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Abstract: Laser printing has become a promising alternative for large-scale fabrication of functional
devices. Here, laser-induced forward transfer (LIFT) of nanosilica was successfully achieved using a
lower-cost nanosecond laser with a center wavelength of 1064 nm. To enhance the light absorption
of silica, a small amount of graphene oxide (GO) was added to the fumed silica. Investigations
were conducted to give an insight into the role of GO in the LIFT process. Pattern deposition was
achieved with a minimum line width of 221 µm. The scattering can be tuned from ~2.5% to ~17.5% by
changing the laser fluence. The patternable transparent display based on laser transferred nanosilica
(LTNS) film was also demonstrated, showing its capability to deliver information on multiple levels.
This LIFT based technique promotes fast, flexible, and low-cost manufacturing of scattering-based
translucent screens or patterns for transparent displays.

Keywords: laser-induced forward transfer; transparent displays; scattering; silica nanoparticle;
laser printing

1. Introduction

Laser printing has become a promising alternative for large-scale fabrication of elec-
tronic and optical devices in an on-demand, non-contact, and highly controllable way [1,2].
A focused laser beam can modify the surface features or deposit materials through mecha-
nisms such as laser-induced ablation [3,4], sintering [5], reduction [6], carbonization [7],
polymerization [8], metallization [9,10], etc. Among them, laser-induced forward transfer
(LIFT) uses transfer mechanism to deposit materials onto target samples. A LIFT setup
typically consists of a thin donor layer previously deposited onto a transparent carrier, and
a receiver substrate placed closely to the donor layer (Figure 1a). The laser pulse irradiates
the interface between the donor layer and the transparent carrier, leading to the ejection of
the donor material towards the receiver substrate [11]. This single-step, non-destructive,
and additive nature of deposition is compatible with a wide number of potential materials
without the concern of the drawbacks such as nozzle clogging in inject printing, thereby
attracting growing interest for various potential applications in both electrical and optical
applications [1,12,13].

Nanosilica can scatter incident light for numerous applications such as diffusion optics,
lighting, displays, and solar cells. In particular, nanosilica can be applied to scattering-
based transparent displays [14–16]. This is because a scattering-based transparent display
often relies on a transparent screen embedded with nanomaterials to scatter the incident
light from a projector [17]. Therefore, a person views information on the screen and can see
the real-world content behind the screen simultaneously. Many attractive applications can
be realized through this ‘see-through’ function: navigating information can be displayed

Nanomaterials 2022, 12, 3674. https://doi.org/10.3390/nano12203674 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12203674
https://doi.org/10.3390/nano12203674
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-2615-9349
https://orcid.org/0000-0003-3057-7890
https://doi.org/10.3390/nano12203674
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12203674?type=check_update&version=2


Nanomaterials 2022, 12, 3674 2 of 11

on car windshields to enhance the driving experience [16,18]; eyeglasses can become
monitors for human-machine interaction and entertainment [19]; advertisements and
product information can be displayed on show windows for shopping [16]. Extensive
studies focus on the synthesis and structural design of silica-based scattering materials for
transparent display. Nevertheless, the fabrication of nanosilica on the transparent screen is
mainly limited to drop casting and rod coating [14–16], much less pattern deposition. It
would be more advantageous to induce LIFT to print transparent and scattering nanosilica
films for transparent display.
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Figure 1. (a) Schematic diagram of the processing system; (b,c) show the photographs of laser-
transferred nanosilica (LTNS).

Light-matter interactions in a LIFT process rely on the light absorption in the laser
wavelength. However, the light absorption for silica is tiny in the visible and near infrared
(NIR) bands, resulting in difficulty in transferring silica material onto a receiver substrate.
The LIFT fabrication of transparent (low absorption) materials typically uses an absorbing
layer which insets into the interface between the donor material and carrier substrate to
enhance light absorption [20]. Laser irradiation on the absorbing layer generates gases
that actuate the donor material fragments towards the receiver substrate [1]. Ultraviolet
(UV) nanosecond lasers were also used for SiOx materials [21,22] because the absorption
coefficient of SiOx is relatively higher in the UV region than in the visible to NIR band.
Multi-photon absorption of femtosecond pulses can also promote the LIFT fabrication of
transparent silica donors [23].

