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Abstract: Hysteretic pressure-sensitive permeability of nanohybrids composed of substantial
nanopores is critical to characterizing fluid flow through nanoporous media. Due to the nanoscale
effect (gas slippage), complex and heterogeneous pore structures of nanoporous media, the essential
controls on permeability hysteresis of nanohybrids are not determined. In this study, a hysteretic
pressure sensitive permeability model for nitrogen flow through dry nanoporous media is proposed.
The derived model takes into account the nanoscale effect and pore deformation due to effective
stress. The model is validated by comparing it with the experimental data. The results show that the
calculated permeability and porosity are consistent with the measured results with the maximum
relative error of 6.08% and 0.5%, respectively. Moreover, the hysteretic pressure-sensitive permeability
of nanohybrids is related to effective stress, gas slippage, pore microstructure parameters, grain
quadrilateral angle, and the loss rate of grain quadrilateral angle. The nanoscale effect is crucial to
the permeability of nanoporous media. In addition, as impacted by the comprehensive impact of
multiple relevant influential parameters, permeability during the pressure unloading process is not a
monotonous function but presents complicated shapes. The proposed model can explain, quantify,
and predict the permeability hysteresis effect of nanoporous media reasonably well.

Keywords: nanoporous media; hysteretic pressure-sensitive permeability; analytical model; nanoscale
effects

1. Introduction

In recent times, to safeguard energy supply and energy security, the extraction of hy-
drocarbons from nanoporous media (e.g., tight sandstone and shale) containing nanoscale
dominating pores has increased significantly [1–4]. In this situation, a reasonable de-
scription of fluid flow and transport through nanoporous materials (nanohybrids) is of
significance in the environment and energy fields [5–7]. Nanohybrids (shale or mudrock)
have minute pore sizes (predominantly nanoscale pores < 100 nm), which presents a strong
nanoscale effect (gas slippage). Technically speaking, as the main part of the nanohybrids,
the nanoscale dominating pores and throats will lead to evident nanoscale effect and non-
linear seepage characteristics [1]. Therefore, researches on the fluid flow and transport
behavior in nanoporous materials (nanohybrids) are important and difficult tasks for the
production of hydrocarbons.

Physically speaking, permeability is one of the basic fundamental parameters in flow
equations (e.g., Darcy flow equation, Brinkman equation, and Forchheimei equation, etc.)
for characterizing fluid flow and transport behaviors in porous materials [8–14]. It is
not possible to model fluid flow behavior in porous media without having an accurate
permeability value. In a nanohybrid substantially composed of nano-pores, permeability
can be used for the derivation of the constitutive relations [2], hydrocarbon resource
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assessment [15–17], and well production prediction [7,18–20]. Gholami et al. [21] stated
that permeability was the most important rock parameter affecting fluid transport through
porous materials. Zhang et al. [22] suggested that modeling fluid transport behavior in
nanohybrid was extremely important for the evaluation of tight reservoir performance.
Consequently, a deep understanding of the permeability of nanoporous media is crucial for
the optimization of tight reservoir development.

