Heterojunction C₃N₄/MoO₃ Microcomposite for Highly Efficient Photocatalytic Oxidation of Rhodamine B. *Appl. Surf. Sci.* **2020**, *511*, 145595. [CrossRef] - 530. Xue, S.; Wu, C.; Pu, S.; Hou, Y.; Tong, T.; Yang, G.; Qin, Z.; Wang, Z.; Bao, J. Direct Z-Scheme Charge Transfer in Heterostructured MoO₃/g-C₃N₄ Photocatalysts and the Generation of Active Radicals in Photocatalytic Dye Degradations. *Environ. Pollut.* **2019**, 250, 338–345. [CrossRef] - 531. Liu, L.; Huang, J.; Yu, H.; Wan, J.; Liu, L.; Yi, K.; Zhang, W.; Zhang, C. Construction of MoO₃ Nanopaticles/g-C₃N₄ Nanosheets 0D/2D Heterojuntion Photocatalysts for Enhanced Photocatalytic Degradation of Antibiotic Pollutant. *Chemosphere* **2021**, 282, 131049. [CrossRef] [PubMed] - 532. Adorna Jr, J.; Annadurai, T.; Bui, T.A.N.; Tran, H.L.; Lin, L.-Y.; Doong, R.-A. Indirect Z-Scheme Nitrogen-Doped Carbon Dot Decorated Bi₂MoO₆/g-C₃N₄ Photocatalyst for Enhanced Visible-Light-Driven Degradation of Ciprofloxacin. *Chem. Eng. J.* **2021**, 422, 130103. - 533. Van Pham, V.; Mai, D.-Q.; Bui, D.-P.; Van Man, T.; Zhu, B.; Zhang, L.; Sangkaworn, J.; Tantirungrotechai, J.; Reutrakul, V.; Cao, T.M. Emerging 2D/0D g-C₃N₄/SnO₂ S-Scheme Photocatalyst: New Generation Architectural Structure of Heterojunctions toward Visible-Light-Driven NO Degradation. *Environ. Pollut.* **2021**, 286, 117510. [CrossRef] - 534. Shi, Y.; Yang, Z.; Liu, Y.; Yu, J.; Wang, F.; Tong, J.; Su, B.; Wang, Q. Fabricating a g-C₃N₄/CuO_x Heterostructure with Tunable Valence Transition for Enhanced Photocatalytic Activity. *RSC Adv.* **2016**, *6*, 39774–39783. [CrossRef] - 535. Yuan, X.; Zhou, C.; Jing, Q.; Tang, Q.; Mu, Y.; Du, A. Facile Synthesis of g-C₃N₄ Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium (VI) under Visible Light. *Nanomaterials* **2016**, *6*, 173. [CrossRef] - 536. Sundaram, I.M.; Kalimuthu, S.; Ponniah, G. Highly Active ZnO Modified g-C₃N₄ Nanocomposite for Dye Degradation under UV and Visible Light with Enhanced Stability and Antimicrobial Activity. *Compos. Commun.* **2017**, *5*, 64–71. [CrossRef] - 537. Vattikuti, S.V.P.; Byon, C. Hydrothermally Synthesized Ternary Heterostructured MoS₂/Al₂O₃/g-C₃N₄ Photocatalyst. *Mater. Res. Bull.* **2017**, *96*, 233–245. [CrossRef] - 538. Wang, J.; Xia, Y.; Zhao, H.; Wang, G.; Xiang, L.; Xu, J.; Komarneni, S. Oxygen Defects-Mediated Z-Scheme Charge Separation in g-C₃N₄/ZnO Photocatalysts for Enhanced Visible-Light Degradation of 4-Chlorophenol and Hydrogen Evolution. *Appl. Catal. B Environ.