Herein, we first report LIFT fabrication of nanosilica for transparent displays using
a lower-cost nanosecond laser with a center wavelength of 1064 nm. Since silica has in-
sufficient light absorption, a small amount of graphene oxide (GO) was added to silica.
Investigations were conducted to give an insight into the role of GO in the LIFT process.
Pattern deposition was achieved and illustrated. The scattering can be tuned by changing
the laser fluence. The patternable transparent display based on laser transferred nanosilica
(LTNS) film was also demonstrated, showing the capability of delivering information at
multiple levels. This LIFT based technique promotes fast, flexible, and low-cost manufac-
turing of scattering-based translucent screen or patterns for transparent display.

2. Materials and Methods

Fumed silica (AEROSIL R 972) after-treated with dimethyldichlorosilane (DDS) was
purchased from Evonik Industries AG, Essen, Germany. Ethanol was purchased from
Shanghai Aladdin Biochemical Technology Co., Ltd, Shanghai, China. All reagents were
used without further purification.

The donor film was prepared by spin-coating of silica/GO ethanol dispersion onto a
microscope glass slide. Specifically, GO was synthesized from graphite flakes via a modified
Hummers method which has been described elsewhere [24,25] and the morphology can be
seen from the SEM image in Figure S1a. Then, 21 mg GO and 100 mg fumed silica were
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added to 5 mL ethanol followed by stirring and ultrasonication for 10 min. The ratio of the
GO: SiO2 mixture was chosen taking note of the absorption of the donor film, as a higher
absorption can reduce the transfer threshold. Another issue is cost-cutting, because GO
(~$1/g) is more expensive than fumed silica (<$0.05/g). The mixture was spin-coated on to
the glass slide with a speed of 300 rpm for 30 s and then baked on a hotplate at 50 ◦C for
5 min. The 16 nm-sized fumed silica nanoparticles formed a donor film of 4 µm in average
thickness as shown in Figure S1b. Plenty of aggregates were spotted on the donor film as
the SEM images show in Figure S1c,d.

The LIFT was conducted at ambient air environment and room temperature. Figure 1a
shows the schematic diagram of the LIFT system [12]. The nanosecond fiber laser (JPT
YDFLP, Shenzhen JPT Opto-electronics Co., Ltd., Shenzhen, China) with a wavelength of
1064 nm was used for sample fabrication with a pulse duration of 10 ns and a repetition rate
of 45 kHz. The laser beam was focused on the interface between a donor film and a carrier
glass slide by an f-theta lens (Excelitas Technologies, Waltham, MA, USA) with a focal
length of 100 mm and a spot size of 30 µm. A scanning galvo mirror (Sino-Galvo (Jiangsu)
Technology Co., Ltd., Zhenjiang, China) was used for laser beam scanning at a speed of
1 m/s. A bidirectional scanning strategy was used with a line spacing (hatch distance) of
50 µm and a pulse interval of 22.2 µm as shown in Figure S2. The laser fluencies were set at
4 to 24 J/cm2, corresponding to pulse energies of 45 to 270 µJ. The distance between the
donor and the receiver glass slide was 50 µm.

The scanning electron microscope (SEM) observations combined with energy disper-
sive spectroscopy (EDS) were obtained using a Siama300 (Carl Zeiss AG, Jena, Germany)
and an Xplore30 EDS detector (Oxford Instruments, Abingdon, United Kingdom), respec-
tively. Microscope images were acquired from an optical microscope (BX53M, Olympus
Corporation, Tokyo, Japan). The X-ray photoelectron spectroscopy (XPS) patterns were
obtained by a Thermo K-alpha spectrometer (Thermo Fisher Scientific Inc., Waltham, MA,
USA) with a monochromatic Al-Ka (1486.6 eV) X-ray source. The pass energy was 20 eV
for the high-resolution scan. Raman spectra were measured using an HR Evolution spec-
trometer (HORIBA, Ltd., Kyoto, Japan). The VIS-NIR spectra (transmission and forward
scattering) were obtained by a TE-cooled spectrometer (SM303, Spectral Products, Putnam,
CT, USA) equipped with an integrating sphere (2P4, Thorlabs, Inc., Newton, NJ, USA) as
shown in Figure S3. A lab-built projection system was used to project images onto the
laser-printed screen.

