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Abstract: Microtube-like porous carbon (MPC) and tube-like porous carbon–sulfur (MPC-S) compos-
ites were synthesized by carbonizing milkweed pappus with sulfur, and they were used as cathodes
for lithium–sulfur batteries. The morphology and uniformity of these materials were characterized
using X-ray powder diffraction, Raman spectroscopy, scanning electron microscopy, transmission
electron microscopy with an energy-dispersive X-ray analyzer, thermogravimetric analysis, and X-ray
photoelectron spectrometry. The electrochemical performance of the MPC-S cathodes was measured
using the charge/discharge cycling performance, C rate, and AC impedance. The composite cathodes
with 93.8 wt.% sulfur exhibited a stable specific capacity of 743 mAh g−1 after 200 cycles at a 0.5 C.

Keywords: milkweed pappus; microporous hollow carbon; lithium–sulfur batteries

1. Introduction

The rapid increase in energy requirements has led to the development of safe, clean,
and renewable energy systems, including solar cells, fuel cells, and batteries. Lithium–
sulfur (Li-S) batteries are being actively investigated as next-generation batteries that can
overcome the disadvantage of the low energy density of commercial lithium-ion batteries.
Sulfur is used as a cathode material in these batteries, and it has a high theoretical specific
capacity of 1675 mAh g−1 and a high energy density of 2600 Wh kg−1 [1]. However,
Li-S batteries experience problems including polysulfide dissolution, loss of sulfur, low
utilization of the active area, nonconductivity, poor cycle life, capacity fading, and safety
issues [2]. To achieve a high electrochemical performance of Li-S batteries, sulfur must be
in intimate contact with conductors such as carbon or conducting polymers [3].

The batteries developed by Nazar et al. employed mesoporous carbon with a highly
uniform pore structure for boosting battery efficiency. Sulfur was melted, and pores were
uniformly filled with sulfur, thereby minimizing the surface area in direct contact with
carbon [4]. Researchers have applied various carbon materials, such as amorphous carbon,
carbon black [5,6], macro/meso/microporous carbon [7,8], carbon nanofibers [9,10], carbon
nanotubes [11–13], graphite, graphene oxide, and reduced graphene oxide, to enhance the
electronic conductivity of sulfur composites and inhibit the dissolution of polysulfides into
cell electrolytes [14–18]. The carbonaceous materials that originate from biomaterials are
being increasingly used to produce low-cost and high-performance en ergy storage devices
as an efficient method of maintaining a clean and sustainable world [19–23]. In the past
decade, the application of active carbon obtained from biomass, such as banana peels [24],
bamboo leaves [25], soybeans [26], corn cobs [27], pomelo peels [28], shaddock peels [29],
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poplar catkins [30], and kapok fibers [31], fish industry waste [32] to Li-S batteries has been
investigated. Our group examined the use of porous carbon derived from thiourea, calcium
citrate [33], and garlic peels to Li-S batteries [34].

Milkweed (MW) is distributed throughout Korea, Japan, and China. The tubular seeds
of MW have microporous hollow fibers, which are comprised of 55% cellulose and 18%
lignin. Milkweed pappus has regular microfibers with a diameter of 17–20 µm. When this is
heat treated at high temperature in an atmosphere, it maintains the shape of a tube of porous
microfibers with a diameter of about 5 µm. These fibers can provide external and internal
surfaces for electron transfer. MW pappus has a hollow fiber structure that provides a large
interspatial area for oil sorption [35]. Lou et al. recently studied supercapacitor materials
that used Metaplexis plants with MW-like structures as carbon electrode sources [36].

In the present study, to improve the electrical conductivity of sulfur in Li-S bat-
teries, mesoporous, carbonized, conductive, and microtube-like porous carbon/sulfur
(MPC-S) composites were synthesized by heating a mixture of carbonized MW fibers and
sulfur. The electrochemical performance of the MPC-S cathodes for Li-S cells was investi-
gated using cyclic voltammetry (CV), charge/discharge cycling performance, C rate, and
AC impedance.