* **2017**, 206, 406–416. [CrossRef] - 539. Zhou, Y.; Zeng, F.; Sun, C.; Wu, J.; Xie, Y.; Zhang, F.; Rao, S.; Wang, F.; Zhang, J.; Zhao, J. Gd₂O₃ Nanoparticles Modified g-C₃N₄ with Enhanced Photocatalysis Activity for the Degradation of Organic Pollutants1. *J. Rare Earths* **2021**, 39, 1353–1361. [CrossRef] - 540. Chen, D.; Xie, Z.; Zeng, Y.; Lv, W.; Zhang, Q.; Wang, F.; Liu, G.; Liu, H. Accelerated Photocatalytic Degradation of Quinolone Antibiotics over Z-Scheme MoO3/g-C₃N₄ Heterostructure by Peroxydisulfate under Visible Light Irradiation: Mechanism; Kinetic; and Products. *J. Taiwan Inst. Chem. Eng.* **2019**, *104*, 250–259. [CrossRef] - 541. Devi KR, S.; Mathew, S.; Rajan, R.; Georgekutty, J.; Pinheiro, D.; Ananthapadmanabhan, U.; Sundararajan, M. Synthesis and Characterization of CeO₂/Bi₂O₃/GC₃N₄ Ternary Z-scheme Nanocomposite. *Int. J. Appl.
Ceram. Technol.* **2020**, *17*, 2346–2356. [CrossRef] - 542. Bajiri, M.A.; Hezam, A.; Namratha, K.; Viswanath, R.; Drmosh, Q.A.; Naik, H.S.B.; Byrappa, K. CuO/ZnO/g-C₃N₄ Heterostructures as Efficient Visible Light-Driven Photocatalysts. *J. Environ. Chem. Eng.* **2019**, *7*, 103412. [CrossRef] - 543. Raha, S.; Ahmaruzzaman, M. Facile Fabrication of g-C₃N₄ Supported Fe₃O₄ Nanoparticles/ZnO Nanorods: A Superlative Visible Light Responsive Architecture for Express Degradation of Pantoprazole. *Chem. Eng. J.* **2020**, *387*, 123766. [CrossRef] - 544. Raza, A.; Shen, H.; Haidry, A.A.; Cui, S. Hydrothermal Synthesis of Fe₃O₄/TiO₂/g-C₃N₄: Advanced Photocatalytic Application. *Appl. Surf. Sci.* **2019**, *488*, 887–895. [CrossRef] Nanomaterials **2022**, 12, 294 71 of 73 545. Jiang, D.; Yu, H.; Yu, H. Modified g-C₃N₄/TiO₂ Nanosheets/ZnO Ternary Facet Coupled Heterojunction for Photocatalytic Degradation of p-Toluenesulfonic Acid (p-TSA) under Visible Light. *Phys. E Low-Dimens. Syst. Nanostruct.* **2017**, *85*, 1–6. - 546. Tahir, M.B.; Sagir, M.; Shahzad, K. Removal of Acetylsalicylate and Methyl-Theobromine from Aqueous Environment Using Nano-Photocatalyst WO₃-TiO₂@g-C₃N₄ Composite. *J. Hazard. Mater.* **2019**, *363*, 205–213. [CrossRef] [PubMed] - 547. Yu, B.; Meng, F.; Khan, M.W.; Qin, R.; Liu, X. Synthesis of Hollow TiO₂@ g-C₃N₄/Co₃O₄ Core-Shell Microspheres for Effective Photooxidation Degradation of Tetracycline and MO. *Ceram. Int.* **2020**, *46*, 13133–13143. [CrossRef] - 548. Zhang, Y.; Lu, J.; Hoffmann, M.R.; Wang, Q.; Cong, Y.; Wang, Q.; Jin, H. Synthesis of g-C₃N₄/Bi₂O₃/TiO₂ Composite Nanotubes: Enhanced Activity under Visible Light Irradiation and Improved Photoelectrochemical Activity. *RSC Adv.* **2015**, *5*, 48983–48991. [CrossRef] - 549. Wang, Y.; Zhang, R.; Zhang, Z.; Cao, J.; Ma, T. Host–Guest Recognition on 2D Graphitic Carbon Nitride for Nanosensing. Adv. Mater. *Interfaces* **2019**, *6*, 1901429. - 550. Liu, J.