3. Results and Discussion
3.1. GO-Promoted Laser Trasnfer of Nanosilica

It should be mentioned that pure fumed silica donor film without GO cannot be
transferred even at the highest laser fluence (40 J/cm2) that the laser can provide. To lower
the transfer threshold, a small amount of GO was added to the silica dispersion in the
weight proportion of 1: 5. Laser transfer was then conducted with some typical laser
fluence values ranging from 4 to 24 J/cm2. In the presence of GO, the transfer started to
occur at a significantly lower laser fluence of 8 J/cm2, leading to slightly matt white colors
on the receiver glass substrate as shown in Figure 1b. The laser transferred nanosilica
(LTNS) was also semitransparent (Figure 1c), so that the view behind the sample can be
seen through LTNS.

Figure 2a–c show the dark field microscope images of the LTNS in line printing cases
with several laser fluencies. The white specks were attributed to the light scattering by
the LTNS. Some splashes and debris appeared at the flanks of the printed line, indicating
that the donor material was ejected into the surrounding area. Film printing results are
illustrated in Figure 2d–f, displaying a prominently increased light scattering intensity
with higher laser fluence from 8 to 16 J/cm2 and a slight drop in the intensity at 24 J/cm2

(Figure S4).
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Figure 3. (a) Film thickness, and (b) line width of LTNS as a function of laser fluence. (c) Line width 

as a function of transfer distance between the donor film and receiver substrate. 

The SEM images illustrate some typical morphologies of the LTNS corresponding to 

8, 12 and 16 J/cm2. The 8 J/cm2 case (Figure 4a) induces uniform-distributed fragments on 

the substrate surface. The fragments consisted of silica grains, as shown in Figure 4c. The 

Figure 2. Dark field microscope images of the LTNS lines obtained at (a) 8 J/cm2, (b) 12 J/cm2,
and (c) 16 J/cm2. The white arrows in (b) indicates line width. LTNS films obtained at (d) 8 J/cm2,
(e) 12 J/cm2, and (f) 16 J/cm2. Scale bars in figures (b,c) and (e,f) indicate 200 µm and 500 µm,
respectively.

The average thickness of the film increases to a maximum value of about 4 µm at
a laser fluence of 16 J/cm2, and the value is maintained when further increasing the
laser fluence as shown in Figure 3a. This trend is consistent with the dark field results
because a larger amount of transferred silica scatters lights more strongly, generating
brighter images. The line widths, which indicate spatial resolution, ramp up with both
the increasing laser fluence (Figure 3b) and the transfer distance between the carrier and
receiver substrates (Figure 3c). For a 50 µm transfer distance, the line width has a minimum
value of 221 µm at 8 J/cm2, and gradually widens to 740 µm at 24 J/cm2. The line width
may be further reduced by reducing the laser spot size or using a femtosecond laser. Note
that the typical pixel size for a commercial liquid crystal display (LCD) monitor (1080 p,
27 inch) is about 300 µm, and is even larger (1.25 to 10.00 mm) for outdoor light-emitting
diode (LED) displays. Therefore, the spatial resolutions of the proposed LTNSs fulfill many
applications of transparent displays, such as head-up display (HUD), show windows, or
outdoor advertising.
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as a function of transfer distance between the donor film and receiver substrate.

