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Abstract: The influence of processing on the martensitic transformation and related magnetic prop-
erties of the Ni55Fe18Nd2Ga25 ferromagnetic shape memory alloy, as bulk and ribbons prepared by
the melt spinning method and subjected to different thermal treatments, is investigated. Structural,
calorimetric, and magnetic characterizations are performed. Thermal treatment at 1173 K induces
a decrease in both the Curie and the martensitic transformation temperatures, while a treatment at
673 K produces the structural ordering of the ribbons, hence an increase in TC. A maximum value of
the magnetic entropy variation of −5.41 J/kgK was recorded at 310 K for the as quenched ribbons.
The evaluation of the magnetoresistive effect shows a remarkable value of −13.5% at 275 K on the
bulk sample, which is much higher than in the ribbons.

Keywords: Heusler FSMA; nanostructural processing effects; melt spinning; martensitic transforma-
tion; magnetocaloric effect; magnetoresistive effect

1. Introduction

The Ferromagnetic Shape-Memory Alloys (FSMA) are intensively investigated due to
their diversified application potential in various fields such as: biomedical [1,2]; civil struc-
tures [3]; miniature devices and robotics [4,5]; and other applications [6–8]. At temperatures
lower than the magnetic ordering temperatures they undergo the so-called martensitic
transformation (MT); this is a thermoelastic, reversible, and diffusionless transformation,
which occurs between a high temperature crystalline phase of high symmetry (austenite)
and a low temperature one of low symmetry (martensite) [9].

An important class of FSMA are the Heusler alloys which incorporate a huge number of
magnetic members exhibiting diverse magnetic phenomena such as itinerant and localized
magnetism, antiferromagnetism, helimagnetism, Pauli paramagnetism, or heavy-fermionic
behavior [10,11]. Ni2MnGa is a representative and the most investigated member of this class
of materials, which shows a huge magnetic-field-induced strain (MFIS) below the austenite–
martensite transformation, of the order of several percent, as evidenced by Ullakko et al. [12].
However, the compound’s brittleness makes it difficult to be used in applications, and for
this reason the search for new Heusler alloys that undergo an MT was extended comprising
Co-Ni-Ga [13–15] and Ni-Mn-(Al, In, Sn) [16–21]. Ni-Fe-Ga alloys [22–26] have emerged
as good candidates for replacing the brittle Ni-Mn-Ga in applications [27]. They show en-
hanced mechanical durability during the reversible austenite–martensite transformation and
exceptional magnetoelastic properties promoted by their structural twinning. The improved
ductility of the off-stoichiometric Ni-Fe-Ga alloys is caused by the existence of secondary
phases [28], which may be controlled to some extent by suitable preparation techniques, e.g.,
melt spinning, where the obtained ribbons preserve a relatively good sample malleability. In
addition, it is assumed that the thin melt-spun ribbons assure a more efficient heat transfer,
which is desirable in magnetocaloric applications. In particular, the sample’s malleability is
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caused by a face-centered cubic gamma phase, which forms during the heat treatments neces-
sary for sample structural ordering. Its presence, however, might alter the intrinsic properties
of the alloy and, therefore, single phase alloys obtained by ultrafast cooling are desirable.
Another approach for improving the magnetic and mechanical properties of Heusler type
FSMA is by substituting with Rare Earth (RE) elements [29–32]. Thus, in Ni-Mn-Ga alloys
various substitutions have been tested in order to improve their magnetic anisotropy and
ductility. Research shows that the low solubility of the RE in the alloy matrix (below 0.1 at%)
produce no major changes in the MT characteristics; instead new phases precipitate at the
grain boundaries that positively impact the cohesion between grains. For instance, it was
observed that the addition of RE (Nd, Sm, Tb) to the Ni-Mn-Ga [33] shape memory alloy
significantly improves the compressive ductility of the alloy. The results obtained in the latter
case also suggest the suitability of RE substitution approach in Ni-Fe-Ga based alloys, which
might corroborate previous investigations on the influence of different quenching rates on the
structural ordering of Ni2FeGa melt spun ribbons [34]. In addition, deviating from the exact
composition (Ni50Fe25Ga25) has a tuning effect (higher/lower Curie or structural transition
temperatures). In our case, one purpose was to search for concomitant magnetic and structural
transitions, which has been achieved for the as-quenched ribbons, as shall be described.

