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Abstract: Among many electrode materials, cobalt-based nanomaterials are widely used in super-
capacitors because of their high natural abundance, good electrical conductivity, and high specific
capacitance. However, there are still some difficulties to overcome, including poor structural stability
and low power density. This paper summarizes the research progress of cobalt-based nanomaterials
(cobalt oxide, cobalt hydroxide, cobalt-containing ternary metal oxides, etc.) as electrode materials for
supercapacitors in recent years and discusses the preparation methods and properties of the materials.
Notably, the focus of this paper is on the strategies to improve the electrochemical properties of
these materials. We show that the performance of cobalt-based nanomaterials can be improved by
designing their morphologies and, among the many morphologies, the mesoporous structure plays a
major role. This is because mesoporous structures can mitigate volume changes and improve the
performance of pseudo capacitance. This review is dedicated to the study of several cobalt-based
nanomaterials in supercapacitors, and we hope that future scholars will make new breakthroughs in
morphology design.

Keywords: supercapacitor; cobalt-containing nanomaterials; morphological design

1. Introduction
1.1. Background

Using non-renewable resources such as fossil fuels will cause severe environmental
pollution, and their prices are rising yearly due to their dwindling reserves. Therefore, it
is urgent to develop sustainable green energy, among which wind and solar energy have
been used on a large scale [1]. To better store and transport electricity from sustainable
energy sources, energy storage technology has been developed significantly. Rechargeable
batteries and supercapacitors (SCs) have been the major chemical energy storage devices.

At present, rechargeable lithium-ion batteries with good safety performance, high
voltage and high energy density are widely used. However, with the rising demand
for lithium-ion batteries, lithium resources are facing an extremely tight situation. Thus,
sodium, an alkali metal, has attracted increasing attention in recent years due to its abun-
dant content and low cost. However, poor cycle performance is still the most significant
problem hindering the development of sodium-ion batteries. Compared to rechargeable
batteries, SCs have faster charging and discharging processes (SCs: 1–10 s and batteries:
0.5–5 h), higher power density (SCs: 500–10,000 W kg−1 and batteries < 1000 W kg−1),
longer lifetime (SCs > 500,000 h and batteries: 500–1000 h) and safer operation [2–5]. How-
ever, SCs have a disadvantage in terms of low energy density (SCs: 1–10 W h kg−1 and
batteries: 10–100 W h kg−1) [2,6–9]. To get over the barrier of low energy density, one of
the most common approaches is to develop high-performance electrode materials for SCs.

1.2. Transition Group Metals Electrode Materials

Transition group metal materials have been widely used as electrode materials for SCs
in recent years, and include oxides/hydroxides [10–13], sulfides [14–17], phosphides [18],
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and other categories. Among these materials, RuO2, the most representative one, was con-
sidered the most desirable pseudocapacitive material for its theoretical specific capacitance
(1300–2200 F g−1) [19]. However, insufficient resources and the environmental toxicity of
RuO2 has unfortunately limited its further development [20]. This has led the relevant
research on RuO2 to its compound materials and other transition group metals to reduce
the cost. Among them, cobalt-based materials are promising electrode materials for SCs
because of their natural abundance, good cycle stability, abundant electroactive sites, high
specific capacitance, and high electronic conductivity. In recent years, various cobalt-based
materials, such as Co3O4, Co(OH)2, cobalt-based ternary metal oxides, and sulfides, have
been widely studied and many advances have been made.

1.3. Contents of This Review

Scholars have done much research on cobalt-based nano-material electrodes. However,
their broad application is limited due to low electrochemical potential window, poor struc-
tural stability, unsatisfactory cycle stability and low power density. Generally speaking, the
morphology, chemical composition and crystal defects of cobalt-based electrode materials
have a great influence on the electrochemical performance of energy storage devices. Re-
searchers have explored this issue, including doping other elements, introducing oxygen
vacancies, and controlling synthesis conditions to construct different spatial structures of
materials to improve the performance of the above electrode materials.

As far as we know, most of the existing reviews classify cobalt-based nanomaterials
into a specific class of materials for a brief overview, while few reviews summarize their
applications in SC electrodes alone. To promote future breakthroughs in this field, we
provide a more comprehensive description of the application of cobalt-based nanomaterials
in supercapacitors. Starting from nano-structured cobalt-based materials (cobalt tetroxide,
cobalt hydroxide, cobalt-containing ternary metal oxides) and their composites, the applica-
tion of cobalt-based materials in supercapacitor electrodes is introduced. First, the working
principle and classification of SCs are introduced. Second, the applications of cobalt-based
nano-compounds in SCs are studied, including the structure and electrochemical prop-
erties of cobalt-based nano-materials, the synthesis methods of electrode materials, the
construction of different nano-structures and composites with other materials. In addition,
the influence of morphology on the properties of cobalt-based nanomaterial electrodes
is emphasized. Finally, we look forward to the development and challenges of SCs and
cobalt-based materials.

2. Cobalt-Based Nanomaterials for SC Applications

With the popularity of mobile electronic devices, electric vehicles, and new energy
vehicles, energy storage systems have become an integral part of modern society. Among
them, SCs have become electrochemical containers, and have attracted significant attention
because of their safe operation, good cycle performance, fast charging capacity and high-
power density.

As shown in Figure 1a, a SC mainly consists of a pair of parallel plate electrodes,
an electrolyte solution, electrode materials and an ion-permeable separator [21]. The
separator can separate the two electrodes effectively to prevent mutual contact and short
circuit [22]. The energy storage mechanism of SCs include (1) reversible ion adsorption
and desorption processes between active materials and electrolytes, and (2) reversible
faradaic redox reactions during charging and discharging. Furthermore, according to the
charge storage mechanism of SCs, they can be divided into three categories: electronic
double-layer capacitors (EDLCs), pseudo-capacitors (PCs) and battery-type capacitors. The
specific mechanisms of these three types of capacitors are explained below.
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fore, common electrode materials mainly include porous carbon-based electrode materi-
als with high specific surface area [24–26]. However, due to the absence of Faraday redox 
reactions in the energy storage process, the charging mechanism confines the capacitance 
to a lower range, exhibiting a higher power density but lower energy density and specific 
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Based on the Faraday redox reaction, the pseudo-capacitance gives the SCs higher 
charge storage capacity. Similar to the charging and discharging processes occurring in 
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Figure 1. (a) Schematic diagram of the structure of an SC and energy storage mechanism of (b) an
electric double layer capacitor, (c) a surface redox capacitor, (d) intercalation capacitor and (e) a
battery-type capacitor.

EDLC is controlled by reversible adsorption/desorption of electrolyte ions at the
electrode/electrolyte interface (Figure 1b), a process involving only the physical adsorption
of ions but not any chemical reaction [23]. During the charging process, electrons migrate
from the negative electrode to the positive electrode, accumulating positive and negative
charges at the two electrodes. Then, the anions in the electrolyte solution move toward the
positive electrode and the cations move toward the negative electrode. During the discharge
process, the reverse procedure takes place. Since the potential drop is primarily limited
to a small range (0.1–10 nm), EDLC has a higher energy density than the conventional
capacitor, and its capacitance is related to the interface area of the electrodes. Therefore,
common electrode materials mainly include porous carbon-based electrode materials with
high specific surface area [24–26]. However, due to the absence of Faraday redox reactions
in the energy storage process, the charging mechanism confines the capacitance to a lower
range, exhibiting a higher power density but lower energy density and specific capacitance.

Based on the Faraday redox reaction, the pseudo-capacitance gives the SCs higher
charge storage capacity. Similar to the charging and discharging processes occurring in
batteries, the energy storage process in such SCs is a fast reversible Faraday reaction at or
near the surface of the active material, but without causing phase changes in the electrode
material [22,27]. PCs can be divided into two types: PCs controlled by surface redox
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reactions (Figure 1c) and PCs controlled by intercalation layers (Figure 1d). For the former
PCs, during the redox pseudo-capacitance process, electron transfer occurs when ions in
the electrolyte solution are attracted to or near the electrode surface. For the latter PCs,
electron transfer occurs when ions are transferred into the gap or interlayer of the electrode
and layered electrodes expose a larger area in an electrolyte solution. However, electrode
materials are prone to shrinkage and expansion during charging and discharging due to the
redox reaction at the electrode, leading to poor cycling performance [28]. Both capacitance
and energy density of PCs are much larger than those of EDLCs. This is mainly attributed
to the unique charge storage mechanism of the Faraday redox reaction rather than the fully
reversible physical charge/discharge processes.

Battery-type SCs (their structures are shown in Figure 1e) are distinguished from
PCs by their distinctive feature of exhibiting phase change behavior during charging and
discharging [29–31]. The charge storage mechanism in battery materials involves the
reaction with OH− in alkaline medium, which is controlled by the diffusion of electrolyte
ions [31]. Battery-like materials usually have high charge storage capacity. However, the
slow phase change of the material during charging and discharging reduces its kinetic
performance, making its multiplicative performance low. In contrast, battery-type materials
with unique nanostructures have a high specific surface area, creating great active sites
for redox reactions and providing a shorter distance for the diffusion of electrolyte ions.
Moreover, the rapid phase transition of battery-like materials during charge storage is
mitigated by designing their nanostructures.