As stated in the previous research, the permeability of porous materials was sensitive
to pressure (or effective stress), which displayed strong hysteresis effects [23–35]. For exam-
ple, Farquhar et al. [24] measured the stress-dependent permeability of tight sandstones
and concluded that rock permeability and pore structure parameters changed with increas-
ing effective stress. Furthermore, they suggested that pore structure parameters reflected by
rock permeability measured under low confining pressure conditions could not represent
that which existed in situ. Bustin [25] carried out permeability tests on coals and found
permeability changed markedly with effective stress. Based on the test data, Xiao et al. [31]
suggested that the stress sensitivity of samples with the development of the crack-like
pore was strong. Moreover, they concluded that the stress-dependent permeability of
cores would be affected by rock grain size, rock lithology, and the types of cemented clay
minerals. Geng et al. [32] conducted permeability tests on reconstituted coals under stress
conditions, and they found permeability of reconstituted coal decreased exponentially as
the effective stress increased. Recently, Lei et al. [16] studied the permeability of argilla-
ceous nanoporous media under stress dependence with clay swelling. They suggested
that, due to effective stress, the permeability of argillaceous nanoporous media would
decrease sharply. It is common knowledge that the permeability pressure hysteresis effect
is commonly encountered in hydrologic science and engineering, which occurs during
the deformation of reservoir rocks. This term has been widely used in various previous
studies. Physically speaking, reservoir permeability continuously decreases as effective
stress increases, caused by the reduction of formation pressure. Then, to replenish and
maintain the formation pressure and reduce effective stress, scientists and engineers usually
inject fluid (water or gas) into the reservoir to constantly recover reservoir energy. However,
during the process of injection of water and gas, reservoir permeability cannot fully recover
to the initial state (or original state). This hysteresis phenomenon in porous media is
known as permeability hysteresis in rock mechanics engineering. In general, permeability
hysteresis is one of the main reasons for permanent permeability damage of reservoir
rocks, which affects the fluid transport and flow mechanisms in porous media [30,33,36,37].
Teklu et al. [38,39] suggested that the influence of permeability hysteresis on hydrocarbon
reservoir production strategies was significant and could not be ignored. Moreover, Cao
and Lei [33] conducted experimental tests on tight intact cores and found a strong per-
meability pressure hysteresis effect in these samples. In general, it is more apparent to
incur the permeability pressure hysteresis of nanoporous media with lower permeability
or narrower pore radius. Chen et al. [37] studied the permeability of shale samples with
abundant nanoscale pores and found nanohybrid permeability presented considerable
hysteresis. Consequently, for nanoporous materials, the effect of permeability hysteresis
on subsurface flow cannot be ignored, and it is of practical significance to investigate the
permeability hysteresis of these nanoporous media.

It is well known that the accurate estimation of hysteretic pressure-sensitive per-
meability in nanohybrids is a difficult task [21]. As a basic, straightforward, and effi-
cient way to draw causal conclusions, many scholars have carried out experimental tests
(e.g., [30,33,38–42]) to study the permeability hysteresis of nanoporous media (such as
sandstone, carbonate, shale, etc.) during pressure loading and unloading processes. Results
from the tests suggest that permeability hysteresis is significantly affected by the stress
path [40,41,43]. Bernabe [43] conducted stress sensitivity tests and found the hysteresis
effect of rock. He also suggested that, after aging treatment, the permeability hysteresis
effect would be eliminated or minimized. Teufel et al. [44], Warpinski, and Teufel [45] also
found that, after multiple aging treatments, the sensitivity hysteresis effect of porous media
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would disappear. Ruan and Wang [46] suggested that, for nanoporous media, the increased
stress would lead to elastoplastic deformation. However, during the unloading pressure
process, the plastic deformation can never restore to the initial state. Wang [47] concluded
that the restoration extent of nanoporous media was affected by the water injection time and
initial permeability. He suggested that the stronger permeability hysteresis corresponded
to the porous media with lower permeability. Teklu et al. [48] concluded that permeability
hysteresis of nanohybrids was the function of pore structure and mineral composition of
nanoporous media. Shi and Sun [49] suggested that compared to lithic sandstone and mud-
stone, quartz sandstone had a lower permeability hysteresis effect. However, although the
experiment has the advantage of being repeatable, the ability of this method is sometimes
limited. For example, permeability is generally measured on the cored samples taken from
reservoirs. Nevertheless, the experimental tests are usually time-consuming and expensive,
core data are available only for a few wells, and the experimental samples usually represent
only a very small proportion of the reservoir. In addition, the experimental results are
mainly qualitative works, which are highly vulnerable to extraneous variables during the
tests. Moreover, the experimental results with different experimental methods had many
inconsistencies due to the discrepancies in the rock’s physical properties.