The magnetocaloric effect (MCE) is defined as the heating or cooling of a magnetic
material, isolated adiabatically, when a magnetic field is applied and is due to the correlation
that exists between the magnetization state of a system and its entropy. In the context of
global warming, materials with MCE around room temperature are an environmentally
friendly alternative to conventional refrigeration. The giant magnetocaloric effect observed
on Gd5Ge4 compounds [35] was explained based on the coincidence between the magnetic
ordering temperature and the crystallographic transformation temperature. From this point
of view, Heusler-type shape memory ferromagnetic alloys are interesting. Both the Curie
temperature and the martensitic one can be modified by slight changes in the composition
and using proper thermal treatments. Thus, the structural transformation can overlap with
the magnetic one so that the alloy has a magnetostructural transformation. In the present
paper, we evaluate the magnetic entropy changes (∆Sm) in the Ni55Fe18Nd2Ga25 alloy with
concomitant or sequential structural and magnetic phase transition prepared as bulk and
as ribbons in an as quenched state or subjected to thermal treatments.

Generally, the MT temperatures are correlated with a large number of parameters
that might influence the transformation, such as the processing route [36], chemical and
atomic order, or internal stress [37]. For this reason, various preparation routes have been
tested in order to improve the magnetic or mechanical properties of FSMA alloys [22,38,39],
together with complementary suitable thermal treatments to tailor the working temperature
range and performance of FSMA. Thus, in this study, the properties of Ni-Fe-Ga with Nd
substitutions synthesized by arc melting and melt spinning and subjected to several thermal
treatments are investigated. By analyzing the bulk and, respectively, the ribbons’ properties,
we expect to infer the role of preparation route, interfaces, and the microstructure, in
what regards the crystalline phases present, the martensitic transformation (MT), and the
magnetocaloric (MCE) and magnetoresistive (MR) effects.

2. Materials and Methods

The constituting high purity elements were weighed according to the nominal com-
position Ni55Nd2Fe18Ga25, and melted in an electric arc furnace under argon protective
atmosphere. The samples were melted 5 times flipping the ingots in order to ensure ho-
mogeneity. The resulting ingots were cut using a low speed diamond saw and a small
piece was thermally treated in high vacuum for 25 h at 1223 K, followed by quenching in
iced water. The remaining ingot was subjected to melt spinning technique and inductively
melted in a quartz tube under argon atmosphere, and ejected under a 40 kPa of Ar overpres-
sure, through a nozzle of 0.5 mm in diameter, on a water-cooled copper wheel rotating at a
surface velocity speed of 20 m/s. Rapidly quenched ribbons of about 15–16 µm thickness
and 2–3 mm width were obtained and denoted AQ (“as quenched”). The AQ ribbons were
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thermally annealed in evacuated quartz ampoules followed by a direct quenching of the
sample in ice water. The samples were annealed for 2 h at 673 K, and for 2 min at 1173 K
and denoted T400 and T900, respectively.