2. Experimental Methods
2.1. Preparation of Milkweed Pappus Carbon (MPC)

MW pods were collected from a local region (Kyeongkido, Korea). MW pappus with
hollow microfibers was obtained by removing the seeds from the MW pods. MW pappus
was thoroughly washed with ethanol and distilled water to remove dust and then dried at
90 ◦C for 24 h. The cleaned MW pappus was precarbonized at 500 ◦C for 1 h at a heating
rate of 3 ◦C min−1 in a N2 atmosphere. Next, the MW pappus was placed in a tube furnace
and heated to 800 ◦C at a rate of 3 ◦C min−1 in a N2 atmosphere for 1 h. The carbonized
sample was washed in 0.1 M hydrogen chloride (HCl, ACS reagent, Aldrich, Germany)
for 30 min to remove the remaining metal impurities and then extensively washed with
deionized water to achieve a neutral pH. The resulting material was dried in a drying oven
at 90 ◦C for 24 h. The yield of porous carbon synthesized from pre-carbonized MW pappus
was 50%. The porous carbon prepared in this manner is denoted as milkweed pappus
carbon (MPC).

2.2. Synthesis of Milkweed Pappus Carbon–Sulfur (MPC–S) Composites

MPC–sulfur composites with different sulfur contents were prepared using a wet-
impregnation method [34]. Wet impregnation was carried out between MPC and sulfur as
follows: 0.3 g MPC was added to an optimum amount of a S/CS2 solution
(0.3 g S/5 mL CS2) at different carbon/sulfur weight ratios (3:5, 1:4, and 1:15) with magnetic
stirring for 1 h. A black colored solution was obtained, which was impregnated into MPC
followed by air drying in a fume hood. The subsequent sample was transferred into a
Teflon-lined autoclave vessel in an air atmosphere. The vessel was heated at 155 ◦C for 12 h
in the atmosphere. The obtained products were denoted as milkweed pappus carbon-sulfur
(MPC-S) composites.

2.3. Characterizations

The Brunauer–Emmett–Teller (BET) surface area and Barret–Joyner–Halenda pore-size
distribution of the samples were measured at 77 K (ASAP 2020 Analysis, Micromerit-
ics Instruments, Norcross, GA, USA). The powder X-ray diffraction (XRD, PANalytical
Malvern, Malven, UK) patterns of all samples were recorded on Philips X’Pert (X’Pert3,
PANalytical Malvern, Malven, UK) Pro equipped with Cu-Kα radiation (λ = 1.5418 Å)
for 2θ = 10–70◦. Raman spectroscopy was performed using an XperRam 200 (Nano Base
Inc., Korea) system with 532 nm diode laser excitation on a 300 lines mm−1 grating. The
sulfur content of the samples was determined via thermogravimetric analysis (TGA, TA
Q600–0825, TA Instruments, DE, USA). The temperature was increased to 800 ◦C at a rate of
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10 ◦C min−1 under Ar flow. In addition, the sulfur content of the samples was determined
using an elemental analyzer (EA, Vario Micro Cube, Elementar, Germany). The surface and
cross-sectional morphologies of the samples were obtained using high-resolution scanning
electron microscopy (SEM, SU70, Hitachi, Japan). The interior structures of the MPC–S
composites were observed using transmission electron microscopy (JEM 2100F, Jeol, Japan).
The surface chemical compositions of the samples were analyzed by performing X-ray
photoelectron spectroscopy (XPS, Thermo Corporation K-Alpha, USA) using a Thermo
Electron Corporation spectrometer with Al Kα (1486.6 eV) radiation at a spot diameter
of 400 mm with charge compensation. The emitted photoelectrons are detected using a
multichannel detector at a take-off angle of 90 with respect to the sample surface. During
the measurement, the base pressure in the turbo-pumped analysis chamber is maintained
at 1.2 × 10–9 mbar. Survey spectra are acquired at a pass energy of 200 eV and resolution
of 1 eV, while high-resolution spectra are acquired at a pass energy of 50 eV and resolution
of 0.1 eV.