-W.; Luo, Y.; Wang, Y.-M.; Duan, L.-Y.; Jiang, J.-H.; Yu, R.-Q. Graphitic Carbon Nitride Nanosheets-Based Ratiometric Fluorescent Probe for Highly Sensitive Detection of H₂O₂ and Glucose. *ACS Appl. Mater. Interfaces* **2016**, *8*, 33439–33445. [CrossRef] - 551. Kundu, M.K.; Sadhukhan, M.; Barman, S. Ordered Assemblies of Silver Nanoparticles on Carbon Nitride Sheets and Their Application in the Non-Enzymatic Sensing of Hydrogen Peroxide and Glucose. *J. Mater. Chem. B* **2015**, *3*, 1289–1300. [CrossRef] [PubMed] - 552. Jiang, T.; Jiang, G.; Huang, Q.; Zhou, H. High-Sensitive Detection of Dopamine Using Graphitic Carbon Nitride by Electrochemical Method. *Mater. Res. Bull.* **2016**, 74, 271–277. [CrossRef] - 553. Zuo, F.; Jin, L.; Fu, X.; Zhang, H.; Yuan, R.; Chen, S. An Electrochemiluminescent Sensor for Dopamine Detection Based on a Dual-Molecule Recognition Strategy and Polyaniline Quenching. *Sensors Actuators B Chem.* **2017**, 244, 282–289. [CrossRef] - 554. Zou, J.; Wu, S.; Liu, Y.; Sun, Y.; Cao, Y.; Hsu, J.-P.; Wee, A.T.S.; Jiang, J. An Ultra-Sensitive Electrochemical Sensor Based on 2D g-C₃N₄/CuO Nanocomposites for Dopamine Detection. *Carbon N. Y.* **2018**, *130*, 652–663. [CrossRef] - 555. Rahman, N.; Yang, J.; Sohail, M.; Khan, R.; Iqbal, A.; Maouche, C.; Khan, A.A.; Husain, M.; Khattak, S.A.; Khan, S.N. Insight into Metallic Oxide Semiconductor (SnO₂, ZnO, CuO, α-Fe₂O₃, WO₃)-Carbon Nitride (g-C₃N₄) Heterojunction for Gas Sensing Application. Sensors Actuators A Phys. 2021, 332, 113128. [CrossRef] - 556. Zhou, T.; Zhang, T. Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure–Property-Application Relationship for Gas Sensors. *Small Methods* **2021**, *5*, 2100515. [CrossRef] - 557. Li, P.-P.; Cao, Y.; Mao, C.-J.; Jin, B.-K.; Zhu, J.-J. TiO₂/g-C₃N₄/CdS Nanocomposite-Based Photoelectrochemical Biosensor for Ultrasensitive Evaluation of T4 Polynucleotide Kinase Activity. *Anal. Chem.* **2018**, *91*, 1563–1570. [CrossRef] [PubMed] - 558. Li, X.; Zhu, L.; Zhou, Y.; Yin, H.; Ai, S. Enhanced Photoelectrochemical Method for Sensitive Detection of Protein Kinase A Activity Using TiO₂/g-C₃N₄, PAMAM Dendrimer, and Alkaline Phosphatase. *Anal. Chem.* **2017**, *89*, 2369–2376. [CrossRef] - 559. Zhai, J.; Wang, T.; Wang, C.; Liu, D. UV-Light-Assisted Ethanol Sensing Characteristics of g-C₃N₄/ZnO Composites at Room Temperature. *Appl. Surf. Sci.* **2018**, 441, 317–323. [CrossRef] - 560. Li, X.; Li, Y.; Sun, G.; Luo, N.; Zhang, B.; Zhang, Z. Synthesis of a Flower-like g-C₃N₄/ZnO Hierarchical Structure with Improved CH4 Sensing Properties. *Nanomaterials* **2019**, *9*, 724. [CrossRef] - 561. Wang, H.; Bai, J.; Dai, M.; Liu, K.; Liu, Y.; Zhou, L.; Liu, F.; Liu, F.; Gao, Y.; Yan, X. Visible Light Activated Excellent NO2 Sensing Based on 2D/2D ZnO/g-C₃N₄ Heterojunction Composites. *Sensors Actuators B Chem.