The phase transitions and associated transformation temperatures of the samples
were determined using a differential scanning calorimeter (DSC) model 204 F1 Phoenix
(Netzsch), in the temperature range 200–400 K with a 20 K/min scanning rate. The struc-
tural investigations were carried out by room temperature (RT = 290 K) X-ray diffraction
(XRD) using a Bruker D8 Advance X-ray diffractometer (Hamburg, Germany) in Bragg–
Brentano geometry (Cu Kα = 1.5406 Å radiation) and lithium fluoride (LiF) monochromator.
The phase composition of samples was evaluated using Bruker AXS DIFFRAC. EVA soft-
ware (Bruker AXS, Karlsruhe, Germany, 2000), while the LeBail refinement method of
the XRD-data was performed using the FullProf Suite software. The morphology and
composition of the samples were investigated by Scanning Electron Microscopy (SEM) and
Energy Dispersive X-ray Spectroscopy (EDS), respectively, employing a Zeiss Evo 50 XVP
microscope. The SEM images were taken with a secondary electrons detector without
chemical or ion polishing of the surfaces. The acceleration voltage of SEM is EHT = 20 kV.
Magnetic measurements were performed by a Quantum Design superconducting quantum
interference device (SQUID) (San Diego, CA, USA) in the Reciprocal Space Option (RSO)
mode. The magnetic field was applied along the ribbon length in order to minimize the
demagnetization effect. The dependences of the electrical resistivity versus temperature
were performed in standard four-probe method using a Quantum Design Physical Property
Measurement System (QD-PPMS), with the current applied along the longitudinal direction
of the ribbons and the magnetic field perpendicular to the ribbons.

3. Results and Discussions
3.1. DSC

Reversible thermoelastic transformations are revealed by the DSC signal for all inves-
tigated samples (Figure 1). The temperatures that define the martensitic transformation
are shown in Table 1: start austenite (As); final austenite (Af); start martensite (Ms); final
martensite (Mf); and thermodynamic equilibrium temperature T0. The thermodynamic
equilibrium temperature is the one at which the Gibbs energies of martensite and austenite
are equal and can be estimated by the relation T0 = (Ms + Af)/2 [28]. In Figure 1, it is
obvious that the martensitic transformation temperatures decrease as the heat treatment
temperature increases. AQ ribbons exhibit not only higher MT temperatures but also the
highest heat of transformation. Thus, the average value between the direct and reverse
transformation heat of the AQ ribbons is approximately double (Q = 2.1 J/g) compared
to the bulk alloys which have Q = 1.07 J/g [40]. This behavior is the effect of the internal
stress retained in the ribbons during rapid cooling which acts as an additional driving force
for MT.

Table 1. DSC transformation temperatures (Ms, Mf, As, Af), thermodynamic equilibrium temperature
T0, the Curie temperatures (TCM, TCA) and magnetic entropy change ∆Sm (at 5 T) for studied samples.
TCA is determined on cooling and TCM is determined on heating.

Sample Ms
(K)

Mf
(K)

As
(K)

Af
(K)

T0
(K)

TCM
(K)

TCA
(K)

∆Sm
(J/kgK)

Bulk 274 262.6 275.6 290 282 300 291 −4.58

AQ 291 269 290 318 304.5 290 282.6 −5.4

T400 267 246 261 285 276 296 291.6 −3.2

T900 258 204 210 281 269.5 275 271 −3.4
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Figure 1. The DSC signals for Bulk and AQ, T400 and T900 ribbons.

3.2. XRD

Le Bail fits to the XRD-data collected at room temperature (RT) on bulk, AQ, T400 and
T900 samples are shown in Figure 2. The crystalline structure of all samples is complex,
and is composed of three phases that grow under the influence of the processing route and
the applied thermal treatment. The phase composition of bulk samples (Figure 2) consists
of two-face-centered cubic crystal phases (Fm-3m) with different lattice parameters (see
Table 2) and one rhombohedral (R-3m). The same phase composition is also detected in the
thermally treated ribbons having different mean crystallite sizes. Notably, the austenite
cubic phase with a ~3.6 Å and the rhombohedral Nd2Fe17 type crystalline phase are detected
in all samples. In the AQ ribbons, due to the fast cooling rate during synthesis, the growth
of γ phase is inhibited but the tetragonal martensitic P4/mmm phase is “frozen”. Applying
a thermal treatment to ribbons produces an atom reordering and the segregation of the
cubic γ phase (Fm-3m, with a ~5.7 Å) corroborating the DSC results, which suggest that
thermal treatments stabilize the austenite phase and lower the martensitic transformation
temperatures [41,42].