The SEM images illustrate some typical morphologies of the LTNS corresponding to 8,
12 and 16 J/cm2. The 8 J/cm2 case (Figure 4a) induces uniform-distributed fragments on
the substrate surface. The fragments consisted of silica grains, as shown in Figure 4c. The
average diameter of the grains was approximately 16 nm which was consistent with that of
the fumed silica (AEROSIL R 972). For the 16 J/cm2 case (Figure 4b,d), much-larger-sized
fragments splashed over the substrate with high surface coverage and abundant porosity.
The average grain size was increased to 43 µm. This may be due to the melting of the silica
nanoparticles at higher laser fluence because laser irradiation can generate intensive heat
and the small size effects can also lower the melting temperature of the nanoparticles [1,25].
The results (Figure S5) corresponding to 24 J/cm2 are similar to those obtained at 16 J/cm2.
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Figure 4. SEM images of the LTNS film obtained at (a) 8 J/cm2 and (b) 16 J/cm2. (c,d) show higher
magnification images.

By taking EDS elemental mapping, the transfer of the LTNS was further confirmed. The
observations were obtained from the top of the sample surfaces at the donor film/Al wafer
boundary (Figure 5) and the LTNS film/Al wafer boundary (Figure 6). The boundaries
were fuzzy, with the amount of material decreasing gradually from the film to the wafer
side. Some fragments are also distributed in the Al wafer area. This is similar to the sample
on glass wafer which has been illustrated in the microscope images in Figure 2b. The
colors gradually fade out across the boundary from the donor or LTNS film to the Al wafer,
clearly implying the presence of carbon, silicon, and oxygen elements. These elements were
corresponding to and SiO2 and GO. Note that, the LTNS film shows a significant drop in
the elemental proportion of carbon from 55.9% to 13.9%. The C/Si ratios were also reduced
from 2.99 to 0.52 for the donor and LTNS, respectively. Therefore, the proportion of GO
was reduced.
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The white dash line roughly indicates the boundary between the donor film and bare Al wafer. The
scale bars in figures (b,c) indicate 2 µm.
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Figure 6. (a) SEM image, (b,c) elemental mapping analysis, and (d) EDX analysis of the LTNS film.
The white dash line roughly indicates the boundary between the LTNS film and bare Al wafer. The
scale bars in figures (b,c) indicate 5 µm.

The decrease of GO proportion was also seen from the Raman spectra as shown
in Figure 7a. The G band results from E2g phonon scattering of graphitic structure and
the D band is a defect band which can be attributed to the dangling bands in plane
terminations [26]. Compared with the donor film, the LTNS film displayed remarkably
lower peak intensities by over one order of magnitude.
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for (c) the donor film, and (d) the LTNS film.

Surface chemistry of both donor film and LTNS was further analyzed by XPS, as
shown in Figure 7b. The C1s spectra are shown in Figure 7c,d for donor film and LTNS
film, respectively. For the donor film, two Gaussian peaks with binding energies of 284.4
and 286.5 eV are attributed to C=C and O-C=O bonds in GO, respectively [27]. However,
compared with the donor film, the LTNS film shows fewer C-O bonds. Two weak peaks
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corresponding to C-C (285.1 eV), and O-C=O (288.9 eV) bonds were also observed. The
factors above imply the oxygen-containing C-O function groups have been removed par-
tially from GO [28]. Therefore, C-C bonds increased. Decomposition of GO may also have
occurred when the GO was exposed to the laser.

In general, GO promoted the laser transfer of nanosilica in two aspects. Firstly, GO
enhances the light absorption of the donor at 1064 nm. Adding a small amount of GO to
the fumed silica with a weight ratio of 1:5 can double the absorption from 7.7% to 16.9%,
as shown in Figure S6. This leads to a stronger light-matter interaction that promotes the
laser transfer. Secondly, laser irradiation caused local heat and intensive temperature rise,
which may lead to oxidative burning of GO to volatile gases [29]. This was evidenced
by the EDS, Raman and XPS as the proportion of GO was significantly reduced and the
functional groups of GO were modified. The released gases can actuate and accelerate the
donor material outward from the carrier substrate [30]. Consequently, only the donor films
with GO were transferred at the low laser fluence of 8 J/cm2; the transfer did not occur for
the film without GO even at a significantly higher laser fluence of 40 J/cm2.