Transition metal oxides are widely studied as SC electrode materials because they
possess higher energy density than carbon materials due to the Faraday electrolysis reaction
involved in the electrochemical process. Among them, cobalt nanomaterial is a typical
transition metal SC material. In recent years, research on SC electrode materials of Co3O4,
Co(OH)2, MnCo2O4, NiCo2O4, ZnCo2O4 and their derivatives have been widely reported.

2.1. Cobalt Oxide

In recent years, transition metal oxides have attracted more and more attention as
electrode materials with ultra-high electrochemical activity for SCs [32–38]. Among various
transition metal oxides, Co3O4 electrode materials and related composites have been widely
studied because of their high specific capacitance, low price, and environmental friendliness.
In addition, the Co3O4 electrode material, with special microstructure and morphology, has
excellent electrochemical capacitance behavior.

At present, several processes are used to prepare Co3O4, the common ones being
hydrothermal [39,40], electrochemical deposition [41], thermal decomposition [42], and
sol-gel methods [43]. The hydrothermal method is a process in which the dissolution and
recrystallization of insoluble substances occurs in a closed reactor at high temperature
and pressure. Experimental parameters, such as temperature, time and molar ratio of
additives, have been found to have a significant effect on the morphology of the product [44].
Electrochemical deposition is another important method to prepare electrode materials.
During the deposition process, electrical energy can provide a strong driving force for the
redox reaction, thus ensuring the uniform growth of electrode materials on conductive
substrates, such as stainless steel, nickel foam, and carbon cloth [45–47]. Meanwhile,
the conductive substrate is used as the working electrode, and deposition conditions
such as scan rate, number of cycles, electrolyte concentration and pH are used as control
parameters to achieve high surface area and uniform deposition. On the other hand, the
thermal decomposition method usually relies on the conversion of certain substances
at high temperatures to achieve the modification of electrode materials. This avoids
complex multiple synthesis steps and minimizes the use of solvents, making it simple
and environmentally friendly. As for the sol-gel method, the process can be described as
follows: precursors such as metal alcohol salts or inorganic compounds are hydrolyzed
under certain conditions to form a stable and transparent sol system, then are agglomerated
into a gel, and finally dried and sintered to form a solid. The advantages of this method are
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low reaction temperature, easy control of the reaction, and high homogeneity of the sample
down to the molecular or atomic level. The shape and size of the nanoparticles are usually
controlled by adjusting the ratio of raw materials and the initial pH of the solution.

2.1.1. Co3O4

As mentioned above, Co3O4 as a transition metal oxide, has a theoretical specific
capacitance of 3560 F g−1, good reversibility, and excellent electrochemical properties [48].
Therefore, it is one of the most attractive electrode materials for SCs. However, the capaci-
tive degradation of Co3O4 at high current densities results in its poor reversibility [49,50].
This phenomenon leads to the actual obtained Co3O4 specific capacitance being much
lower than the theoretical value, so the application of Co3O4 in SCs is severely limited. It
has been reported that the electrochemical performance of Co3O4 can be greatly improved
by regulating the micromorphology of Co3O4.

In recent years, various morphologies of Co3O4 have been synthesized by differ-
ent methods (shown in Figure 2), such as Co3O4 nanofibers [51], layered Co3O4 [52],
Co3O4 nanoparticles [53], Co3O4 nanorod arrays [54], core-shell Co3O4 [55], porous Co3O4
nanowires [56], and hollow coral-shaped Co3O4 [57]. Several Co3O4 electrode materials
with typical morphologies are briefly described below, including their preparation pro-
cesses, unique spatial structures, and their principles. For the convenience of readers, the
electrical property data of these materials is listed separately in Table 1.
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Figure 2. Various morphologies of Co3O4. (a) Nano fibers; reprinted with permission from ref. [51].
(b) Layered Co3O4; reprinted with permission from ref. [52]. (c) Nano particles; reprinted with
permission from ref. [53]. (d) Nanorod arrays; reprinted with permission from ref. [54]. (e) Core-shell
Co3O4; reprinted with permission from ref. [55]. (f) Nano wires; reprinted with permission from
ref. [56]. (g) Hollow coral shape; reprinted with permission from ref. [57].
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Table 1. Electrochemical properties of each microscopic morphology.

Morphology Specific Capacitance
(Current Density)

Cycling Performance
(Cycles, Current Density) Year Ref.

nanofibers 407 F g−1 (5 mV s−1) 94% (1000, 1 A g−1) 2014 [51]

layered Co3O4 352 F g−1 (2 A g−1) 129% (2500, 2 A g−1) 2012 [52]

nanoparticles 362.8 F g−1 (0.2 A g−1) 73.5% (1000, 1 A g−1) 2014 [53]

nanorod arrays 154.9 C g−1 (1 A g−1) 88% (1000, 1 A g−1) 2019 [54]

core-shell Co3O4 837.7 F g−1 (1 A g−1) 87.0% (2000, 5 A g−1) 2018 [55]

porous nanowires 2815.7 F g−1 (1 A g−1) 88.8% (1100, 1 A g−1) 2018 [56]

hollow coral shape 626.5 F g−1 (5 mV s−1) ≈100% (5000, 10 A g−1) 2019 [57]

Manish Kumar et al. prepared Co3O4 nanofibers (shown in Figure 2a) by electrospin-
ning technology [51]. Due to the large specific surface area and unique porous network
morphology of this structure, the electrolyte solution can better contact with the electrode
material. This is conducive to the transport of ions and electrons at the electrode-electrolyte
interface, thus accelerating the redox progress. Duan et al. synthesized layered porous
Co3O4 films by a hydrothermal method [52]. As shown in Figure 2b, the prepared Co3O4
films display a two-layer structure in which the lower structure consists of an array of
Co3O4 monolayer hollow spheres and the upper structure consists of porous mesh-like
Co3O4 nanosheets. The high porosity and large specific surface area provide a short path for
ion/electron transfer, and the close contact between the active material and the electrolyte
leads to high electrochemical activity, which enhances the pseudocapacitive performance.
In addition, the graded porous structure can also moderate the volume changes caused
by redox reactions, thus improving cycling performance. Deng et al. synthesized cobalt
oxides (Co3O4 and Co3O4/CoO) by burning a mixture of Co(NO3)2·6H2O and citric acid
(Figure 2c) [53]. They experimentally confirmed that the morphology of the electrode mate-
rials could be influenced by adjusting the citric acid/Co(NO3)2·6H2O molar ratio. Based on
this, they produced electrode materials with the best performance. As shown in Figure 2d,
unique Co3O4 nanorod arrays were synthesized through a simple chemical bath deposition
and annealing process by Chen et al. [54]. Due to their high specific surface area and novel
structure, the specific capacitance of Co3O4 nanorod arrays is high. It was found that
Co3O4 nanorod arrays have good cycling stability, conductivity, and ion diffusion behavior.
Liu et al. prepared Co3O4 mesoporous nanospheres with a homogeneous core-shell by the
solvothermal and rapid calcination methods (Figure 2e) [55]. The accumulation density
of sub-nanoparticles and the thickness of Co3O4 shell layer can be controlled by changing
the annealing time. Both the tunable mesoporous and core-shell structures can facilitate
the ion and electron transport efficiently while adapting to the volume change of the oxide
electrode during cycling. Xu et al. successfully prepared one-dimensional porous Co3O4
nanowires by thermal decomposition of coordination polymers with nitrilotriacetic acid
as a chelating agent using a solvothermal method (Figure 2f) [56]. The porous structure
of Co3O4 nanowires consists of many nanoparticles. The special structure maximizes the
exposure of the active material to the alkaline electrolyte, resulting in high specific capacity
and good cycling stability. Wang et al. obtained hollow coral-shaped Co3O4 nanostructures
by calcining cobalt oxalate precursors in the air (Figure 2g) [57]. The hollow structure allows
it to withstand volume changes during the reaction process and thus exhibits excellent
cycling performance.

Starting from improving the contact area between electrode and electrolyte, Lu et al.
prepared layered Co3O4 electrode material by combining 2-methylimidazole cobalt salt
and electro-spun nanofibers [58]. Its unique three-dimensional (3D) network and nano
porous structure reduced the ion diffusion distance and increased the contact area between
electrode and electrolyte, thus improving its electrochemical performance. The synthesized
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Co3O4 electrode can provide a high specific capacitance of 970 F g−1 at a current density
of 1 A g−1, an energy density of 54.6 W h kg−1 at a power density of 360.6 W kg−1, and a
capacitance retention rate of 77.5% after 5000 cycles at 6 A g−1.