Table 2. Crystalline phases and lattices parameters, extracted from XRD data.

Sample Phase a (Å) c (Å) V (Å3) Dp (nm)

Bulk
Fm-3m 5.747 (1) - 189.8 -
Fm-3m 3.618 (9) - 47.4 -
R-3m 8.565 (1) 12.476 (1) 792.6 -

AQ
P 4/mmm 2.481 (1) 3.515 (9) 21.6 43.3

Fm-3m 3.549 (9) - 44.7 21.4
R-3m 8.557 (4) 12.425 (9) 788 125.1

T400
Fm-3m 5.729 (2) - 188.1 84.6
Fm-3m 3.590 (6) - 46.3 139.9
R-3m 8.563 (1) 12.449 (9) 790.6 147.5

T900
Fm-3m 5.744 (9) - 189.6 121.7
Fm-3m 3.590 (2) - 46.3 82.2
R-3m 8.560 (1) 12.459 (2) 790.6 131.3
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Figure 2. XRD spectra recorded at RT.

The mean crystallite size of each crystalline phase (see Table 2) was calculated accord-
ing to the Scherrer relation Dp = K λ/β cosθ, where K is the Scherrer constant (here 0.94),
λ the wavelength, β is the half width of a reflection peak, and θ the diffraction angle. In
the AQ ribbons, the ultra-fast cooling prevents the crystallite growth and consequently
the samples are nanostructured with the mean crystallite size of only several tens of nm.
Importantly, for the rhombohedral Nd2Fe17 phase, the crystallite size exceeds 100 nm in all
samples, but as suggested by the SEM investigations, the phase abundance is reduced and
might not exert an important influence on sample properties. Besides atomic reordering,
the thermal treatments promote the precipitation of the γ phase on the expense of the other
phases, which deprives the austenitic matrix of Fe and Ni atoms, and further reduces the
valence electron concentration and the MT temperature [42]. However, the increase in the
average crystallite size of the γ phase with the temperature of the TT and its concomitant
diminishing for the other two phases, might also be a consequence of the austenite matrix
depletion in Fe and Ni as more of these atoms will participate to the γ phase forming.

3.3. SEM

The surface and cross-section morphology at room temperature of all samples were
investigated by scanning electron microscopy (SEM) with secondary electrons detector
without chemical or ion polishing of the surfaces (Figure 3). The surface morphology of
the AQ ribbons is typical for samples produced by melt spinning, which involves very fast
cooling rates, consisting of dendritic grains with length of micron size (0.2–3.5 µm) and
a visible twin microstructure (shown with black arrows), and twin thickness of several
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tens of nanometers. The cross-section image (Figure 3b) shows small cracks on the contact
side surface (indicated by red arrows) and the existence of columnar grains, which span
the entire thickness of the ribbon, a signature of temperature gradient typical for the melt-
spinning technique, which induces a fast nucleation and growth process of grains along
the cross-section during the rapid cooling of the melt [43]. Although the XRD suggests
the existence of a Nd2Fe17 type phase, the SEM images show no clear signs of precipitates.
This might be explained by the reduced amount of Nd2Fe17 phase in the ribbons and that
the phase forms mostly at the grain boundaries.
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As expected, on the surface of the heat-treated ribbons at high temperatures (1173 K),
the γ phase precipitates inside and at the grain boundaries (indicated by the blue arrows in
Figure 3c). The inset of Figure 3c shows precipitates of nanometric dimensions (~60 nm)
increasing in size along the dendritic grains (~100 nm). Nevertheless, the precipitates
are causing the crack’s disappearance because the gamma phase is responsible for the im-
proved alloy ductility [28]. Similarly, the heat treatment at a lower temperature (673 K) yield
nanometric precipitates of the developing γ phase at the grain boundaries (Figure 3e). The
cross-section investigation shows a well-defined columnar structure with cracks at the con-
tact side of the ribbons (Figure 3f). EDX analysis indicates that the chemical compositions
are the nominal ones (within the limits of the method accuracy) for all samples.