To quantitatively analyze the permeability hysteresis effect of nanoporous materials,
the Pore-network model, Lattice Boltzmann method, Monte Carlo method, molecular
dynamics simulations, etc., have also been developed by Jerauld and Salter [50], Sarkisov
and Monson [51], and Wang et al. [52]. However, as these numerical methods need accurate
porous structure models of nanohybrids, the computational cost of these numerical models
is extremely expensive. Furthermore, numerical simulations are sometimes not robust,
and the predicted results from the numerical methods are subject to numerical dispersion.
Hence, to some extent, the applicability of these numerical methods to model permeability
hysteresis of nanoporous materials is sometimes limited. Due to the complex deformation
mechanism, the relevant research on permeability hysteresis based on analytical modeling
is scarce. In our previous study [33], an analytical model was firstly derived to discuss
the permeability hysteresis effect of nanoporous media samples. However, this model is
limited by assuming that the pore radius in the nanoporous media is evenly distributed,
which is suspected of oversimplification and may not be reasonable for real nanohybrids.
Additionally, this model ignores the nanoscale effect (gas slippage) on fluid flow through
nanohybrids. Therefore, to make the model more rational, further research is needed.

Up to the present, the main mechanisms of the permeability hysteresis effect are
still not definitive. Moreover, a comprehensive investigation of permeability hysteresis
of nanoporous media remains elusive. Motivated by this status, this work intends to
make more progress to fill this knowledge gap. Specifically, an analytical model has
been proposed in this study to understand the fundamental controls on the permeability
hysteresis effect of nanohybrids. Since the fractal geometry theory was introduced by
Mandelbrot [53], numerous scholars [4,54–57] have suggested the interspaces in most of the
nanoporous media have the fractal characteristics. Furthermore, the fractal-based models
have been proven to be effective for various applications in predicting the permeability of
nanoporous media [16,58]. In this study, a new hysteretic pressure-sensitive permeability
analytical model of nanoporous media is developed to investigate permeability hysteresis
behavior using fractal modeling. This model takes the pore size distribution and nanoscale
effect (gas slippage) of nanoporous media into account. A concise outline of this paper
is as follows. Firstly, experimental data of hysteretic pressure-sensitive permeability are
studied, then the model of hysteretic pressure-sensitive permeability of nanoporous media
is established to take account of the pore size distribution and nanoscale effect (gas slippage).
Subsequently, this newly derived model is validated using the experiment results. Finally,
the influences of relevant parameters on the permeability hysteresis effect are evaluated.
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2. Materials and Methods
2.1. Experiment Materials and Methods

In this study, six intact tight sandstone samples whose microfractures can be ignored
were prepared to conduct experiments. The main materials for making these nanoporous
media were quartz sand (as the aggregates), epoxy resin, and 593 epoxy resin curing agent
(as the binder). Based on the epoxy resin pressing cementation method, these samples were
prepared for the permeability experiments. Specifically, these porous materials were com-
posed of quartz sand aggregates (approximately 59.56%), the binder agent (approximately
31.81%), and pore (approximately 8.63%). Generally speaking, the bulk modulus and shear
modulus of quartz sand are 37 GPa and 23.05 GPa, respectively. For the epoxy resin and
593 epoxy resin curing agent, the bulk modulus and shear modulus are 2.78 GPa and
0.72 GPa, respectively. For the pore in the porous materials, the bulk modulus is 4.07 GPa
and the shear modulus is 0 GPa, which are identical to those assigned in the literature [59].
Thus, based on the Voigt–Reuss–Hill model [59,60], the effective bulk modulus and shear
modulus of these samples could be determined as 23.27 GPa and 13.96 GPa, respectively.
Moreover, by combining the predicted average effective bulk modulus, average effective
shear modulus and the theory of mechanics of materials, the elastic modulus and Pois-
son’s ratio can be approximately determined as 34.9 GPa and 0.25. The diameter and
length of these core samples vary between 24.7–25.2 mm (average diameter 24.9 mm) and
43.8–56.2 mm (average length 50.3 mm), respectively. The initial permeability K0 (K means
permeability, µm2; subscript “0” means initial value/state) of these samples ranges within
0.02× 10−3–0.15× 10−3 µm2 with an average permeability of 0.73× 10−3 µm2. In addition,
the initial porosity ϕ0 (ϕ means porosity, dimensionless) of these nanohybrids ranges within
4.39–12.50%. Based on the Kozeny-Carman equation K0 = ϕ0r2