The above study showed that the electrochemical performance of Co3O4 can be sig-
nificantly improved by adjusting its morphology. By designing a unique structure, the
contact area can be increased, and the close contact between the active material and the
electrolyte can lead to high electrochemical activity, which enhances the pseudocapacitive
performance. In addition, the graded porous structure can also moderate the volume
changes caused by redox reactions, thus improving the cycling performance.

2.1.2. Co3O4 Composites

To further improve the performance of Co3O4, and meet the needs of various appli-
cations, one of the main means is to prepare Co3O4 composites by anchoring Co3O4 on
a carbon-based material with high electrical conductivity. Among many carbon-based
materials, graphene with large specific area, unique mechanical, and excellent electrochem-
ical properties is considered to be an ideal carrier for loading Co3O4 nanostructures [59].
Therefore, graphene-based Co3O4 composites have become a research hotspot in recent
years. For example, Tan et al. made self-supporting and non-adhesive Co3O4 nano sheet
arrays/graphene/Ni hybrid foams by in-situ synthesis of graphene and Co3O4 nanosheets
on nickel foam [60]. The SEM image shows that the porous structure supported by the
composite remain good. At the same time, the substrate is completely covered by Co3O4
nanosheets and there is no agglomeration. This self-supporting and adhesive free char-
acteristic avoids the disadvantage of the high resistance of traditional graphene-based
Co3O4 composites due to the contact between hybrid particles, additives, adhesives, and
collectors. The cycle performance of Co3O4 nano sheet/graphene/Ni hybrid electrode has
been studied. It was found that after 5000 cycles at a current density of 10 mA cm−2, it had
112.2% of the initial capacitance. This indicates that the ability of this unique Co3O4 nano
sheet/graphene/Ni hybrid electrode can meet the requirements of good capacity and long
cycle life at high current density.

Younis et al. synthesized Co3O4 nanosheets by one-step electrochemical deposition
on carbon foam followed by annealing [41]. The electrochemical properties of the Co3O4
nanosheets were improved due to the good electrical conductivity of the composite carbon
foam. In addition, a dense mesoporous structure could be observed in the SEM images,
which may be one of the main reasons for the improved electrochemical properties. Electro-
chemical tests showed that the prepared Co3O4 nanosheets had ideal capacitive properties
with a maximum specific capacitance of 106 F g−1 in 1 M NaOH solution at a scan rate of
0.5 V s−1. In this report, the prepared ultrathin nanosheets were simple in process, low in
cost, and suitable for industrial applications, which have high reference value.

Introducing oxygen vacancies into transition metal oxides can change their geometric
and electronic structures, improve their intrinsic conductivity and electrochemical activity,
and improve their properties [61–64]. For example, Xiang and others prepared Co3O4 nano
sheet electrode materials with different oxygen vacancy content by different reduction
methods [65]. They showed that Co3O4 electrode with high oxygen vacancy content
has better electrochemical performance. At the current density of 2 A g−1, the capacity
retention percentage can reach 95% after 3000 cycles, while the capacitance retention rate
of the original Co3O4 nanosheet electrode was only 90% under the same conditions. This
indicates that the introduction of oxygen vacancy can improve the conductivity, increase
the capacitance, and significantly improve the electrochemical performance.

Yang et al. used the one-step laser irradiation method for the first time to synthesize
ultrafine Co3O4 nanoparticles/graphene composites with rich oxygen vacancies by laser-
induced reduction and fragmentation [66]. Compared with the traditional method, the
one-step laser irradiation method is simple, does not need to add reducing agents and
additives, and solves the pollution problem of organic additives. At 10 A g−1 current
density, the capacitance retention of the composites after 2000 cycles could reach 99.3%,
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while the capacitance retention of porous Co3O4 nanorods electrodes was only about 84.7%,
indicating that Co3O4 nanoparticles/graphene composites have excellent cycle stability.

2.2. Co(OH)2

Similar to transition metal oxides, transition metal hydroxides have excellent pseu-
docapacitive properties [67]. Among them, Co(OH)2 has become one of the promising
materials in SCs due to its high theoretical capacitance (3460 F g−1) and low cost. With
electrode materials, reversible redox reactions take place during charge and discharge. The
specific process is that Co(OH)2 stores charge by participating in the O-H bond breaking
and recombination reaction in the electrolyte. The redox reaction can be expressed as [68]:

Co(OH)2 + OH− → CoOOH + H2O + e− (1)

The oxidation product CoOOH can further undergo a deprotonation reaction and
carry out the second redox reaction [22]:

CoOOH + OH− → CoO2 + H2O + e− (2)

Although the theoretical capacitance of Co(OH)2 is very high, it is difficult to meet
the requirements of fast electron transport rate at high power density because it is a P-
type semiconductor. An effective way to alleviate the above problems is to construct
conductive matrix hybrid nanostructures of Co(OH)2. For example, Pan et al. synthesized
Co(OH)2/Ni nano-lake array with porous structure by hydrothermal and electrodeposition
methods [69]; its microstructure is shown in Figure 3. As a conductive substrate, nickel
foam forms a porous conductive network, which can shorten the diffusion path of ions and
electrons, and improve the charge efficiency, thus effectively improving the electrochemical
performance of SC. When the charge and discharge rate changes from 1 A g−1 to 40 A g−1,
the capacitance retention rate reaches 87.6%, while that of pure Co(OH)2 nano-lake array is
only 76.4% under the same conditions.

Li et al. prepared a 3D independent Co(OH)2/Ni heterostructure electrode by deposit-
ing sea urchin-like Co(OH)2 microspheres on nickel foam using a one-step hydrothermal
method [70]. According to the analysis of its electrochemical performance, the capacitance
could reach 1916 F g−1 at 10 mA cm−2, and 79.3% of the original capacitance was main-
tained after 5000 charge and discharge cycles at 80 mA cm−2 current density. The reason
for this decrease in capacitance is that some sea urchin-like Co(OH)2 microspheres become
inconspicuous rod-like and stacked plate-like CoOOH due to changes in composition and
structure during charging and discharging.

To improve the density of SCs while maintaining their flexibility, Zhao and his col-
leagues deposited Co(OH)2 on nickel oxide/hydroxide coated nano porous nickel (np-
NiOxHy@Ni) by electrochemical deposition [71]. Then they successfully synthesized a
Co(OH)2/np-NiOxHy@Ni hybrid electrode with a hierarchical porous structure and ex-
cellent flexibility. The layered porous structure improves the surface area and effectively
promotes ion diffusion. At the same time, the coordination between Co(OH)2 and NiOxHy
electroactive materials significantly improves the electrochemical reaction activity of elec-
trode materials. The capacitance of Co(OH)2/np-NiOxHy@Ni electrode was 1421.1 F cm−3

at 0.5 A cm−3 current density, and 81.6% of the original capacitance remained after 8000 cy-
cles at 2 A cm−3 current density.
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2.3. Cobalt-Containing Ternary Metal Oxide

Cobalt-containing ternary metal oxides are typical spinel structures, and the cells of
spinel consist of eight small cubic cells, which are four A-type cells and four B-type cells
interconnected (Figure 4). Each A-type or B-type unit has four O2− for a total of 32. M ions
are in the center of the A-type unit (tetrahedral gap) and half of the vertices of the eight
small cubic units for a total of eight. Cobalt ions occupy each of four octahedral gaps, for a
total of 16. The cell general formula of cobalt-based spinel is M8Co16O32, and the chemical
formula is summarized as MCo2O4. Furthermore, in general, the alkaline electrolytes of
different Co-based spinel MCo2O4 (M = Co, Ni, Fe, and Mn) undergo approximately the
same reversible electrochemical redox reactions with the discharge products of M ions
as hydroxyl oxides MOOH [72–74]. The resulting MOOH (M = Co, Fe, and Mn) further
discharges and produces the corresponding CoO2 [72], FeO4

2− [75] and MnO2. Because of
the presence of Cu(I)/Cu(II) pairs, the discharge products of Zn2+ and Cu2+ are Zn(II) [76]
and Cu(I)/Cu(II) [77] hydroxides.
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Metal oxides with multiple metal cations generally have higher conductivity and
capacitive activity than single metal oxides [78]. Among them, ternary transition metal
oxides provide more active sites for redox reaction and improve electronic conductivity
because they have two different cations [79]. Compared with binary transition metal oxides
such as Co3O4, the electrochemical properties of ternary transition metal oxides (MnCo2O4,
NiCo2O4, ZnCo2O4, etc.) are significantly improved under the influence of the synergistic
effect generated by the coupling of two transition metals [36].