* **2020**, *304*, 127287. [CrossRef] - 562. Zeng, B.; Zhang, L.; Wan, X.; Song, H.; Lv, Y. Fabrication of α-Fe₂O₃/g-C₃N₄ Composites for Cataluminescence Sensing of H₂S. *Sensors Actuators B Chem.* **2015**, 211, 370–376. [CrossRef] - 563. Zhang, Y.; Liu, J.; Chu, X.; Liang, S.; Kong, L. Preparation of g–C₃N₄–SnO₂ Composites for Application as Acetic Acid Sensor. *J. Alloys Compd.* **2020**, *832*, 153355. [CrossRef] - 564. Malik, R.; Tomer, V.K.; Chaudhary, V.; Dahiya, M.S.; Sharma, A.; Nehra, S.P.; Duhan, S.; Kailasam, K. An Excellent Humidity Sensor Based on In–SnO₂ Loaded Mesoporous Graphitic Carbon Nitride. *J. Mater. Chem. A* **2017**, *5*, 14134–14143. [CrossRef] - 565. Sun, Y.; Jiang, J.; Liu, Y.; Wu, S.; Zou, J. A Facile One-Pot Preparation of Co₃O₄/g-C₃N₄ Heterojunctions with Excellent Electrocatalytic Activity for the Detection of Environmental Phenolic Hormones. *Appl. Surf. Sci.* **2018**, 430, 362–370. [CrossRef] - 566. Hassannezhad, M.; Hosseini, M.; Ganjali, M.R.; Arvand, M. A Graphitic Carbon Nitride (g-C₃N₄/Fe₃O₄) Nanocomposite: An Efficient Electrode Material for the Electrochemical Determination of Tramadol in Human Biological Fluids. *Anal. Methods* **2019**, 11, 2064–2071. [CrossRef] - 567. Karthika, A.; Suganthi, A.; Rajarajan, M. An In-Situ Synthesis of Novel V₂O₅/g-C₃N₄/PVA Nanocomposite for Enhanced Electrocatalytic Activity toward Sensitive and Selective Sensing of Folic Acid in Natural Samples. *Arab. J. Chem.* **2020**, *13*, 3639–3652. [CrossRef] - 568. Selvarajan, S.; Suganthi, A.; Rajarajan, M. Fabrication of g-C₃N₄/NiO Heterostructured Nanocomposite Modified Glassy Carbon Electrode for Quercetin Biosensor. *Ultrason. Sonochem.* **2018**, *41*, 651–660. [CrossRef] - 569. Wang, L.; Zhao, F.; Han, Q.; Hu, C.; Lv, L.; Chen, N.; Qu, L. Spontaneous Formation of Cu₂O–g-C₃N₄ Core–Shell Nanowires for Photocurrent and Humidity Responses. *Nanoscale* **2015**, *7*, 9694–9702. [CrossRef] [PubMed] - 570. Liu, Y.; Jiang, J.; Sun, Y.; Wu, S.; Cao, Y.; Gong, W.; Zou, J. NiO and Co₃O₄ Co-Doped g-C₃N₄ Nanocomposites with Excellent Photoelectrochemical Properties under Visible Light for Detection of Tetrabromobisphenol-A. *RSC Adv.* **2017**, *7*, 36015–36020. [CrossRef] Nanomaterials **2022**, 12, 294 72 of 73 571. Pang, X.; Cui, C.; Su, M.; Wang, Y.; Wei, Q.; Tan, W. Construction of Self-Powered Cytosensing Device Based on ZnO Nanodisks@ g-C₃N₄ Quantum Dots and Application in the Detection of CCRF-CEM Cells. *Nano Energy* **2018**, 46, 101–109. [CrossRef] - 572. Han, Z.; Luo, M.; Weng, Q.; Chen, L.; Chen, J.; Li, C.; Zhou, Y.; Wang, L. ZnO Flower-Rod/g-C₃N₄-Gold Nanoparticle-Based Photoelectrochemical Aptasensor for Detection of Carcinoembryonic Antigen. *Anal. Bioanal. Chem.