av/8, the average pore radius
rav (r means pore radius, µm/micron; subscript “av” means average) of these samples
can be determined by rav =

√
8K0/ϕ0. Therefore, rav ranges within 0.06037–0.09798 µm.

Thus, nanoscale pores are developed in these 6 tight sandstone samples. The petrophysical
properties of the core samples are summarized in Table 1. The experimental approach for
hysteretic pressure-sensitive permeability in this study (e.g., experimental fluid, experimen-
tal apparatus, and experimental procedure) is identical to that published in our previous
study [33]. Moreover, the experimental data regarding porosity hysteresis of nanohybrids
will further validate the derived model in this work.

The experimental procedures are identical to those stated in our previous work [33].
The experimental procedures are composed of washing and drying core samples (about
48 h), establishing experimental conditions (temperature and pressure), and executing per-
meability tests during pressure loading/unloading processes. The permeability hysteresis
of nanohybrids can be studied from the measurements. Figure 1a,b present the normalized
permeability (i.e., the ratio of stress-dependent permeability K to the initial permeability K0)
curves and the stress-dependent porosity curve. As illustrated in Figure 1a,b, permeability
and porosity continually decrease as effective stress increases. Pore compression (e.g.,
permeability and porosity decreasing) during the effective stress increasing process can be
represented by a two-stage process that includes the early stage and the late stage of change.
Permeability or porosity decreases sharply as effective stress increases at the early stage.
The change of permeability or porosity becomes weak and gradually tends to be stable at
the late stage. The reason is that, during early effective stress increasing, solid material
deformation and structural deformation work together, leading to a sharp decrease in
permeability. When the value in effective stress increases up to a certain extent, the decrease
in permeability tends to be slowed down (i.e., the structural deformation of nanoporous me-
dia will tend to be stable), and the solid material deformation of nanohybrids continues to
grow [33]. Furthermore, the nanohybrid has a strong permeability hysteresis effect, which
is stronger than the porosity hysteresis effect. For these six nanohybrids, the permeability
ratio after the stress returning to the original state to K0 ranges from 0.77 to 0.87. However,
the porosity ratio after the stress returning to the original state ranges from 0.85 to 0.93. In
other words, normalized permeability loss (the difference between unity and normalized
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permeability of nanoporous media after the stress returning to the original state) varies
between 0.13–0.23. However, porosity loss (the difference between unity and porosity of
nanoporous media after the stress returning to the original state) varies between 0.07–0.15.
From our previous experiments and simulations [14,33,34] and relevant literature reviewed
in the introduction section, nanoporous media displays a strong permeability hysteresis
effect, which is significantly influenced by multiple influential parameters (e.g., pore struc-
ture parameters and lithology of porous materials). In the next section, an analytical model
for permeability hysteresis will be proposed to incorporate the pore structure parameters
and lithology of nanoporous media. Moreover, the derived model will be further validated
with the experiment data.

Table 1. Properties of artificial sandstones (nanohybrids) used in the experiments.

No. Diameter/mm Length/mm Initial Porosity/% Initial
Permeability/10−3 µm2

Elastic
Modulus/GPa

Poisson’s
Ratio

Core-1 24.5 48.4 8.26 0.05

34.9 0.25

Core-2 24.8 52.6 12.5 0.15
Core-3 24.7 49.7 11.2 0.12
Core-4 25.2 43.8 4.39 0.02
Core-5 24.9 56.2 6.47 0.04
Core-6 25.2 51 8.98 0.06

Figure 1. The experimental results: (a) the normalized permeability. (b) the stress-dependent porosity.
The open and filled symbols in (a,b) correspond to loading and unloading phases, respectively.