2.3.1. MnCo2O4

MnCo2O4 is a typical compound with a spinel structure. It can show two lattice
structures: (a) normal spinel [80,81], (b) anti spinel [82]. Due to the diversity of crystal
structure, the variation of charges (Mn and Co) occupied in octahedron and tetrahedron
makes it have excellent redox stability [83]. Manganese transmits more electrons and
has higher capacity, while cobalt has higher oxidation potential. Many experiments have
proved that MnCo2O4 improves the electrochemical performance of single Co3O4 and
shows better conductivity, structural stability, and cycle performance [84–86]. The reaction
principle of MnCo2O4 is as follows:

MnCo2O4 + OH− + H2O→MnOOH + 2CoOOH + e− (3)

MnOOH + OH− →MnO2 + H2O + e− (4)

CoOOH + OH− → CoO2 + H2O + e− (5)

MnCo2O4 reacts under alkaline conditions to form MnOOH and CoOOH, and the
resulting MnOOH and CoOOH continue to react with OH− to form MnO2 and CoO2, while
releasing electrons.

Based on the above studies, MnCo2O4 is considered an ideal candidate material for SCs,
so it has been widely studied. Various forms of MnCo2O4 materials have been prepared,
such as flower shaped hollow microspheres [87], core-shell structures [88], nano cages [89],
nano needles [90], ellipsoids [91], and sea urchins [92]. For example, Dong et al. synthesized
MnCo2O4 with a hierarchical nanocage structure using a bimetallic zeolite imidazolate
framework as the precursor and template [89]. The preparation process and morphological
characterization are shown in Figure 5. Through the analysis of its micro morphology,
it can be found that many interconnected nanoparticles form a highly porous nanocage
structure. This unique nanocage structure exposes a large area of surface and mesoporous
structure, which promotes the diffusion of ions and ensures its excellent electrochemical
performance in SCs. By testing the electrochemical performance of MnCo2O4 electrode, it
was found that it can show 95% capacitance retention after 4500 cycles at 1 A g−1, which
proves its superior cycle stability. Che et al. synthesized flower-shaped MnCo2O4 hollow
microspheres with a nano flower structure by the template free method of mixing and
heating the solvent to 180 ◦C [87], and then calcining at 350 ◦C for two hours. An SEM
microscopic image is shown in the Figure 6. The larger surface area and porous structure
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provide more active sites, promote the transfer of ions and electrons, accelerate the reaction
rate, and greatly enhance its electrochemical storage performance. The capacity retention
rate of the electrode was 93.6% after 2000 consecutive cycles at a high current density of
1 A g−1.
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Figure 6. SEM images (a,b) of the calcined MnCo2O4 products and the corresponding elements
mapping (c–e) taken from the square area marked in Figure 6a. Reproduced with permission from
Hongwei Che, Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for
application in supercapacitors; published by Elsevier, 2016 [87].

Although the electrochemical performance of an MnCo2O4 electrode is significantly
improved compared with a single Co3O4 electrode, its development is limited by its poor
cycle stability in long-term use. To solve this problem, one of the effective methods is to
compound it with some carbonaceous material with light electric power or other pseudo-
capacitive oxide or hydroxide to improve its cycle stability. For example, Wang et al.
synthesized a 3D porous structure based on MnCo2O4 modified graphene [93]. The specific
capacitance reached 503 F g−1 at a current density of 1 A g−1. After 5000 charge-discharge
cycles (current density of 10 A g−1), 97.4% of the specific capacitance was retained.

Zhao et al. synthesized an MnCo2O4@Ni(OH)2 multicomponent composite by a stepwise
hydrothermal method [88]. The synthesis process is shown in Figure 7. First, layered double
hydroxides of cobalt and manganese were generated with hexamethylenetetramine as a
structure guide. With the directional attachment process as the driving force, the nanoparticles
finally grew into MnCo2O4 nanostructures. Then, using nickel chloride and hexamethylenete-
tramine as the lead solution, an ultra-thin Ni(OH)2 nano sheet was fixed on the nano alloy
by hydrothermal method to produce a layered MnCo2O4@Ni(OH)2 core-shell structure. The
discharge time of MnCo2O4@Ni(OH)2 was about four times that of MnCo2O4.
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The specific capacitance of activated carbon electrode can reach 328 F g−1 at 0.2 A g−1,
and the maximum energy density of asymmetric SC (ASC) can reach 48 W h kg−1 when
the mean power density is 1.4 kW kg−1, which is significantly higher than that of most
commercial batteries. In addition, the capacitance retention of the hybrid electrode is
about 90% after 2500 cycles at a current density of 6 A g−1, and the structure of the
nano alloy remains good. The above results show that the electrochemical performance
of MnCo2O4 is significantly improved and its cycle stability is higher by compounding
MnCo2O4 with Ni(OH)2.

As mentioned above, compared with a single MnCo2O4 material, MnCo2O4 com-
pounded with other materials has higher cycle stability and greater prospects. Although the
electrochemistry of the material can be improved to some extent by changing the morphology
and structure or compounding with other materials, the low conductivity of MnCo2O4 has
hindered its wide application as an energy storage device. At the same time, how to accurately
control the micro morphology of the composite still needs further exploration.

2.3.2. NiCo2O4

As a typical cobalt-containing ternary metal oxide, NiCo2O4 is also a transition metal
oxide with a spinel structure. It has the advantages of high electrochemical activity, good
conductivity, high theoretical capacitance, low cost, and simple synthesis. Therefore,
NiCo2O4 is also one of the most attractive electrode materials in SCs [94–98]. In its structure,
nickel ions occupy octahedral sites, and cobalt ions diffuse in octahedral and tetrahedral
sites [99]. The electronic conductivity and electrochemical activity of NiCo2O4 are signifi-
cantly higher than those of nickel oxide and cobalt oxide alone due to the synergistic effect
of Ni with Co.

At present, various nanostructures of NiCo2O4 have been prepared, such as nanowires [100],
nanosheets [101], nanoflowers [102], and nanorods [103]. Among them, hollow nano ma-
terials have a large surface area, large gap and short effective transmission distance of
electrolyte ions [104]. They provide more electroactive sites for rapid ion insertion of
the whole electrode material and show excellent electrochemical performance. Xu et al.
synthesized hollow NiCo2O4 nanospheres with a layered structure [104]. When using them
as electrodes, the specific capacitance at 1 A g−1 is 1229 F g−1, which is higher than that of
NiCo2S4 hollow spheres (1036 F g−1 at 1 A g−1) [105], NiCo2O4 hollow spheres (1141 F g−1

at 1 A g−1) [106], hollow NiCo2O4 sub microspheres (678 F g−1 at 1 A g−1) [107], urchin-like
NiCo2O4 hollow microspheres (942.2 F g−1 at 0.5 A g−1) [108], and mesoporous NiCo2O4
hollow microspheres (987 F g−1 at 1 A g−1) [109]. After 3000 cycles at 50 mV s−1, the total
specific capacitance retention of hollow NiCo2O4 nanosphere electrode is 86.3%, while the
total specific capacitance retention of NiCo2O4 microsphere electrode is 83.7%.

Although hollow microspheres can effectively improve surface area, the single-structure
NiCo2O4 electrode material still has the disadvantages of low conductivity, limited kinetics,
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and poor electrochemical performance [110–114]. To improve its electrochemical perfor-
mance, constructing NiCo2O4 layered nanostructure composites has become an important
means [115–119]. For example, Zhou and others synthesized 3D porous graphene/NiCo2O4
hybrid films with copper oxide as a template [120]. Its unique 3D porous structure can
store many electrolytes and provide rich active centers, thus improving the electrochemical
performance. At 1 A g−1, the specific capacitance can reach 708.36 F g−1. After 6000 cycles
at 10 A g−1, the initial capacitance of 94.3% is maintained. Li et al. prepared flower-like
hollow C@MnCo2O4 with high specific surface area. At a discharge current density of
1 A g−1, the discharge capacitance reached 728.4 F g−1, and after 1000 cycles at 8 A g−1

the initial capacitance retention of the composite was 95.9% [121]. Zhao et al. synthesized
ultra-thin NiCo2O4/NiO nanosheets grown on silicon nitride [122]. After 2000 cycles at
20 mA cm−2 current density, the specific capacitance retention was 90.9%, and the energy
density was 60 W h kg−1 when the power density was 1.66 kW kg−1. Cheng et al. prepared
a 3D layered NiCo2O4@NiMoO4 nuclear shell nanowires/nanowire sheet array on nickel
foam, with a capacitance retention rate of 85.2% after 3000 cycles at a current density of
20 mA cm−2 [123]. After a long cycle, the volume resistance of the ASC device increased
slightly from the initial 0.40 Ω to 0.42 Ω. The above shows that the prepared composites
have good cycle stability. Lee et al. synthesized MnCo2O4-NiCo2O4 composite with lay-
ered nanostructure by one-step chemical bath deposition method [124]. When used as
an electrode, the specific capacitance reached 1152 F g−1 at 1 A g−1. After 3000 cycles at
6 A g−1, the specific capacitance retention of the composite was 95.38%, while NiCo2O4
is 86.14% and MnCo2O4 was 61.65%, indicating that the composite of the two materials
significantly increased the cycle stability of the material.