3.4. Magnetic Properties

The hysteresis of the thermomagnetic curves recorded on cooling and heating, at low
magnetic fields (0.02 T), describe the martensitic transformation of all studied samples (see
Figure 4). Thermal treatments produce specific changes to the characteristic temperatures of
the martensitic transformation. The 2 h treatment at 673 K induces the structural ordering,
and the stress relaxation caused by the ultra-rapid cooling of the ribbons, which determines
the increase in the MT temperatures, and of the Curie temperature of the T400 sample. As
highlighted by the XRD patterns and SEM images, the heat treatment performed at 1173 K
promotes the growth of the secondary γ phase. The γ phase has an essential role in lowering
the MT temperature [42], and its presence is also indicated by the higher Curie temperature
(TC > 350 K) in the T900 ribbons (red curve from the thermomagnetic measurements). The
fact that TC and MT of the AQ and Bulk samples are in the same temperature range may
be of great interest for applications. A first-order transition around room temperature
associated with the magnetic transition (magnetostructural transformation) is of interest
for the use of the associated magnetic entropy change in practical applications.
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3.5. Evaluation of Magnetocaloric Effect

Here, a commonly indirect measurement technique to assess MCE is used. Magneti-
zation was measured as a function of increasing temperature for applied magnetic field
values between 0.02 T and 7 T; depending on the measurement accuracy an error of only
3–10% for the magnetic entropy change may be achieved. In Figure 5, such an example of
magnetization measured on the AQ ribbons is shown. From the temperature dependence
of the magnetization in the applied constant magnetic field, the magnetic entropy variation
is calculated using the Maxwell equation for discrete data points:

∆Sm = ∑
i

M(T + ∆T)− M(T)
∆T

∆Hi (1)
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AQ ribbons.

Figure 6 highlights the differences between the magnetic entropy variation in the bulk
and the AQ, T400, and T900 ribbons. It follows from relation (1) that ∆Sm depends on the
rate of variation in magnetization with temperature and this is maximum at the Curie tem-
perature. However, the short-range order that is preserved between the magnetic moments
and above the Curie temperature makes the magnetization cancellation experimentally
possible over a relatively wide temperature range. That is why the contribution of the
Curie temperature to ∆Sm takes place over a relatively broad temperature range. Bulk and
AQ samples have TC and MT in the same temperature range. Thus, for 5 T applied field,
the as-prepared ribbons show ∆Sm = −5.41 J/kgK (at 310 K) and bulk alloy −4.58 J/kgK
(at 282 K). The variation in the magnetic entropy has a different behavior for the T400 and
T900 samples. For these, ∆Sm shows a maximum (in absolute value) in the specific MT
temperature range and a second peak is clear in the Curie temperature region. In addition,
the martensitic transformation is highlighted on Figure 6 by the specific peak temperature
of the austenite phase (TAp) obtained on the reverse martensite–austenite transformation by
DSC. The Curie temperatures of the studied alloys are also marked with magenta arrows.



Nanomaterials 2022, 12, 3667 9 of 13

The values obtained for the variation in the magnetic entropy change in the same trend as
that reported in the literature [44–47].
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The results of the DSC analysis and of the thermal variation in the magnetization in
0.2 T applied magnetic field, in the Bulk alloy (Figure 7a) and the same for AQ ribbons
(Figure 7b), have been represented in order to identify the thermal overlap of the MT with
that of the Curie temperature and their contributions to the ∆Sm. The Curie temperature
of the Bulk alloy (obtained from the first derivative of the magnetization in relation to the
temperature dM/dT) is equal to the austenite finish temperature Af = 290 K. Therefore, the
alloy is FSMA and shows consecutive phase transformations (the magnetic and structural
transitions are successive, in close vicinity). From Figure 7b, it can be seen that the Curie
temperature of martensite TCM (determined from dM/dT on the heating curve) is equal to
the starting temperature of martensite Ms = 290 K, indicating the ferromagnetic ordering of
martensite. At the same time, the Curie temperature of austenite (determined from dM/dT
on the cooling curve) TCA = 282 K is lower than the austenite start As = 290 K, yielding a
paramagnetic austenite. The AQ ribbons present concomitant magnetic transitions and
phase transformation, because the MT occurred between paramagnetic austenite and ferro-
magnetic martensite. This behavior explains the higher value of the magnetocaloric effect
obtained on the AQ bands and is in agreement with the literature [35] which emphasizes
the role of magnetostructural transformation.
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3.6. MR Evaluation from Ac Resistivity (ρ)