2.2. Theoretical Model Development
2.2.1. Model Assumptions

For nitrogen flow through nanohybrid driven by the differential pressure, it is assumed
that the nanohybrid is subjected to confining pressure. Due to the effective stress (i.e., the
difference between the confining pressure exerted on the porous materials and the pore
pressure of fluid existing in the pore space of porous materials), the nanohybrid will be
compressed and its permeability will obviously change, leading to the change of nitrogen
flow in the nanoporous materials. In general, with the increase of effective stress, fully
elastic deformation, elastoplastic deformation, and fully plastic deformation will occur in
sequence [61]. However, as elastoplastic deformation and fully plastic deformation are
extremely complex, for the sake of simplification, in this paper, we focus on the fully elastic
deformation of nanohybrids. In other words, the effective stress in this paper is smaller
than the rock yield stress, and we consider the fully elastic deformation of rocks. It is
supposed that each pore in the nanohybrid is a void space between 4 identical spherical
grains (e.g., the grain size, the elastic modulus, and Poisson’s ratio) arranged in a specific
packing (shown in Figure 2a). During the pressure loading process, spherical grains will
be deformed, and the corresponding intergrain pore will be compressed (e.g., both pore
shape and pore size vary with the pressure). However, during the pressure unloading
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process, the intergrain pore radius (i.e., the equivalent pore radius of the void space between
4 identical spherical grains) can never recover. The analytical permeability hysteresis model
is deduced under the following assumptions:

Figure 2. Pore deformation during pressure loading and unloading processes: (a) Initial state.
(b) Pressure loading process. (c) Pressure unloading process.

(1) During fluid flow through nanohybrids, the fluid velocity is assumed to be approxi-
mately symmetrically distributed with respect to the tube axis. In addition, as pores
in nanohybrids are narrow, due to the gas slippage effect, the fluid velocity at the pore
wall is larger than zero.

(2) The effective stress is uniformly distributed in the pore space of the porous materials
during pressure loading and unloading processes and act in the same way on all pores
in the material. The increased effective stress leads to solid material deformation and
structural deformation, as shown in Figure 2b. During the solid material (grains them-
selves) deformation process, the point contacts between grains transform into surface
contacts, determined by the Hertz deformation theory. In other words, solid material
deformation is fully elastic deformation. Moreover, during the structural deformation
process, particle contact angle changes as the arrangement of grains changes.

(3) When the effective stress decreases (i.e., pressure unloading), the nanoporous media’s
solid material deformation will revert to the initial state. This process is a fully elastic
recovery stage, as shown in Figure 2c. However, the nanoporous media’s structural
deformation can never recover, leading to the non-recoverability of the pore structure.

(4) During the process of effective stress increasing or decreasing, rock mechanical prop-
erties (e.g., elastic modulus and Poisson’s ratio) are considered constants. In other
words, the variations in the mechanical properties of the nanohybrid are ignored.

(5) The samples are dry nanoporous media and the liquid film on the pore wall is ignored.
In addition, as the fluid is nitrogen gas, the adsorption of nitrogen on nanopore’s
surface is also ignored. The flow in a circular intergrain nanopore is laminar and in a
steady state, and the velocity distribution in the nanopore can be characterized by the
modified Navier-Stokes equation [22,62–65].