The electrochemical properties of the above NiCo2O4 composite have been signifi-
cantly improved. However, due to lattice mismatch between NiCo2O4 and other com-
ponents, this leads to poor structural stability, lower specific capacitance and cycle life.
Therefore, Wang et al. compounded NiCo2O4 and NiCo2O4 with the same lattice type to
prepare 3D delamination NiCo2O4@NiCo2O4 [94]. The preparation process of the core-shell
nano cone array is shown in Figure 8. First, NiCo2O4 is grown vertically on nickel foam
by hydrothermal method. After annealing, neat NiCo2O4 nano-cone arrays is formed first.
Then, the NiCo2O4 nanosheet is coated on the NiCo2O4 surface formed in the previous
step. Finally, layered core-shell NiCo2O4@NiCo2O4 nanostructures are fabricated on nickel
foams after subsequent annealing.

After 21,000 cycles at 4 A g−1, the capacitance retention rate of the electrode reached
85.3%, and the structure did not change significantly during charge and discharge. When
used in SCs, NiCo2O4@NiCo2O4 core-shell nanostructure had a capacitance of 2045.2 F g−1

at a current density of 1 A g−1, which is better than the single component of NiCo2O4
nanosheet (346.4 F g−1) and NiCo2O4 nano cone (1381.8 F g−1).

2.3.3. ZnCo2O4

Similar to MnCo2O4 and NiCo2O4 mentioned above, ZnCo2O4 has the advantages of
high theoretical capacitance, high conductivity, environmental friendliness, and low cost,
and is considered as a potential SC material [125]. At present, ZnCo2O4 materials with var-
ious nanostructures, such as nanowires [126], nanosheets [127,128] nanoparticles [129], and
nanospheres [130,131], have been prepared. For example, Wang and colleagues synthesized
ZnCo2O4 nanowire electrode materials grown on nickel foam [132]. First, the precursor
ZnCo2O4 nanowire arrays were grown on nickel foam by a hydrothermal reaction and
then calcined in air. Finally, ZnCo2O4 nanowire arrays supported by nickel foam were
obtained. The synthesized ZnCo2O4 nanowires have a porous structure, which makes the
material have large specific surface area and can promote the diffusion of reactants. The
prepared ZnCo2O4 nanowire/nickel foam electrode had a specific capacitance of 1625 F g−1

at a current density of 5 A g−1, and 94% of the original capacitance was maintained after
5000 cycles at 20 A g−1.
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Figure 8. Schematic of the fabrication process for 3D NiCo2O4@NiCo2O4 hierarchical core-
shell NCAs on Ni foam. Reproduced with permission from Xiuhua Wang, Three-Dimensional
NiCo2O4@NiCo2O4 Core-Shell Nanocones Arrays for High-Performance Supercapacitors; published
by Elsevier, 2018 [94].

Xu et al. prepared a ZnCo2O4 nanostructure with a porous structure and found that
the conversion between nanosheets and nanowires was obtained by regulating hydrother-
mal temperature [133]. When the current density was 1 A g−1, ZnCo2O4 had a specific
capacitance of 776.2 F g−1, and the energy density was 84.48 W h kg−1 when the mean
power density was 0.4 kW kg−1. It had 84.3% capacity retention after 1500 cycles (3 A g−1).
Venkatachalam et al. prepared hexagonal-like ZnCo2O4 nanomaterials by a simple hy-
drothermal method [134]. The prepared electrode materials had a specific capacitance of
845.7 F g−1 at a current density of 1 A g−1, and retained 95.3% of the original capacitance
after 5000 cycles at 5 A g−1. Shang et al. synthesized 3D layered peony flower-like ZnCo2O4
electrode nanomaterials by a simple solvothermal method and annealing without addi-
tives [135]. The microstructure is shown in Figure 9. The assembled ASC ZnCo2O4//active
carbon had an energy density of 29.76 W h kg−1 at a power density of 398.53 W kg−1.
In addition, the peony-shaped ZnCo2O4 electrode material had a specific capacitance of
440 F g−1 at a current density of 1 A g−1, and the capacitance was maintained at 155.6%
after 3000 cycles (2 A g−1).

Although the above nano ZnCo2O4 materials have specific applications in SCs, the
insufficient utilization efficiency and poor conductivity of the materials limit their electro-
chemical properties to a certain extent and there are difficulties in them meeting the needs
of practical applications. To solve this problem, one of the commonly used methods is to
introduce oxygen vacancies. The existence of an oxygen vacancy can significantly improve
the conductivity of ZnCo2O4, adjust the electronic structure, increase the active sites, and
promote the electrochemical performance of SCs. For example, Xiang and his colleagues
prepared two-dimensional (2D) ZnCo2O4 nanosheets rich in oxygen vacancies [136]. The
nanoscale thickness and large surface area effectively improved the utilization of the elec-
trode while promoting electron transfer. A specific capacitance of 2111 F g−1 was attained
at a current density of 1 A g−1, while the specific capacitance of the original ZnCo2O4
nano sheet at the same current density was only 1121 F g−1. When the power density was
160 W kg−1, the energy density of ASC constructed by ZnCo2O4 nanosheet (with oxygen
vacancy)//activated carbon is 34.6 W h kg−1, and 93% of the original capacitance was
maintained after 3000 cycles at 2 A g−1.

Combining ZnCo2O4 nanostructures with conductive metal or carbon materials to
construct composites is one of the methods to alleviate the above problems. For example,
Wu et al. synthesized a series of ZnCo2O4@Ni(OH)2 nanostructures grown on nickel foam
by a two-step hydrothermal method; the preparation process is shown in Figure 10 [137].
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First, the ZnCo2O4 nanowires were uniformly covered on the nickel foam by a hydrother-
mal method and then Ni(OH)2 nanosheets were grown on the ZnCo2O4 nanowire after
a second hydrothermal reaction. ZnCo2O4 nanowires were used as the substrate and
Ni(OH)2 nanosheets were used as the upper layer. The strong binding force between
them reduced the contact resistance and promote the transfer of electrons to enhance the
electrochemical reaction activity of the material. The synthesized hybrid structure was
used to fabricate capacitors with an energy density of 57.3 W kg−1 at 4675.3 W h kg−1, and
an initial capacitance of 48.6 C g−1 at 1 A g−1, which retained 90.5% after 10,000 cycles at
the same current density.
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Xie et al. synthesized a ZnCo2O4@ZnWO4 nanowire array with a core-shell structure
on nickel foam, and the synergistic effect between ZnCo2O4 nanowire and ZnWO4 sheet
effectively improved the electrochemical performance of hybrid electrode [138]. The synthe-
sis process is like that of ZnCo2O4@Ni(OH)2. As shown in Figure 11, ZnCo2O4 nanowires
are first grown on nickel foam, and then ZnWO4 nanosheets arrays are produced by a
simple hydrothermal method using ZnCo2O4 nanowires as skeletons. The constructed
ZnCo2O4@ZnWO4//active carbon ASC had an energy density of 24 W h kg−1 at a power
density of 400 W kg−1. The original capacitance retention was 98.5% after 5000 cycles at a
current density of 100 mA cm−2.
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lished by Elsevier, 2018 [138].

Table 2 summarizes the structure, specific capacity and cycling performance of MnCo2O4,
NiCo2O4 and ZnCo2O4. The electrochemical performance of the electrodes was signifi-
cantly improved after designing unique morphologies for the materials. By constructing
effective structures, such as spherical, rod-like, and hollow structures, the contact area
can be increased, resulting in close contact between the active material and the electrolyte,
which leads to high electrochemical activity and enhanced pseudocapacitive performance.
In addition, the porous structure can alleviate the volume change caused by the redox reac-
tion, thus improving the cycle performance, so the materials in the table are often designed
as porous structures. Among the various unique morphologies, 2D microstructures are an
important category because such structures increase the contact area between the electrolyte
and the electrode material. For example, Younis et al. designed various micro morphologies
including nanowires, nanocables, nano-micro biscuits, and micro-walls [139]. Among them,
nano-micro biscuits with distinct 2D structural features exhibited the best electrochemical
performance. Xiang et al. designed ZnCo2O4 nanosheets with nanoscale thickness and
large surface area, which could improve the electron transfer efficiency and electrode
utilization [136]. In addition, Zhang et al. prepared NiCo2O4 nanosheets with a more
ordered crystal structure, high specific surface area and diffusion channels [140]. Liu et al.
prepared MnCo2O4 with a nanoflower-like morphology and porous structure [141]. Be-
cause of its unique nanostructure, the prepared electrode had high capacity and good rate
performance. In conclusion, 2D nanostructures usually have a large surface area and dense
porous structure. This structure is beneficial to increase the contact area between electrolyte
and electrode, thus improving the electron transfer efficiency.
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Table 2. Summary of materials, structures, and electrochemical properties of cobalt-containing ternary
metal oxides.