* **2018**, 410, 6529–6538. [CrossRef] - 573. Huan, Z.; Chang, J.; Zhou, J. Low-Temperature Fabrication of Macroporous Scaffolds through Foaming and Hydration of Tricalcium Silicate Paste and Their Bioactivity. *J. Mater. Sci.* **2010**, *45*, 961–968. [CrossRef] - 574. He, X.; Bai, S.; Jiang, J.; Ong, W.-J.; Peng, J.; Xiong, Z.; Liao, G.; Zou, J.; Li, N. Oxygen Vacancy Mediated Step-Scheme Heterojunction of WO_{2.9}/g-C₃N₄ for Efficient Electrochemical Sensing of 4-Nitrophenol. *Chem. Eng. J. Adv.* **2021**, *8*, 100175. [CrossRef] - 575. Wang, H.; Liang, D.; Xu, Y.; Liang, X.; Qiu, X.; Lin, Z. A Highly Efficient Photoelectrochemical Sensor for Detection of Chlorpyrifos Based on 2D/2D β-Bi₂O₃/g-C₃N₄ Heterojunctions. Environ. Sci. *Nano* **2021**, *8*, 773–783. - 576. Pu, Y.; Wu, Y.; Yu, Z.; Lu, L.; Wang, X. Simultaneous Determination of Cd²⁺ and Pb²⁺ by an Electrochemical Sensor Based on Fe₃O₄/Bi₂O₃/C₃N₄ Nanocomposites. *Talanta Open* **2021**, *3*, 100024. [CrossRef] - 577. Bilal, S.; Hassan, M.M.; ur Rehman, M.F.; Nasir, M.; Sami, A.J.; Hayat, A. An Insect Acetylcholinesterase Biosensor Utilizing WO₃/g-C₃N₄ Nanocomposite Modified Pencil Graphite Electrode for Phosmet Detection in Stored Grains. *Food Chem.* **2021**, 346, 128894. [CrossRef] - 578. Peng, B.; Zhang, Z.; Tang, L.; Ouyang, X.; Zhu, X.; Chen, L.; Fan, X.; Zhou, Z.; Wang, J. Self-Powered Photoelectrochemical Aptasensor for Oxytetracycline Cathodic Detection Based on a Dual Z-Scheme WO₃/g-C₃N₄/MnO₂ Photoanode. *Anal. Chem.* **2021**, *26*, 9129–9138. [CrossRef] - 579. Mao, L.; Xue, X.; Xu, X.; Wen, W.; Chen, M.-M.; Zhang, X.; Wang, S. Heterostructured CuO-g-C₃N₄ Nanocomposites as a Highly Efficient Photocathode for Photoelectrochemical Aflatoxin B1 Sensing. *Sensors Actuators B Chem.* **2021**, 329, 129146. [CrossRef] - 580. Matsunaga, T.; Tomoda, R.; Nakajima, T.; Wake, H. Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders. FEMS Microbial. Lett. 1985, 29, 211–214. [CrossRef] - 581. Song, J.; Wang, X.; Wang, X.; Wang, J.; Xia, S.; Zhao, J. Removal of Microcystis Aeruginosa and Microcystin-LR Using a Graphitic-C₃N₄/TiO₂ Floating Photocatalyst under Visible Light Irradiation. *Chem. Eng. J.* **2018**, 348, 380–388. [CrossRef] - 582. Chen, X.; Wang, Q.; Tian, J.; Liu, Y.; Wang, Y.; Yang, C. A Study on the Photocatalytic Sterilization Performance and Mechanism of