2.2.2. Theoretical Models

According to Hertz’s deformation theory, due to the exerting force F, the contact
radius of nano-particles a can be expressed as the following equation [26,33,61,66]:

a = 3

√√√√3F
4

R1R2

R1 + R2

(
1− ν2

1
E1

+
1− ν2

2
E2

)
=

3

√
3F
4

R(1− ν2)

E
, (1)

where a means contact radius (µm), F means force (N), R denotes the equivalent spherical
particle radius (µm), which is identical to R1R2/(R1 + R2). The subscript of “1” means



Nanomaterials 2022, 12, 4234 7 of 24

particle 1. The subscript “2” means particle 2. Supposed that R1 is identical to R2, the
equivalent radii R can be simplified as R/2. E represents the equivalent elastic modulus

(GPa), which is determined by E =

(
1−ν2

1
E1

+
1−ν2

2
E2

)−1
, where ν means the Poisson ratio

(dimensionless). It is general knowledge that Equation (1) is derived according to the
assumption that the particle surface is sufficiently smooth and the particle is completely
elastic, which neglects the surface topological features of the natural rock grains and mineral
composition. So, for typical rough particle surfaces, Equation (1) can be modified as [57]: a =

[
3F
4

R(1−ν2)
E

]ω

b =
√

R2 − a2
, (2)

where b is the distance from the grain center to the contact surface (µm), ω denotes a
parameter representing the rough particle surfaces (dimensionless).

In Equation (2), if parameter ω is assigned as 1/3, the equation is in line with the
classical Hertz deformation theory. However, ω should be larger than 1/3 when particle
surfaces are rough. It reveals that, compared with the classical Hertz deformation theory,
Equation (2) is more general. In other words, the classical Hertz deformation theory can be
regarded as a special case of Equation (2).

Based on the definition of effective stress, we have [61]:

σjp =
F

πa2 + σ0 =
F
π

[
3F
4

R
(
1− ν2)

E

]−2ω

+ σ0, (3)

where parameter σ is the effective stress (MPa), subscript “jp” means the value in the
pressure loading process, parameter σ0 is the initial effective stress (MPa). If we assume σ0
is equal to 0 MPa, then effective stress σjp = F/

(
πa2) is identical to that defined by [61].

With the determined effective stress during the effective stress increasing process using
Equation (3), the porous radius r is [67]:

r = R

√
4b2

πR2 sin θ1 −
4ab
πR2 −

(
1− 4

π
arctan

a
b

)
, (4)

where parameter θ1 denotes the interior angle (the contact angle, seen in Figure 2) of the
quadrilateral formed by the center points of four spherical particles during the pressure
loading process (rad). On the whole, the packing models of particles for actual porous
materials are extremely complex and difficult to be characterized. As the initial state
refers to the state where effective stress is zero and particle change never occur, to simplify
the model, many scholars [66,68–70] assumed that pores of porous materials under zero
effective stress could be represented as the packing of particles with the identical size.
Specifically, Weaver et al. [68,69], and Terracina et al. [70] suggested that pores of porous
materials could be represented by the cubic packing of 4 particles with identical size. In this
paper, for the sake of simplicity, the cubic packing model of 4 spherical particles is applied
to characterize the pore structure of porous materials under zero effective stress (i.e., the
initial state, seen in Figure 2a). Thus, it is reasonable to assume that, under the initial state,
the contact radius a is equal to 0 µm, and parameters b and θ1 are equal to particle radius
R and π/2, respectively. Mathematically speaking, the initial pore radius of nanoporous
media r0 can be determined by simplifying Equation (4) as r0 = R

√
(4− π)/π.

By substituting r0 into Equation (4), the pore radius r is

r = r0

√
4b2

πR2 sin θ1 − 4ab
πR2 −

(
1− 4

π arctan a
b

)
√
(4− π)/π

, (5)

in which the stress-dependent contact angle θ1 changes in the range of π/3 ≤ θ1
≤ π/2, which reflects the structural deformation of nanohybrids. Mathematically, we
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have

√
4b2
πR2 sin θ1− 4ab

πR2−(1− 4
π arctan a

b )√
(4−π)/π

≤ 1. So, the pore radius will decrease after deformation,

which is expected. Equation (5) demonstrates that r depends on parameter θ1, which
ranges from π/3-π/2. Physically speaking, contact angle θ1 is related to pore structure
(pore geometry) and effective stress. For example, Equation (5) reveals that parameter θ1
decreases monotonically with the increase of effective stress. In this paper, for the sake of
simplification, an equation describing the change of θ1 given by [33] is as follows:

θ1 =


π
3 + π

6

(
σ0
σjp

) σjp ·β
σ0 ·Π ,

σjp
σ0
≤ Π

π
3 + π

6 ·
1

Πβ ,
σjp
σ0

> Π

, (6)

where parameter β presents the changing rate of the contact angle θ1 hereinafter (dimen-
sionless), and Π denotes the parameter representing the effective stress when nanohybrid
structural deformation stops varying (dimensionless). Cao et al. [33] suggested that param-
eter Π could be assigned 2 in the calculation. However, due to the complex pore structure,
mineral composition, and lithology, parameter Π for different nanohybrids will vary. For
example, due to the influence of many factors such as the geological deposit and evolution,
parameter Π for actual nanohybrids could not always be 2. The accurate value of parameter
Π needs to be obtained from experimental tests.

Based on Equations (1) and (4), the following equation for the maximum and minimum
pore radius is

rmax, 0 = Rmax
√
(4− π)/π

rmin, 0 = Rmin
√
(4− π)/π

rmax = Rmax

√
4b2

max
πR2

max
sin θ1 − 4amaxbmax

πR2
max

−
(

1− 4
π arctan amax

bmax

)
rmin = Rmin

√
4b2

min
πR2

min
sin θ1 − 4aminbmin

πR2
min
−
(

1− 4
π arctan amin

bmin

) , (7)

where subscript “max” means maximum value, subscript “min” means minimum value,
Rmax means the maximum equivalent spherical particle radius, Rmin means the minimum
equivalent spherical particle radius. In general, the nanohybrid contains grains sizes of
various sizes and pores may be framed by the packing of particles with different dimen-
sions. However, as mentioned in the Introduction, due to the complexity of the random
and disordered pore structure of nanohybrid, it is extremely difficult to quantify the pore
structure of nanohybrid. In this paper, to simplify the model, the polydispersity of particle
packing and the pores constituted between particles/grains with different dimensions
are ignored, and it is assumed that the pores are constituted by the packing of particles
with the identical dimension and physical properties. Thus, the maximum and minimum
pore radius correspond to the packing of particles with the maximum and minimum
particle dimensions, respectively. In addition, it should be noted that, as the polydispersity
of particle packing and the pores constituted between particles/grains with different
dimensions are ignored, and the effective stress is uniformly distributed in the pore space,
it is reasonable to assume θ1 in Equation (7) is the same for larger grains and smaller ones.

It should be noted that parameter R is not the actual size of nano-particles but the
equivalent particle radius, which accounts for mineral composition in nanohybrids. In
general, there are clay minerals, cementing materials, and other minerals in pore space
for actual nanohybrids, which will narrow pore size. Based on fractal theory and nitro-
gen flow through nanohybrids, the permeability of nanohybrids can be determined as
Equation (A10). More details of Equation (A10) can be found in Appendix A. By combining
Equations (7) and (A10), the initial permeability K0 for the dry nanohybrids is
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K0 =
2DT0 × π × Df0 × rDf0−DT0−1

max, 0

16×
(

π×Df0
2−Df0

× 1−ϕ0
ϕ0

) DT0+1
2


r

3+DT0−Df0
max, 0 −r

3+DT0−Df0
min, 0

3+DT0−Df0
+

4 2−σv
σv

ξ
1−b0ξ

r
2+DT0−Df0
max, 0 −r

2+DT0−Df0
min, 0

2+DT0−Df0

, (8)

wherein, 

Df0 = 2− ln ϕ0
ln(rmin, 0/rmax, 0)

DT0 = 1 + ln τ̄0

ln
(

Df0−1√
Df0

√
1−ϕ0
4ϕ0

π
2−Df0

rmax, 0
rmin, 0

)