Materials Structure Specific Capacitance
(Current Density)

Cycling Performance
(Cycles, Current Density) Year Refs.

MnCo2O4 polyhedral nanostructure 1763 F g−1 (1 A g−1) 95% (4500, 1 A g−1) 2017 [89]
flower-like hollow microspheres 235.7 F g−1 (1 A g−1) 93.6% (2000, 1 A g−1) 2016 [87]
3D porous structure 503 F g−1 (1 A g−1) 97.4% (5000, 10 A g−1) 2019 [93]
belt-based core-shell nanoflowers 2154 F g−1 (5 A g−1) 90% (2500, 6 A g−1) 2016 [88]

NiCo2O4
hollow nanospheres with layered
structure 1229 F g−1 (1 A g−1) 86.3% (3000, 50 mV s−1) 2018 [104]

hollow spheres 1036 F g−1 (1 A g−1) 78.6% (10,000, 5 A g−1) 2015 [105]
hollow sub microspheres 678 F g−1 (1 A g−1) 87% (3500, 10 A g−1) 2013 [107]
urchin-like hollow microspheres 942.2 F g−1 (0.5 A g−1) 90% (1000, 2.5 mA cm−2) 2017 [108]
mesoporous hollow microspheres 987 F g−1 (1 A g−1) ≈100% (5000, 5 A g−1) 2015 [109]
3D porous graphene/NiCo2O4 hybrid
films 708.36 F g−1 (1 A g−1) 94.3% (6000, 10 A g−1) 2020 [120]

flower-like hollow 728.4 F g−1 (1 A g−1) 95.9% (1000, 8 A g−1) 2014 [121]
ultra-thin nanosheets 1801 F g−1 (1 mA cm−2) 90.9% (2000, 20 mA cm−2) 2016 [122]
3D layered nuclear shell
nanowires/nanowires sheet array __ 85.2% (3000, 20 mA cm−2) 2015 [123]

layered nanostructure 1152 F g−1 (1 A g−1) 95.38% (3000, 6 A g−1) 2018 [124]
layered core-shell nanostructures 2045.2 F g−1 (1 A g−1) 85.3% (21000, 4 A g−1) 2018 [94]

ZnCo2O4 nanowire 1625 F g−1 (5 A g−1) 94% (5000, 20 A g−1) 2014 [132]
porous structure 776.2 F g−1 (1 A g−1) 84.3% (1500, 3 A g−1) 2017 [133]
hexagonal like nano materials 845.7 F g−1 (1 A g−1) 95.3% (5000, 5 A g−1) 2017 [134]
3D layered peony flower like material 440 F g−1 (1 A g−1) 155.6% (3000, 2 A g−1) 2017 [135]
2D nanosheets 2111 F g−1 (1 A g−1) 93% (3000, 2 A g−1) 2021 [136]
nanowires 48.6 C g−1 (1 A g−1) 90.5% (10,000, 1 A g−1) 2021 [137]
nanowire array with core-shell structure 13.4 F cm−2 (4 mA cm−2) 98.5% (5000, 100 mA cm−2) 2018 [138]

2.4. Cobalt-Containing Ternary Metal Oxide Derivatives

As mentioned above, cobalt-containing ternary metal oxides have great potential in
the application of SCs. To further improve their electrochemical performance, researchers
have focused on the derivatives of these metal oxides. Transition metal sulfides have high
electronic conductivity, two orders of magnitude higher than the corresponding oxides,
because the valence states of the transition metals in the sulfides closely resemble those of
the metals [142–144]. At the same time, because sulfur is less electronegative than oxygen,
it can produce a more flexible structure instead of oxygen. This can effectively avoid
the structural disintegration of transition metal sulfide-based electrodes due to interlayer
elongation, which facilitates the transport of electrons in the internal structure [145]. In
addition, combining two or more sulfides can improve the electrical properties of transition
metal sulfides, resulting in a richer redox reaction [146–148] because bimetallic sulfides
possess more prosperous diverse states, smaller optical band gaps, and better chemical
stability than single-metal sulfides [144,148]. Compared with single metal oxide, transition
metal sulfides such as Co-Mo-S, NiCo2S4 have higher capacitance, multivalent redox
reactions and higher conductivity [149], so they have great potential.

2.4.1. Co-Mo-S

Co-Mo-S matrix composites have great potential as SC electrode materials because
of their advantages of reversible redox reaction band gap, high conductivity, and low
electronegativity [149–159]. For example, Balamurugan et al. used ion exchange reaction
technology to synthesize a porous nano foam support structure composed of ultra-thin
Co-Mo-S nanosheets [160]. When Co-Mo-S nanosheets are used as the electrode of the SC,
they can provide an ultra-high specific capacitance of 2343 F g−1 at a current density of
1 mA cm−2, and the capacitance remains 96.6% after 20,000 cycles. In addition, the energy
density and power density of Co-Mo-S/nitrogen doped graphene nanosheets assembled
in ASC are 89.6 W h kg−1 and 20.07 W kg−1. The capacitance retention rate can reach
86.8% after 50,000 cycles. The unique electrochemical properties of Co-Mo-S nanosheets
are attributed to the ultra-high contact area with 3D nickel foam and electrolyte.



Nanomaterials 2022, 12, 4065 18 of 32

Xu et al. prepared amorphous CoMoS4 by a simple precipitation method and used
it as an SC material for the first time [161]. Changing the current density from 1 A g−1

to 3 A g−1, the galvanostatic charge/discharge curves are shown in Figure 12 when the
potential is from 0 V to 0.6 V. The specific capacitance was calculated according to these
curves. The results show that it had a specific capacitance of 661 F g−1 at a current density
of 1 A g−1. Simultaneously, the constructed CoMoS4//reduced graphene oxide hybrid SC
had a particular capacity of 77 F g−1 at a current density of 0.5 A g−1, and its energy density
was 27.2 W h kg−1 at a power density of 400 W kg−1. In addition, after 10,000 cycles at
80 mV s−1, the original capacitance was maintained at about 86%.
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Recently, Sun et al. synthesized Co-Mo-S nanosheet networks by a simple two-step
hydrothermal method [162]. The ASC assembled with the product as the cathode had
an energy density of 72.25 W h kg−1 at 2700 W kg−1. After 9000 cycles at 2 A g−1, the
capacitance retention rate reached 83.4%.

Although Co-Mo-S has excellent potential in SCs, its relatively poor rate capability
and cycle stability limit its application. Overcoming these disadvantages and improve
its electrochemical properties has become a key problem of Co-Mo-S capacitor materials.
A practical method is to achieve excellent cycle capacity and rate performance by con-
struction of the electrode material structure. Ma et al. designed and constructed hollow
core-shell CoMoS4@Ni-Co-S nanotubes on carbon cloth for the first time by a hydrothermal
method and electrodeposition process [163]. The preparation process of Co-S nanotubes
is shown in Figure 13. First, Co(OH)F nanowire arrays are synthesized by hydrothermal
reaction under high temperature and high pressure with carbon cloth as a current collec-
tor. Then, Co(OH)F nanowires and (NH4)2MoS4 precursor solution ae transformed into
CoMoS4 nanotubes. Finally, 3D layered CoMoS4@Ni-Co-S nanotube hybrid arrays are
synthesized by electrochemical deposition method. Among them, Ni-Co-S nanosheets are
closely arranged around CoMoS4 hollow nanotubes, which is conducive to the exposure of
electrochemical active sites and keeps the structure stable to a certain extent during charge
and discharge. At the same time, the core-shell structure facilitates the close contact of the
electrode/electrolyte and avoids the aggregation of Ni-Co-S. The novel CoMoS4@Ni-Co-S
electrode had an excellent specific capacitance of 2208.5 F g−1 at 1 A g−1 and good cycle
life (91.3% capacitance retention over 5000 cycles at 3 A g−1). In addition, the assembled
CoMoS4@Ni-Co-S//activated carbon ASC had an energy density of 49.1 W h kg−1 at
800 W kg−1 and a capacity retention rate of 90.3% after 10,000 cycles.
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2.4.2. NiCo2S4

As mentioned earlier, NiCo2O4 and its composites have great potential in SCs. The
conductivity of NiCo2S4 is 100 times that of NiCo2O4, and NiCo2S4 shows higher elec-
trochemical activity and capacitance than other cobalt nickel compounds because of its
inherent redox reaction center. However, NiCo2S4-based electrodes suffer from defects
such as easy oxidation in alkaline electrolytes and poor long-term cycling stability [164].
Therefore, effective space structures need to be designed to improve their drawbacks.
So far, 3D NiCo2S4 nanostructures such as nanoflowers, core-shell and dendrites have
been synthesized.