2.4. Electrochemical Measurements

The electrochemical measurements of the MPC–S composites were conducted using
CR2032 coin-type cells assembled in an Ar-filled glove box with Li foil as the counter
electrode. A working electrode was prepared by mixing the as-synthesized active material
(MPC–S composite, 70 wt.%), conductive material (Denka Black, Li-250, Singapore), and
polymeric binder (polyvinylidene fluoride 2.5 wt.% dissolved in N-methyl-2-pyrrolidone,
10 wt.%; Solef® 5130, Solvay, Belgium) in N-methyl-2-pyrrolidone. The resultant slurry was
spread on the surface of an aluminum foil current collector and then dried at 80 ◦C for 2 h
and then roll-pressed.

The other MPC-S composite cathodes were prepared in the same manner, where the
active material, conductive material, and PVdF binder were mixed in a weight ratio of 70:20:10.

The resulting electrode thickness was approximately ~20 µm, and mass loading of an ac-
tive material was approximately ~1.0 mg cm−2. The separator was a Celgard 2400 polypropy-
lene (PP) membrane, and the electrolyte was 1.0 M lithium bis(trifluoromethanesulfonyl)imide
and 0.4 M LiNO3 in a solvent mixture of dioxolane and dimethoxyethane (1:1 vol.%). Electro-
chemical cycling and rate tests were performed in a cut-off voltage range of 1.5–2.8 V versus
Li/Li+. CV was performed at a scan rate of 0.05 mV s−1 using a galvanostatic/potentiostatic
system (WonATech Co., Ltd., Seoul, Korea). Electrochemical impedance spectroscopy (EIS)
measurements were conducted using a ZIVE SP2 analyzer (WonATech Co., Ltd., Korea) in a
frequency range of 1–10 mHz with an AC amplitude of 10 mV.

3. Results

Figure 1a shows white fibers of the actual MW pappus. The pappus contains a regular
circular hole at the center with a diameter of 17–20 µm, as shown in the SEM image
(Figure 1b). After carbonization, the average diameter of the tubes is reduced to 3.3 µm.
but MPC maintains the structure of a straight tube with smooth walls (Figure 1c). The
specific surface area and pore structure of the MPC sample were determined from nitrogen
adsorption–desorption isotherms. As shown in Figure 1d, the isotherms are of type I based
on the IUPAC classification. The knee of the isotherms occurs at an extremely low relative
pressure (P/P0 < 0.05). Furthermore, the plateau is flat, indicating the presence of highly
microporous carbon [37]. The pore size distribution curve proves that the MPC sample
mainly has a microporous size (<2 nm), which is beneficial for restricting the dissolution
of polysulfides and facilitating the fast migration of Li ions (Figure 1e). In view of the
micropore size only small sulfur molecules can be accommodated in the micropores of MPC,
while the large sulfur molecules cannot be stored. By using smaller sulfur molecules (S2–4),
the aim is to confine them in the confined space of a conductive microporous carbon matrix
as the starting active material [38,39]. The BET surface area, total pore volume, and pore
width of the MPC sample are 1056 m2 g−1, 0.48 cm3 g−1, and 0.75–1.25 nm, respectively.
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Figure 1. (a) Photograph and (b) SEM image of the actual MW pappus. (c) SEM image after
carbonization. (d) Nitrogen adsorption-desorption isotherms. (e) Pore size distribution of the
MPC sample.