Fe-SnO ₂/g-C₃N₄ Heterojunction Materials. *New J. Chem.* **2020**, *44*, 9456–9465. [CrossRef] - 583. Pant, B.; Park, M.; Lee, J.H.; Kim, H.-Y.; Park, S.-J. Novel Magnetically Separable Silver-Iron Oxide Nanoparticles Decorated Graphitic Carbon Nitride Nano-Sheets: A Multifunctional Photocatalyst via One-Step Hydrothermal Process. *J. Colloid Interface Sci.* 2017, 496, 343–352. [CrossRef] - 584. Liu, B.; Wu, Y.; Zhang, J.; Han, X.; Shi, H. Visible-Light-Driven g-C₃N₄/Cu₂O Heterostructures with Efficient Photocatalytic Activities for Tetracycline Degradation and Microbial Inactivation. *J. Photochem. Photobiol. A Chem.* **2019**, 378, 1–8. [CrossRef] - 585. Vignesh, S.; Suganthi, S.; Sundar, J.K.; Raj, V. Construction of α-Fe₂O₃/CeO₂ Decorated g-C₃N₄ Nanosheets for Magnetically Separable Efficient Photocatalytic Performance under Visible Light Exposure and Bacterial Disinfection. *Appl. Surf. Sci.* **2019**, *488*, 763–777. [CrossRef] - 586. Shanmugam, V.; Jeyaperumal, K.S.; Mariappan, P.; Muppudathi, A.L. Fabrication of Novel g-C₃N₄ Based MoS₂ and Bi₂O₃ Nanorod Embedded Ternary Nanocomposites for Superior Photocatalytic Performance and Destruction of Bacteria. *New J. Chem.* **2020**, *44*, 13182–13194. [CrossRef] - 587. Induja, M.; Sivaprakash, K.; Karthikeyan, S. Facile Green Synthesis and Antimicrobial Performance of Cu₂O Nanospheres Decorated g-C₃N₄ Nanocomposite. *Mater. Res. Bull.* **2019**, *112*, 331–335. [CrossRef] - 588. Li, C.; Sun, Z.; Zhang, W.; Yu, C.; Zheng, S. Highly Efficient g-C₃N₄/TiO₂/Kaolinite Composite with Novel Three-Dimensional Structure and Enhanced Visible Light Responding Ability towards Ciprofloxacin and S. Aureus. *Appl. Catal. B Environ.* **2018**, 220, 272–282. [CrossRef] - 589. Zhang, Q.; Quan, X.; Wang, H.; Chen, S.; Su, Y.; Li, Z. Constructing a Visible-Light-Driven Photocatalytic Membrane by g-C₃N₄ Quantum Dots and TiO₂ Nanotube Array for Enhanced Water Treatment. *Sci. Rep.* **2017**, *7*, 1–7. - 590. Xu, J.; Li, Y.; Zhou, X.; Li, Y.; Gao, Z.; Song, Y.; Schmuki, P. Graphitic C₃N₄-Sensitized TiO₂ Nanotube Layers: A Visible-Light Activated Efficient Metal-Free Antimicrobial Platform. *Chem. Eur. J.* **2016**, 22, 3947–3951. [CrossRef] - 591. Adhikari, S.P.; Awasthi, G.P.; Lee, J.; Park, C.H.; Kim, C.S. Synthesis, Characterization, Organic Compound Degradation Activity and Antimicrobial Performance of g-C₃N₄ Sheets Customized with Metal Nanoparticles-Decorated TiO₂ Nanofibers. *RSC Adv.* **2016**, *6*, 55079–55091. [CrossRef] - 592. Jiang, G.; Cao, J.; Chen, M.; Zhang, X.; Dong, F. Photocatalytic NO Oxidation on N-Doped TiO₂/g-C₃N₄ Heterojunction: Enhanced Efficiency, Mechanism and Reaction Pathway. *Appl. Surf. Sci.