Another effect that gives a multifunctional character to ferromagnetic Heusler alloys
with shape memory effect is the magnetoresistive effect (MR). This is due to the variation
in the electrical resistivity under the effect of the magnetic field in the thermal domain
of the martensitic transformation. According to Barandiaran et al. [48], the magnetoresis-
tance anomaly in the range of martensitic transformation is the result of the combination
between the change in the resistance during the phase transformation and the change in
the transformation temperature under the effect of the magnetic field.

To characterize the magnetoresistive effect, the variation in electrical resistivity was
measured as a function of temperature, in the temperature range specific to the martensitic
transformation of each sample, without an applied magnetic field (0 T) and, respectively, in
a magnetic field of 5 T. In Figure 8a, the temperature dependence of the resistivity for the AQ
ribbons in both cases is shown. Temperature dependence of resistivity reveals a metallic
behavior in both austenite and martensite, with a jump along the MT transformation,
explained by the increase in the scattering on the boundaries of the martensite-specific of
twin-variants. In addition, it is observed that the resistivity decreases when the magnetic
field is applied [47–49], reflecting the changes made to the resistivity by the reduction in
the magnetic disorder when the magnetic field is applied.
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Magnetoresistance was calculated using the formula:

MR =
ρ(H)− ρ(0)

ρ(0)
, (2)

ρ(0) and ρ(H) represent the resistivity values without applied magnetic field and, respectively,
for 5 T. The continuous variation in MR% with temperature, corresponding to bulk, AQ and
T900 samples, are shown in Figure 8b. The value of the MR obtained for the bulk sample of
−13% at 275 K is impressive and is much higher than the values obtained in ribbons, namely
−5.23% at 285 K and −3.42% at 235 K for the AQ ribbons and T900 sample, respectively.

4. Conclusions

In this study, the Heusler non-stoichiometric Ni55Nd2Fe18Ga25 alloy, prepared by the
electric arc melting and melt spinning method, was investigated. The effects of the thermal
treatments on the phase composition, morphology, and magneto-caloric and magneto-
transport properties of the nanostructured ribbons have been examined and compared with
the bulk samples. The thermal treatments produce, besides atomic ordering, the segregation
of the gamma phase, which depletes the austenitic matrix in 3D elements, hence influencing
the thermal positioning of the TM and of the magnetic ordering. Specifically, the Curie
temperatures increase for the ordered structure, while the TM characteristic temperatures
decrease with the rising TT temperature.

The bulk samples show consecutive phase transformations with the magnetic tran-
sition at a higher temperature than the structural transition. Interestingly, however, the
as-quenched ribbons show a concomitant magneto–structural transition in the RT range.
As a consequence, the AQ ribbons have the highest value of the magnetic entropy variation
from all measured samples, of −5.41 J/kgK at 310 K. For the thermally treated ribbons, the
magnetic and structural transitions are again separated, and the two maxima occur in the
thermal dependence of the magnetic entropy variation in connection with the martensitic
transformation and in Curie temperatures.

A remarkable magnetoresistive effect of 13.5% at 275 K was recorded in the bulk
sample, which is much higher than in the ribbons (5.23% at 285 K and 3.42% at 235 K for
the AQ ribbons and T900 sample, respectively).
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