The surface chemical components of MPC were evaluated using XPS. The high-
resolution C 1s, N 1s, and S 2p XPS spectra of MPC are presented in Figure 2. The
deconvolution of the C 1s carbon and oxygen atoms is observed. These four peaks are
related to C=C-C bonds (284.7 eV), C-O bonds (286.4 eV), C=O bonds (287.7 eV), and
O-C=O bonds (289.7 eV) [40]. The fractions of C=C, C-O, C=O, and O-C=O in the in MPC
sample are as high as 73.9 at.%, 7.8 at.%, 9.5 at.%, and 8.8 at.%, respectively, indication
a significant amount of oxygen. The oxygen content was examined using an elemental
analyzer (Table S1). The N 1s spectrum shows two peaks at 398.5 eV and 400.6 eV. This
is due to the pyridinic-N, pyrrolic-N, and N oxides present in the carbon structure, as
discussed in the literature [27,41].

A weak broad peak centered at 169.4 eV is observed for MPC, which is likely due to
the surface oxidation of sulfur or the strong interaction between sulfur and MPC. The peaks
at 164.1 eV and 165.3 eV can be assigned to the remaining sulfur. The peak at 164.5 eV is
attributed to S-O. This interaction may have an adsorbing ability to anchor S atoms and
prevent the subsequently formed polysulfides from dissolving in the electrolyte during
cycling [42].

The XRD patterns of sulfur, as prepared MPC, MPC-6S, MPC-8S, and MPC-9S are
shown in Figure 3a. There is a broad peak at a 2θ = ~24◦, which corresponds to the 002-plane
reflection of graphite. In addition, there is a small peak at 2θ = ~44◦, which corresponds
to the 100-plane reflection of graphite. These two broadening peaks reveal the possible
presence of an amorphous phase and pseudo–graphite within carbonaceous MPC-6S,
MPC-8S, and MPC-9S [43]. All XRD patterns of sulfur, MPC-6S, MPC-8S, and MPC-9S
exhibit orthorhombic structures for elemental sulfur. Compared with sulfur, MPC-6S,
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MPC-8S, and MPC-9S show sharp peaks of sulfur with increased peak intensity. This is
because sulfur is well dispersed within the carbon nanopores. In addition, this indicates that
the amount sulfur that is attached to the surface of MPC increases with the sulfur content.
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composites with different sulfur contents (inset: Raman spectrum of elemental sulfur).

The Raman spectra of MPC, MPC-6S, MPC-8S, and MPC-9S are shown Figure 3b. There
are two peaks at 1360 cm−1 and 1585 cm−1, which represent the D and G bands, respectively.
The G-band peak at approximately 1580 cm−1 arises from a bond stretching vibration
corresponding to graphitic carbon, whereas the D-band peak at 1350 cm−1 is ascribed to
disorders and defects [44]. The typical peaks located at about 1590 and 1355 cm−1 clearly
correspond to the G band from the ordered structure of graphitic crystallites and the D
band resulting from the properties of lattice defects and disorder, respectively [45]. The
peak intensity ratio (IG/ID) of the MPC is calculated to be 1.072, which is higher than those
of the reported S/porous carbon composites as shown in Figure 6 and Table 1 [46]. The
IG/ID indicates the degree of graphitization of carbon, which is an essential condition
for improving the conductivity of carbon materials, and it helps facilitate the electron
transport of sulfur in the electrochemical process. The decremental IG/ID values of the
MPC-S composites indicates that more defects emerge after sulfur infusion [47].

Table 1. Sulfur content and IG/ID ratio of the MPC, MPC-S composites.

Sulfur Content [wt%] IG/ID

MPC - 1.072
MPC-6S 54.47 1.036
MPC-8S 77.79 1.029
MPC-9S 91.33 0.971

The D and G bands appear in the spectra of the MPC and MPC-S composites, and
sulfur is well dispersed inside MPC compared to the surface. The nanosulfur powders
show strong peaks at 163 cm−1, 229 cm−1, and 483 cm−1. In addition, MPC-9S exhibits
three peaks at less than 500 cm−1, which are due to sulfur particles. However, the peaks
are weak in the case of MPC-8S and MPC-6S. The energy dispersive spectroscopy (EDS)
mapping shown in Figure S2 is almost consistent with the fact that elemental sulfur is less
distributed on the MPC surface and abundant in the tubular structure [48].