* **2018**, *458*, 77–85. [CrossRef] - 593. Vo, V.; Thi, X.D.N.; Jin, Y.-S.; Thi, G.L.; Nguyen, T.T.; Duong, T.Q.; Kim, S.-J. SnO₂ Nanosheets/g-C₃N₄ Composite with Improved Lithium Storage Capabilities. *Chem. Phys. Lett.* **2017**, *674*, 42–47. [CrossRef] - 594. Montazeri, S.M.; Sadrnezhaad, S.K. Kinetics of Sulfur Removal from Tehran Vehicular Gasoline by g-C₃N₄/SnO₂ Nanocomposite. *ACS omega* **2019**, *4*, 13180–13188. [CrossRef] - 595. Li, X.; Feng, Y.; Li, M.; Li, W.; Wei, H.; Song, D. Smart Hybrids of Zn₂GeO₄ Nanoparticles and Ultrathin g-C₃N₄ Layers: Synergistic Lithium Storage and Excellent Electrochemical Performance. *Adv. Funct. Mater.* **2015**, 25, 6858–6866. [CrossRef] Nanomaterials **2022**, 12, 294 73 of 73 596. Mohamed, H.S.H.; Wu, L.; Li, C.-F.; Hu, Z.-Y.; Liu, J.; Deng, Z.; Chen, L.-H.; Li, Y.; Su, B.-L. In-Situ Growing Mesoporous CuO/O-Doped g-C₃N₄ Nanospheres for Highly Enhanced Lithium Storage. *ACS Appl. Mater. Interfaces* **2019**, *11*, 32957–32968. [CrossRef] [PubMed] - 597. Zhang, Y.; Chang, L.; Chang, X.; Chen, H.; Li, Y.; Fan, Y.; Wang, J.; Cui, D.; Xue, C. Combining In-Situ Sedimentation and Carbon-Assisted Synthesis of Co₃O₄/g-C₃N₄ Nanocomposites for Improved Supercapacitor Performance. *Diam. Relat. Mater.* **2021**, *111*, 108165. [CrossRef] - 598. Bai, L.; Huang, H.; Zhang, S.; Hao, L.; Zhang, Z.; Li, H.; Sun, L.; Guo, L.; Huang, H.; Zhang, Y. Photocatalysis-Assisted Co₃O₄/g-C₃N₄ p-n Junction All-Solid-State Supercapacitors: A Bridge between Energy Storage and Photocatalysis. *Adv. Sci.* **2020**, 7, 2001939. [CrossRef] [PubMed] - 599. Kavil, J.; Anjana, P.M.; Joshy, D.; Babu, A.; Raj, G.; Periyat, P.; Rakhi, R.B. g-C₃N₄/CuO and g-C₃N₄/Co₃O₄ Nanohybrid Structures as Efficient Electrode Materials in Symmetric Supercapacitors. *RSC Adv.* **2019**, *9*, 38430–38437. [CrossRef] - 600. Zhou, Y.; Sun, L.; Wu, D.; Li, X.; Li, J.; Huo, P.; Wang, H.; Yan, Y. Preparation of 3D Porous g-C₃N₄@ V₂O₅ Composite Electrode via Simple Calcination and Chemical Precipitation for Supercapacitors. *J. Alloys Compd.* **2020**, *817*, 152707. [CrossRef] - 601. Klose, W.; Rincón, S. Adsorption and Reaction of NO on Activated Carbon in the Presence of Oxygen and Water Vapour. *Fuel* **2007**, *86*, 203–209. [CrossRef] - 602. Ou, M.; Zhong, Q.; Zhang, S.; Yu, L. Ultrasound Assisted Synthesis of Heterogeneous g-C₃N₄/BiVO₄ Composites and Their Visible-Light-Induced Photocatalytic Oxidation of NO in Gas Phase. *J. Alloys Compd.* **2015**, 626, 401–409. [CrossRef] - 603. Hu, S.; Chen, X.; Li, Q.; Li, F.; Fan, Z.; Wang, H.; Wang, Y.; Zheng, B.; Wu, G. Fe³⁺ Doping Promoted N₂ Photofixation Ability of Honeycombed Graphitic Carbon Nitride: The Experimental and Density Functional Theory Simulation Analysis. *Appl. Catal. B Environ.