For example, Shi et al. synthesized layered sea urchin-like hollow NiCo2S4 by a
template-free solvothermal method [165]. The capacitance reached 1398 F g−1 at 1 A g−1,
and the specific capacity retention rate reached 74.4% after 5000 cycles at 10 A g−1.
Zhang et al. synthesized nano NiCo2S4 with 3D honeycomb structure by a hydrother-
mal method and vulcanization method [166]. When the current density was 1 mA cm−2, its
maximum specific capacity exceeded 14 mA h cm−2. After 1000 cycles at a current density
of 10 mA cm−2, the specific capacity remained at 96.96%.

These structures have been widely used in electrode materials. However, their poor
electronic conductivity and potential risk of structural collapse and damage during long-
term use limit the application of NiCo2S4 materials. One of the main methods to solve
this problem is to build 3D hierarchical structure materials and increase the contact area
with electrolyte.

Li et al. successfully synthesized layered dendritic NiCo2S4@NiCo2S by a three-step
continuous hydrothermal method, and the layered microstructure of the highly porous
structure facilitated ion transport during charge and discharge, resulting in a significant
improvement in electrochemical performance. When the current density was 240 mA cm−2,
the electrode discharge specific capacity of the dendritic structure reached 4.43 mA h cm−2.
When the current density was increased from 40 mA cm−2 to 240 mA cm−2, its rate
capability reached 70.1% [167]. Tang et al. synthesized ultra-high load (10.33 mA cm−2)
3D layered NiCo2S4/Ni3S2 nanosheets with an energy density of 4.69 W h m−2 (power
density of 10.33 W m−2), and a stability of 91.4% after 8000 cycles at 20.66 mA cm−2 [168].

Zhang et al. synthesized NiCo2S4 spheres with granular nuclei by a simple two-step
hydrothermal reaction [169]. A NiCo2(OH)6/C precursor was prepared using a carbon
pellet cluster as a template. Granular NiCo2S4 was synthesized by reacting with sodium
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sulfide, and then the NiCo2S4 precursor was grown on the periphery of the granular
NiCo2S4 to form a unique structure. The specific surface area of the prepared NiCo2S4
ball was 26.61 m2 g−1, which is about twice that of the particle NiCo2S4 (11.41 m2 g−1).
This higher specific surface area increased the electroactive sites that can transfer charge
and shortens the transmission path, which is conducive to improving the electrochemical
activity of the material. When the current density was 1 A g−1, the specific capacitance of
the granular NiCo2S4 spherical electrode reached 1156 F g−1, which was 71% higher than
that of the NiCo2S4 electrode. In addition, after 1000 charge-discharge cycles (5 A g−1), the
NiCo2S4 sphere electrode with granular nuclear showed 82% capacitance retention, and
the cycle stability was significantly better than that of the granular NiCo2S4 electrode.

Wu et al. prepared a hierarchical nanostructured NiCo2S4 nanoflower@NiCo2S4
nanosheet material by a hydrothermal method (Figure 14) [170]. Using this composite as the
electrode in the SC, it had a specific capacity of 338.1 mA h g−1 at 2 mV s−1, which is about
three times higher than that of a single NiCo2S4 nanosheet. In addition, 90% of the original
capacity was maintained after 4000 reaction cycles at a current density of 20 A g−1. The
synthesized NiCo2S4 nanoflowers@NiCo2S4 nanosheets//NiCo2S4 nanoflowers@NiCo2S4
nanosheets symmetrical SC device had an energy density of 18.05 W h kg−1 at a power
density of 750 W kg−1. The capacitance retention rate of the symmetrical SC device was
89% after 4000 cycles (10 A g−1). The multilayer 3D structure can explain this improvement
in electrochemical performance. The upper nanoflowers are composed of many rough
nanotubes, which increase the surface volume ratio and the contact range of the electrolyte.
This unique structure can provide more electrochemical active sites, promote ion adsorption,
and reduce the volume expansion in the charge and discharge process. Furthermore, the
lower layer nanosheet arrays on the nickel foam can avoid damage and increase the stability
of the electrochemical reaction.
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Reproduced with permission from Wenling Wu, Hierarchical structure of Self-Supported NiCo2S4

Nanoflowers@NiCo2S4 nanosheets as high rate-capability and cycling-stability electrodes for ad-
vanced supercapacitor; published by Elsevier, 2021 [170].

Densely arranged and structurally stable nanosheets can act as a charge transport
interconnectors with nickel foam, further improving the charge transport rate. This unique
synergistic effect between nanoflower and nanosheet structure effectively increases the
structural stability and electrochemical active sites of the material. The effect also promotes
charge transfer and ion transport, which is conducive to accelerating the electrochemical
reaction rate and improving the energy storage effect of the material.

As mentioned above, the construction of 3D multilayer hierarchical structures can
improve the electrochemical properties of materials and in-use stability. At the same
time, the construction of nanostructured composites by doping other impurity atoms is
the foremost solution to the problem of low electronic conductivity and poor stability of
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NiCo2S4 materials. Among them, carbon material has superior conductivity [170], which
can promote charge transfer. Due to the strong coupling between the carbon substrate
and metal-based oxide, the composite of carbon material and NiCo2S4 can effectively
increase the electrochemical activity of electrode material [171]. For example, Pezzotti
and co-workers synthesized a kelp-like NiCo2S4-C-MoS2 composite by hydrothermal and
solvothermal methods [172]. It had a specific capacitance of 1601 F g−1 at a current density
of 0.5 A g−1 and 75% of the initial specific capacity after 2000 cycles at a current density
of 2 A g−1. Shim et al. synthesized a hollow C-NiCo2S4 nano-lake sheet structure with a
one-step solvent method [173]. The specific capacitance reached 1722 F g−1 at a current
density of 1 A g−1, and 95.60% capacity retention after 5000 cycles at a current density of
10 A g−1.

In addition, since the electronegativity and atomic radius of P and S atoms are similar,
introducing P atoms results in lattice distortion, providing more active sites. Therefore,
the introduction of the P atom is also a way to improve the electrochemical activity of
materials. Based on the above, Liu et al. introduced P and C elements into a NiCo2S4
electrode material by a one-step solvothermal method and phosphating process [174]. As
the electrode material of SCs, it had a specific capacity of 1026 C g−1 at a current density of
1 A g−1, and an original capacity retention rate of 89% after 20,000 cycles at 10 A g−1. In
comparison, NiCo2S4 only reached 65% of the original capacity under the same conditions.
The ASC had an energy density of 131.40 W h kg−1 at a power density of 1355.37 W kg−1,
and 96.3% of the original capacity was maintained after 10,000 cycles at a current density of
2 A g−1.

Dai et al. prepared relatively stable ZnCo2O4@Ni [171]. The specific capacity of
Ni-Co-S composite electrode material was 1396.9 C g−1 at a current density of 1 A g−1,
while ZnCo2O4 nanorods and Ni-Co-S showed a specific capacity of 1025.5 C g−1 and
1026 C g−1, respectively, under the same conditions. At the same time, the device showed
a capacity retention rate of 85.5% after 1000 charge-discharge cycles at 4 A g−1. Bai et al.
prepared 2D Co3O4@Ni(OH)2 [175]. The SC synthesized by this method had a specific
capacitance of 98.4 F g−1 in the potential range of 0–1.7 V at 5 mA cm−2 and an energy
density of 40.0 W h kg−1 at a power density of 349.6 W g−1. In addition, the original
specific volume retention rate was 90.5% after 5000 cycles (1.61 A g−1). This proved that
the composite with core-shell structure can retain the advantages of each component, and
the synergistic effect between them can be used to improve the electrochemical properties
of the material. Based on the above, Zhang et al. synthesized layered core-shell polyporrole
nanotubes@NiCo2S4 materials by coating NiCo2S4 nanosheets on conductive polypyrrole
nanotubes [144]; the formation process is shown in Figure 15. The material had a specific
capacitance of 911 F g−1 at a current density of 1 A g−1 and maintained a capacitance of
592 F g−1 at a current density of 20 A g−1. After 4000 cycles at a current density of 5 A g−1,
the original capacitance was 93.2%.
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2.5. Other Cobalt-Containing Materials

Among other cobalt-containing materials, Co3O4@NiMoO4 has been most studied
because NiMoO4 has good conductivity, which can improve the energy storage capacity
of Co3O4.

Zhang et al. used hydrothermal and annealing methods to synthesize flower-like
hybridized arrays on nickel foam [176]. Using Co3O4 nanowire arrays as scaffolds, NiMoO4
nanosheets were grown on the surface to form a new type of 3D layered battery electrode
Co3O4@NiMoO4. The specific capacity of the hybrid array of the prepared Co3O4@NiMoO4
was 636.8 C g−1 at 5 mA cm−2. Moreover, the retention rate was 84.1% at 20 mA cm−2

after 2000 cycles and showed excellent electrochemical performance. The prepared hybrid
capacitor (Co3O4@NiMoO4 as the positive electrode and activated carbon as the negative
electrode) reached a high energy density of 58.5 W h kg−1 at 389 W kg−1.