Elemental analysis and TGA were performed to determine the contents of elemental
carbon, oxygen, and sulfur in the sulfur-loaded composites. (Table S1, Figure S1) The sulfur
contents of MPC-6S, MPC-8S, and MPC-9S are 58.47 wt.%, 77.79 wt.%, and 91.33 wt.%,
respectively. These are similar to the actual sulfur contents of the MPC-S composites
(62.5 wt.%, 80.0 wt.%, and 93.8 wt.%) that are input during synthesis. The carbon contents
of MPC, MPC-6S, MPC-8S and MPC-9S are 79.40 wt.%, 34.51 wt.%, 17.13 wt.%, and
7.33 wt.%, respectively. This is because a large amount of sulfur fills the spaces in the
pores of carbon, and the oxygen content decreases. The sulfur content obtained using TGA
is almost consistent with that obtained using elemental analysis. The morphologies of
MPC-6S, MPC-8S, and MPC-9S were characterized using SEM, as shown in Figure S2a. The
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composites are encapsulated with sulfur in the tubular structure with micrometer-sized
diameters. In particular, MPC-9S is filled with embedded sulfur in the tubular structure.
This is because high amounts of sulfur are present in the MPC-S composites, which can fill
the pores or become attached to the outer surface. Figure S2b shows the high-resolution
transmission electron microscopy images of MPC-6S, MPC-8S, and MPC-9S. The EDS
mapping for sulfur and carbon is shown in Figure S2b. The EDS mapping shows that the
distributions of carbon (green) and sulfur (yellow) are slightly different. The distribution of
sulfur in the synthesized MPC-S composites is concentrated on the tubular surface and in
the tubular structure. This can improve cyclability by suppressing the dissolution of LixS
during the charging and discharging processes.

Figure 4a–c shows the 1st and 2nd charge–discharge voltage profiles of the MPC-6S,
MPC-8S and MPC-9S cathodes. The initial charge/discharge capacities of the MPC-6S, MPC-
8S and MPC-9S cathodes are 950 mAh g−1/931 mAh g−1, 1023 mAh g−1/953 mAh g−1, and
879 mAh g−1/790 mAh g−1, respectively. The irreversible capacity increases with the sulfur
content, and the MPC-6S cathode shows the lowest at 2.0%. The MPC-9S cathode exhibits
two normal plateaus, while the MPC-6S and MPC-8S cathodes exhibit three distinct potential
regions. These signatures correspond to the formation of long-chain soluble polysulfides in
the first region at 2.3 V and short-chain solid sulfides in the second region at 2.07 V and loss of
redox ability in the third region at 1.80 V. The potential hysteresis phenomenon is observed
in the third region, which could be attributed to the extra electrode polarization required
to overcome the confinement barrier of the high adsorption energy [49–51]. This is also
confirmed by the peak observed at 1.6–1.8 V in the CV results. In addition, the peak observed
at 2.4 V during discharging moves to the left as the sulfur content increases. Thus, this peak
is also due to carbon. CV measurements were conducted to investigate the electrochemical
mechanisms of the as-prepared Li-S batteries.

Figure 4d,f shows the CV curves of the MPC-6S, MPC-8S, and MPC-9S electrodes at a
scan rate of 0.1 mV s−1 during the first two cycles. The CV curves of the Li/S cell with the
MPC-6S, MPC-8S, and MPC-9S cathodes are shown in Figure 4d,e. The CV data provide
evidence for two redox processes for sulfur reduction and oxidation in the system, which
agrees well with literature [52]. There are three peaks in the first cathodic reduction process.
The peak at 2.28 V (vs. Li+/Li0) corresponds to the reduction in elemental sulfur (S8) to
polysulfide anions (Sx