* **2017**, 201, 58–69. [CrossRef] - 604. Kong, Y.; Lv, C.; Zhang, C.; Chen, G. Cyano Group Modified g-C₃N₄: Molten Salt Method Achievement and Promoted Photocatalytic Nitrogen Fixation Activity. *Appl. Surf. Sci.* **2020**, *515*, 146009. [CrossRef] - 605. Hu, X.; Zhang, W.; Yong, Y.; Xu, Y.; Wang, X.; Yao, X. One-Step Synthesis of Iodine-Doped g-C₃N₄ with Enhanced Photocatalytic Nitrogen Fixation Performance. *Appl. Surf. Sci.* **2020**, *510*, 145413. [CrossRef] - 606. Zhang, K.; Deng, L.; Huang, M.; Tu, H.; Kong, Z.; Liang, Z.; Shao, Y.; Hao, X.; Wu, Y. Energy Band Matching WO₃/B-Doped g-C₃N₄ Z-Scheme Photocatalyst to Fix Nitrogen Effectively. *Colloids Surfaces A Physicochem. Eng. Asp.* **2022**, *633*, 127830. [CrossRef] - 607. Liu, X.; Han, X.; Liang, Z.; Xue, Y.; Zhou, Y.; Zhang, X.; Cui, H.; Tian, J. Phosphorous-Doped 1T-MoS₂ Decorated Nitrogen-Doped g-C₃N₄ Nanosheets for Enhanced Photocatalytic Nitrogen Fixation. *J. Colloid Interface Sci.* **2022**, 605, 320–329. [CrossRef] [PubMed] - 608. Tao, R.; Li, X.; Shao, C.; Liu, Y. TiO₂/SrTiO ₃/g-C₃N₄ Ternary Heterojunction Nanofibers: Gradient Energy Band, Cascade Charge Transfer, Enhanced Photocatalytic Hydrogen Evolution, and Nitrogen Fixation. *Nanoscale* **2020**, *12*, 8320–8329. [CrossRef] - 609. Camussi, I.; Mannucci, B.; Speltini, A.; Profumo, A.; Milanese, C.; Malavasi, L.; Quadrelli, P. g-C₃N₄-Singlet Oxygen Made Easy for Organic Synthesis: Scope and Limitations. *ACS Sustain. Chem. Eng.* **2019**, *7*, 8176–8182. [CrossRef] - 610. Ahmad, R.; Tripathy, N.; Khosla, A.; Khan, M.; Mishra, P.; Ansari, W.A.; Syed, M.A.; Hahn, Y.-B. Recent Advances in Nanostructured Graphitic Carbon Nitride as a Sensing Material for Heavy Metal Ions. *J. Electrochem. Soc.* **2019**, *167*, 37519. [CrossRef] - 611. Chen, K.; Zhang, X.-M.; Yang, X.-F.; Jiao, M.-G.; Zhou, Z.; Zhang, M.-H.; Wang, D.-H.; Bu, X.-H. Electronic Structure of Heterojunction MoO₂/g-C₃N₄ Catalyst for Oxidative Desulfurization. Appl. *Catal. B Environ.* **2018**, 238, 263–273. [CrossRef] - 612. Lei, G.; Zhao, W.; Shen, L.; Liang, S.; Au, C.; Jiang, L. Isolated Iron Sites Embedded in Graphitic Carbon Nitride (g-C₃N₄) for Efficient Oxidative Desulfurization. *Appl. Catal. B Environ.* **2020**, 267, 118663. [CrossRef] - 613. Ma, R.; Guo, J.; Wang, D.; He, M.; Xun, S.; Gu, J.; Zhu, W.; Li, H. Preparation of Highly Dispersed WO₃/Few Layer g-C₃N₄ and Its Enhancement of Catalytic Oxidative Desulfurization Activity. *Colloids Surfaces A Physicochem. Eng. Asp.* **2019**, 572, 250–258. [CrossRef]