Yang et al. adopted a similar method using mesoporous Co3O4 nanowires directly
grown on the nickel foam as the skeleton to support the NiMoO4 nanosheet coating,
and obtained Co3O4@NiMoO4 [177]. The high specific capacitance of the synthesized
Co3O4@NiMoO4 was 3.61 F cm−2 at a current density of 2 mA cm−2. After 9000 cy-
cles, about 101.3% of the initial capacity was still retained. Such a unique structure can
significantly improve the permeability of electrolyte ions in the material.

Li et al. designed and synthesized nanowire/nanosheet arrays directly grown on
carbon cloth by a two-step hydrothermal method [178]. Growing uniformly on carbon cloth
collectors, the crystalline Co3O4 nanowires were used as backbone supports and provided
reliable electrical connections for NiMoO4 nanosheet coatings with mesoporous structures.
This enabled NiMoO4 to be fully utilized by creating faster electron/ion conductivity and
electroactive sites. When the current density was 3 mA cm−2, the specific capacitance of
the prepared 3D hybrid nanocomposites was 3.61 F cm−2, and when the current density
increased from 3 mA cm−2 to 15 mA cm−2, the capacitance retention was 82%. The
combined effect of the 3D nanostructure and the pseudo capacitance of the electrode
materials resulted in superior electrochemical performance.

Cai et al. fabricated a 3D structure Co3O4@NiMoO4 using a similar method as
above [179]. A shown in Figure 16, the prepared material showed a significantly en-
hanced surface capacitance of 5.69 F cm−2 when the current density was 30 mA cm−2,
which was five times that of the original Co3O4 electrode (1.10 F cm−2). With a power
density of 5000 W kg−1, the energy density of the hybrid electrode was 56.9 W h kg−1.
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(b) Impedance Nyquist plots of the Co3O4 electrode and the Co3O4@NiMoO4 hybrid electrode
before and after 3000 cycles. Reproduced with permission from Daoping Cai, Three-Dimensional
Co3O4@NiMoO4 Core/Shell Nanowire Arrays on Ni Foam for Electrochemical Energy Storage;
published by ACS Publications, 2014 [179].

Dong et al. first prepared a layered tubular yolk-shell composite by electrospinning
and hydrothermal methods, and then calcination to prepare a Co3O4@NiMoO4 compos-
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ite [180]. As shown in Figure 17, the Co3O4@NiMoO4 composite was made into an electrode
with a specific enhanced capacitance of 913.25 F g−1 at a high current density of 10 A g−1,
and a capacitance retention of 88% due to its unique structure and chemical composi-
tion. When the current density changes from 0.5 A g−1 to 20 A g−1, it had remarkable
cycle stability.
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Hong et al. prepared a uniform 2D Co3O4 structure by a simple chemical etching
assisted method followed by thermal annealing, and then synthesized Co3O4@NiMoO4 by
a simple hydrothermal method [181]. The specific capacitance of the 3D hybrid nanostruc-
tures was1526 F g−1 at the current density of 3 mA cm−2, and the capacitance retention was
72% when the current density increased from 3 mA cm−2 to 30 mA cm−2. On this basis, a
Co3O4@NiMoO4 ASC was designed, and the maximum energy density of activated carbon
was 37.8 W h kg−1 when the power density was 482 W kg−1.

The above describes another cobalt-containing material, Co3O4@NiMoO4. Among
them, NiMoO4 can improve the electrochemical performance of Co3O4. The electrochemical
performance and stability of the two materials can be greatly improved by rational design
of their microstructure, which has great potential.

3. Summary and Outlook

In conclusion, this paper reviews the application of cobalt-based nanomaterials in
supercapacitors and presents the contributions of many scholars in this field in recent years.
These scholars have tried many approaches to improve the electrode materials and enhance
the supercapacitor performance. The properties of cobalt-based materials and the issues
related to supercapacitors are also discussed.

In this paper, we first introduce the classification and working principle of SCs. Ac-
cording to the charge storage mechanism of SCs, they can be classified into three cate-
gories: EDLCs, PCs and battery-type capacitors. EDLCs store charge through a physical
adsorption process controlled by reversible adsorption/desorption of electrolyte ions at
the electrode/electrolyte interface without any chemical reaction involved. In contrast,
PCs and battery-type capacitors benefit from Faraday redox reactions and have a unique
charge storage mechanism with much larger capacitance and power density than EDLCs.
Among the many electrode materials for these SCs, common cobalt-based materials include
cobalt oxide, cobalt hydroxide, and cobalt-containing ternary metal oxides. Among them,
the theoretical specific capacitance of Co3O4 (3560 F g−1) is slightly higher than that of
Co(OH)2 (3460 F g−1), and electrodes made from Co3O4 usually exhibit better cycling
performance than that of Co(OH)2. Compared to these two substances, the ternary metal
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oxides (MnCo2O4, NiCo2O4 and ZnCo2O4) show significantly higher performance due to
the synergistic effect of the two transition metals coupled together.

To further enhance the performance of the above cobalt-based materials, the main
methods are: (1) designing the morphology of the electrode materials; (2) introducing other
elements, such as S, P, and Mn, among others; (3) compounding with other materials, and
(4) improving the preparation process. First, designing unique morphologies is an effec-
tive and commonly used means to enhance the electrochemical performance of electrode
materials. Microstructures such as nanoparticles, nanowires, nanotubes, nanosheets, and
nanospheres are mainly used in the many studies reported in this paper. Among these
morphologies, mesoporous structures play a major role. On the one hand, a mesoporous
structure can significantly increase the surface area and shorten the diffusion length for
electron and ion transport, thus accelerating the redox process and improving pseudo-
capacitance performance. On the other hand, it can moderate the volume change during
the charging/discharging process, thus improving the cycling capability. Second, the
introduction of other elements can further improve the performance of cobalt-based nano-
materials. As mentioned above, transition metal sulfides have significantly higher electrical
conductivity and redox ability than corresponding metal oxides. Meanwhile, compounding
cobalt-based nanomaterials with other materials can combine the advantages of both mate-
rials and improve the performance of electrodes. As mentioned above, many scholars have
compounded cobalt-based nanomaterials with carbon-based materials, which are very com-
monly used today. Among the many carbon-based materials, graphene, which has a large
specific surface area and excellent mechanical and electrochemical properties, is an ideal
carrier. As a result, many graphene-cobalt-based nanomaterial composites have emerged
in recent years. Finally, the electrode performance can also be enhanced by improving the
current process. Among the many studies presented in this paper, hydrothermal methods
have been widely used, which can easily alter the morphology and structure of nanomate-
rials. In addition, processes such as electrochemical deposition, electrostatic spinning, and
sol-gel methods are also widely used due to their advantages in preparing nanostructures.

Some researchers have investigated the effects of some external factors (e.g., ultraviolet
radiation, annealing temperature, deposition potential, etc.) on the performance of SCs.
Ultraviolet irradiation increases the crystallinity of raw materials, and the electrochemical
performance of supercapacitors made from ultraviolet-irradiated electrode materials was
significantly improved [182]. During the annealing process, the grains agglomerate to
form large particles, resulting in a uniform and dense porous microstructure [183]. This
porous microstructure facilitates electrolytic ion insertion and electron transfer at the
electrode/electrolyte interface, resulting in effective charge storage. As for the deposition
potential, it has been shown that lower deposition potential leads to lower mass transfer
rate and lower electrochemical performance.

In recent years, the field of energy storage devices has been developing rapidly, and
sodium-ion batteries, potassium-ion batteries, and various kinds of SCs are being widely
and deeply researched, among which miniature SCs (MSCs) are gradually attracting the
attention of many researchers. MSCs are miniaturized SCs that have a similar composition
to conventional SCs, but with significant structural differences. Conventional SCs have a
vertical sandwich structure with inherent limitations including short-circuiting within a
narrow distance between two electrodes, increased ion transport resistance, and high mass
loading of active materials at an appropriately long distance [184,185]. By contrast, MSCs
have a planar structure with a narrow insulating gap between the two electrodes, which
avoids the use of a separator. This increases the mass loading of the active material, resulting
in high power and energy density, low ion transport resistance, and short electrolyte ion
diffusion distance [186]. Due to their small size and excellent electrochemical properties,
MSCs could soon be widely used in various applications. Therefore, it is important to study
the application of cobalt-based nanomaterials in MSCs.

It should also be noted that studies have shown that a deficit in cobalt supply could
occur as early as 2030 [187]. This means that the advantage of the low cost of cobalt-based
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materials compared to RuO2 will gradually decrease. The solutions to this problem are as
follows: (1) finding alternative materials, such as Ni, Mn, Zn, and other transition group
metals with good performance; (2) hybridizing cobalt-based materials with conductive ma-
terials with good performance to reduce the content of cobalt in monoliths while ensuring
performance (there have been studies on doping polyaniline, polypyrrole, carbon nan-
otubes, and graphene, among other substances, into cobalt-based materials), and (3) further
developing more efficient, convenient, and low-cost SCs recycling technology.
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