2−; 2 < x < 8). A strong cathodic peak at 2.03 V (vs. Li+/Li0) suggest a
strong reduction in soluble polysulfide anions to an insoluble low-order Li2S2/Li2S deposit.
The peaks at 2.28 V for the MPC-6S and MPC-8S in second cathodic reduction process shift
to higher reduction potential of 2.31 V. The improved kinetics is caused by the conductive
microporous structure that minimizes the barrier of electron transfer and lithium ion
migration. The MPC-8S and MPC-9S cathodes show two overlapping oxidation peaks at
2.53–2.57 V, while the MPC-6S cathode exhibits distinct peaks. During the anodic oxidation
of lithium sulfides to polysulfides, partial unconstrained dissolution of polysulfide ions
causes a reduction in the anodic current, which is stabilized at second cycle.

In the 1st CV profile of the MPC-8S cathode, the oxidation/reduction peak is con-
siderably narrower than those of the MPC-6S and MPC-9S cathodes. Furthermore, the
MPC-8S cathode shows a more uniform sulfur distribution. The voltage at which the
oxidation/reduction peak appears in the CV results is consistent with the voltage plateau
observed during charging and discharging in Figure 4a–c.

Figure 5a–c shows the voltage profiles up to 100 cycles. There is a clear difference in
the voltage hysteresis between charging and discharging at the average capacity of the
different samples. The voltage hysteresis of MPC-8S is lower (0.30 V) than those of the
other two composites. The charge/discharge profiles of MPC-6S and MPC-9S change as
the charge/discharge cycle continues. The low polarization of MPC-8S may be the result of
a more uniform sulfur dispersion in MPC. This results in more intimate contact between
carbon and sulfur, thereby reducing the charge resistance and delaying the dissolution of
lithium polysulfide into the electrolyte. This is consistent with the result that the discharge
capacity of MPC-8S is higher than those of MPC-6S and MPC-9S.
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The electrochemical characteristics of the MPC-S composites were examined by per-
forming EIS after 100 cycles, and the results are shown in Figure 6 and Table 2. Before the
electrochemical reaction, the EIS spectra of the composite cathodes are composed of one
depressed semicircle in the high-frequency region (Rct) and a short inclined line (Warburg
impedance) in the low-frequency region [11]. After 100 cycles, the EIS spectra of the three
samples in the fully charged state exhibit two depressed semicircles followed by a long
sloping line. The semicircle in the high-frequency region represents the interfacial charge
transfer process (Rct), and the semicircle in the medium-frequency region can be attributed
to the passivation film formed by the irreversible redeposition and aggregation of lithium
polysulfide on the electrode surface (Rs) [53]. The value of Rct for the MPC-8S cathode is
smaller than those for the other cathodes. This implies that sulfur is well dispersed inside
MPC, and the internal resistance is the lowest. After 100 cycles, Rct is approximately 60.1 Ω
for MPC-8S, and it is similar for MPC-6S (81.2 Ω) and MPC-9S (83.5 Ω). In the case of
MPC-8S, one semicircle with almost no Rs is observed. This implies that the electrode
processes do not increase the resistance of the interfacial passivation films by irreversible
redeposition, and the aggregation of lithium polysulfide on the electrode surface is less
than that for the other composite cathodes. This supports the result that sulfur dispersion
and encapsulation are maintained better in MPC-8S compared to the other composites.
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Figure 6. EIS results and equivalent circuit model of the MPC-6S, MPC-8S, and MPC-9S cells after
100 cycles.

Table 2. Values of Rs and Rct for the MPC-6S, MPC-8S, and MPC-9S cells after 100 cycles.