3.2. Nanosilica-Induced Light Scattering for Transparent Displays

Light scattering and transmission are critical for nanosilica-enabled transparent dis-
plays. The optical spectra of the LTNS films were measured at some laser fluencies.
Figure 8a plots the forward scattering spectra of the LTNS. The stronger scattering at
shorter wavelength regions can be attributed to Mie scattering. This is because the feature
size in LTNS is similar to or larger than the wavelength of the incident light, and the scatter-
ing strength is negatively correlated with the wavelength. The scattering versus the laser
fluence at three wavelengths of 450 nm (blue), 532 nm (green) and 633 nm (red) is displayed
in Figure 8b. The scattering was about 2.5% at 8 J/cm2, and reached a maximum value
of about 8%, 12%, and 14% at 20 J/cm2 for the three wavelengths of 450 nm, 532 nm, and
633 nm, respectively. The transmission spectra in Figure 8c,d show the opposite tendency
to the scattering spectra. The transmission values can be tuned between 40% and 96%
(Figure 8d). The scattering transparent display presented here requires both a high trans-
mission to see-through and an appropriate scattering for efficiency concerns. Considering
the trade-off between scattering and transmission, a laser fluence of 16 J/cm2 was chosen
for the demonstrations, with a corresponding transmission of 60% to 82% and scattering of
8% to 14% in the visible band.

Patternable transparent display was first demonstrated with laser-printed letters
NJUPT on a glass slide as shown in Figure 9a. When white light illuminated the whole
area of the glass slide, only the letters were lighted up (Figure 9b) due to light scattering.
The blank areas without LTNS remained transparent, showing the background view. The
color of the letters can be tuned according to the color of the incident light as illustrated in
Figure 9c–e.

The LTNS film can be see-through as a translucent screen with a decent visibility of the
view behind it (Figure 10a). Figure 10b,c show the white and colorful letters projected on
the film, respectively. Further demonstrations of image display are presented in Figure 10d.
A photo image of a butterfly on a flower was clearly projected on the screen. Figure 10e
compares the difference in effect with and without the LTNS on the glass slide. The image
appeared only at the locations with LTNS, proving the role of the LTNS film. The image
was also projected on the LTNS pattern (letters NJUPT) illustrated in Figure 10f. Therefore,
the patternable LTNS film can deliver information on multiple levels.
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4. Conclusions

LIFT fabrication of nanosilica was successfully achieved using a lower-cost nanosec-
ond laser with a center wavelength of 1064 nm. By adding a small amount of GO to the
fumed silica, the laser transfer can be triggered at a laser fluence above 8 J/cm2. Two
aspects of GO may be involved in the LIFT process, the enhancement of light absorption
and gas generation due to laser-induced decomposition and reduction. The LIFT process
enables pattern deposition with a typical minimum line width of 221 µm. The scattering can
be tuned from ~2.5% to ~17.5% by changing the laser fluence. The patternable transparent
display based on LTNS film was also demonstrated, showing its ability to deliver informa-
tion on multiple levels. This LIFT based technique promotes fast, flexible, and low-cost
manufacturing of scattering-based translucent screens or patterns for transparent displays.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12203674/s1. Figure S1: SEM image of (a) graphene oxide.
(b) Cross-sectional microscope image of the donor film. (c) SEM image of the donor film, and
(d) an enlarged view. Figure S2: Schematic diagram of the laser bidirectional scanning strategy.
Figure S3: Optical setup of the transmission measurement and forward scattering measurement with
an integrating sphere in (a) transmission and (b) forward scattering setup. Figure S4: Dark field
microscope images of the LTNS films obtained at (a) 20 J/cm2 and (b) 24 J/cm2. Figure S5: (a) SEM
images of the LTNS film obtained at 24 J/cm2, and (b) the enlarged view. Figure S6: NIR absorption
spectra of the donor films.
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