Rs (Ω) Rct (Ω)

MPC-6S 1.74 81.2

MPC-8S 1.37 60.1

MPC-9S 2.15 83.5

Figure 7 shows the SEM images of the separators after dismantling the MPC-6S, MPC-8S,
and MPC-9S composite cathodes after the 100th cycle. During the charge and discharge
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processes, lithium polysulfide dissolved in an organic solvent can freely move through the
pores of the separator and reach the lithium anode. LixS is deposited on the surface of the
separator owing to continued charging and discharging. In the case of MPC-9S, the largest
amount of lithium polysulfide is dissolved, and it blocks the separator, thereby reducing
the capacity.
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Figure 8a shows the comparison of the charging and discharging characteristics of
the MPC-6S, MPC-8S, and MPC-9S cathodes up to 400 cycles. To prevent the capacity
degradation due to a large increase in current, the initial 5 cycles were performed at 0.1 C
and the subsequent cycles at 0.5 C. The capacity decreases as the current density increases.
This due to the structural and interfacial stabilization of Li-S batteries or a small amount
of residual sulfur on the carbon surface; however, further investigation is required [54,55].
The capacity retention rate of MPC-8S is 81% at 556 mAh g−1 even after 200 cycles, and it
has the highest discharge capacity after 400 cycles. This shows that sulfur is best dispersed
in MPC with a sulfur content of 80%, and it maintains a structure that prevents dissolution
of polysulfides. MPC-9S shows rapid capacity reduction, and it has the lowest discharge
capacity at 401 mAh g−1 after 400 cycles. The capacity decreases because the dissolution
rate of polysulfides increases at a high sulfur content, which is abundant inside and on
the surface of MPC. Figure 8b shows the C rate characteristics. Capacity retention occurs
at high rates of 0.1 C–2 C and capacity recovery at 0.5 C. MPC-8S shows the best capacity
from 0.1 C to 2 C and the best recovery ability at 0.2 C. MPC-9S shows the smallest decrease
in capacity at a high C rate. However, the capacity decreases owing to the dissolution
of polysulfides. This can be prevented by coating the separator with carbon flakes; this
is described later. Figure 8c shows the cycle characteristics of the MPC-8S composite
cathodes up to 200 cycles at 0.5 C, 1 C, and 2 C. The discharge capacities of the cathodes are
590 mAh g−1, 500 mAh g−1, 400 mAh g−1 at 0.5 C, 1 C, and 2 C up to 200 cycles, respectively.

We compared the data reported in several previous papers (Table 3) and found that the
data for milkweed pappus is either slightly better than or similar to those for reported mate-
rials. This excellent performance of MPC material may be due to its micropores/mesopores
porous structure, which supports the dissolution of polysulfides, helps the electrolyte
infiltration and increases the number of active sites.
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Figure 9 shows the results of 200 charging and discharging cycles of MPC-6S, MPC-8S,
and MPC-9S cells with and without the PP/CCS(carbon coated separator). The capacity of
MPC-9S with the CCS improves from 463 mAh g−1 to 743 mAh g−1 after 200 cycles, and
it shows the best capacity retention rate. There is no significant change in the capacity of
MPC-6S even with the CCS. This implies that the contact with conductive carbon is not
smooth and not that the capacity decreases because of the dissolution of lithium polysulfide.
The CCS was fabricated by coating the flat surface of the separator with thin flake graphite
particles. The CCS surface consists of closely packed thin flake-type graphite particles.
The thin multilayer graphite film prevents lithium polysulfide from moving through the
PP separator. Moreover, the CCS acts as a mechanical barrier to the diffusion of lithium
polysulfide from the anode into the electrolyte, which improves the sulfur utilization and
capacity [56].

To design a Li-S battery with a higher energy density compared to current lithium-ion
batteries, the loading mass of sulfur at the positive electrode and thus the specific area
capacity should be more than 2 mg cm−2 and 2 mAh cm−2, respectively. A recent study
reported an increase in the loading mass of a pure sulfur anode combined with a carbon
layer acting as the top current collector [57].
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Table 3. Cathode materials and their properties for Li-S battery.

Material for
Carbonization

Activation
Temperature

(◦C)

Surface Area
(m2 g−1)

Pore
Volume

(cm3 g−1)

Capacity
(mAh g−1) Ref.

Banana peels 900 194 2.40
C dis = 832.4 mAh g−1

Cycle number = 200
Rate = 0.2 C

[24]

Bamboo leaves 800 329 0.5
C dis = 707 mAh g−1

Cycle number = 200
Rate = 1 C

[25]

Soybeans 800 1500 0.7
C dis = 460 mAh g−1

Cycle number = 800
Rate = 0.5 C

[26]

Corn cobs 800 2724 1.46
C dis = 720 mAh g−1

Cycle number = 150
Rate = 0.3 C

[27]
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Table 3. Cont.

Material for
Carbonization

Activation
Temperature

(◦C)

Surface Area
(m2 g−1)

Pore
Volume

(cm3 g−1)

Capacity
(mAh g−1) Ref.

Pomelo peels 600 1533 0.837
C dis = 750 mAh g−1

Cycle number = 100
Rate = 0.2 C

[28]

Shaddock peels 900 937.1 0.82
C dis = 619.8 mAh g−1

Cycle number = 100
Rate = 0.5 C

[29]

Poplar catkins 800 186 0.287
C dis = 810 mAh g−1

Cycle number = 100
Rate = 0.1 C

[30]

Kapok fibers 700 282.38 0.1574
C dis = 524 mAh g−1

Cycle number = 90
Rate = 0.4 A g−1

[31]

Milkweed
pappuss 800 1056 0.48

C dis = 743 mAh g−1

Cycle number = 200
Rate = 0.5 C

This work

Figure 10 shows a loading mass of 2.55 mg cm−2, which is approximately three times
higher than the loading mass of MPC-8S obtained earlier (0.84 mg cm−2). As the thickness
of the electrode with a high loading mass increases, its initial capacity becomes more
similar to that of the thin electrode. However, the fading speed slightly increases, and
the cycle characteristics are not good. This phenomenon does not occur smoothly in the
insertion/desorption of lithium because of poor contact between sulfur and conductive
carbon and thickness. This problem will be addressed in future work.
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4. Conclusions

Porous carbon was prepared from MW pappus to improve the performance of Li-S
batteries. Carbon–sulfur composites were prepared using the synthesized porous carbon to
increase the electrical conductivity of sulfur and to prevent dissolution of lithium polysul-
fide while encapsulating sulfur in the porous carbon. The MW pappus was carbonized and
activated to obtain space for sulfur impregnation into MPC. MPC was loaded with sulfur
at contents of 62.5%, 80.0%, and 93.8%, and its physical and electrochemical properties
were evaluated. MPC-8S (80% sulfur) exhibited the best capacity and charge/discharge
cycling characteristics. It showed the highest discharge capacity and excellent cycle stability
even after 400 cycles. The loading mass is an important parameter in the design of Li-S
batteries with a higher energy density compared to state-of-the-art lithium-ion batteries.
Life characteristics were observed by increasing the loading mass to 2.5 mg cm−2, which
was approximately three times higher than that of MPC-8S. However, the fading speed
slightly increased and the cycle characteristics were poor. The capacity of MPC-9S was
significantly reduced because of the high sulfur content. The FCS was used to control
the free movement of lithium polysulfide through the pores of the separator during the
charge and discharge processes. It acted as a barrier between the positive electrode and
separator to prevent polysulfide diffusion and increase the discharge capacity. The capacity
of MPC-9S with the FCS improved from 463 mAh g−1 to 743 mAh g−1 after 200 cycles,
confirming its excellent capacity retention.
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//www.mdpi.com/article/10.3390/nano12203605/s1, Figure S1: The TGA profiles used to determine
the sulfur contents in the sulfur-loaded samples.; Figure S2: SEM images (a) and HR TEM images
and EDS mapping Showing Distribution of C, S and N (b) of MPC-6S, MPC-8S and MPC-9S powders;
Table S1: Elemental content of the MPC and MPC-sulfur composites in EA.
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