τ0 = 1
2


1 + 1

2

√
1− (rmin, 0/rmax, 0)

2−Df0

+

√[
1−
√

1−(rmin, 0/rmax, 0)
2−Df0

]2
+ 1

4

[
1−(rmin, 0/rmax, 0)

2−Df0
]

1−
√

1−(rmin, 0/rmax, 0)
2−Df0



. (9)

In the above two equations, parameter DT0 denotes the initial tortuosity fractal dimension
(dimensionless), parameter Df0 denotes the initial pore fractal dimension (dimensionless),
σv denotes the tangential momentum accommodation coefficient (dimensionless), ξ denotes
the gas mean free path (µm), τ0 denotes the initial average tortuosity(dimensionless).

Equation (8) takes the nanoscale effect (gas slippage) into account. If the nanoscale
effect is ignored, Equation (8) can be rewritten as

K0 =
2DT0 × π × Df0 × rDf0−DT0−1

max, 0

16×
(

π×Df0
2−Df0

× 1−ϕ0
ϕ0

) DT0+1
2

×
r3+DT0−Df0

max, 0 − r3+DT0−Df0
min, 0

3 + DT0 − Df0
, (10)

which is identical to the model derived by Xu et al. [71]. Lei et al. [14,34,57] suggested the
porosity ϕ after deformation could be ϕ =

(
rmin
rmax

)2−Df

Df = 2 + (Df0−2)rmax, 0
(3−Df0)rmax+(Df0−2)rmax, 0

, (11)

where parameter Df denotes the pore fractal dimension of tight porous media (nanoporous
media) after deformation (dimensionless).

Then, the permeability of nanoporous K media during the pressure loading process is

K =
2DT × π × Df × rDf−DT−1

max

16×
(

π×Df
2−Df

× 1−ϕ0
ϕ0

) DT+1
2


r

3+DT−Df
max −r

3+DT−Df
min

3+DT−Df
+

4 2−σv
σv

ξ
1−b0ξ

r
2+DT−Df
max −r

2+DT−Df
min

2+DT−Df

, (12)

where DT in Equation (12) denotes the tortuosity fractal dimension of tight porous media
after deformation (dimensionless) which can be determined by Equation (A8). Then, by
combining Equations (8) and (12), the normalized permeability Kd during the pressure
loading process is

Kd = K/K0, (13)

where subscript “d” means the normalized value.
Physically speaking, during the pressure unloading process (i.e., effective stress-

reducing process), the contact radius of particles will decrease as effective stress decreases,
while the arrangement of particles can never recover. Assuming the effective stress σxp, max
(subscript “xp” means the value in pressure unloading process) and contact angle θxp
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correspond to the onset of the pressure unloading process. Because of Hertz deformation
theory, the following equation for contact radius a is given by

a =
√

R2 − b2 =
√

R2 − 2Fxp/
(
πσxp

) (
σ0 ≤ σxp ≤ σxp, max

)
. (14)

By combining Equations (7) and (14), the pore radius during the pressure unloading
process is 

rxp, max = Rmax

√
4b2

max
πR2

max
sin θ′1 −

4amaxbmax
πR2

max
−
(

1− 4
π arctan amax

bmax

)
rxp, min = Rmin

√
4b2

min
πR2

min
sin θ′1 −

4aminbmin
πR2

min
−
(

1− 4
π arctan amin

bmin

) , (15)

where the contact angle θ′1 during the pressure unloading process (unit: rad) can be
determined as [33]

θ′1 = θ1

[
1− γ

(
σxp, max − σxp

σxp, max − σ0

)λ
]

. (16)

In the above equation, parameter γ (dimensionless) denotes the parameter reflecting the
change extent of contact angle θ′1. Mathematically speaking, it determines the interval of
variation of θ′1. In addition, parameter λ (dimensionless) denotes the parameter reflecting
the change rate of contact angle θ′1. Equation (16) reveals that, during the pressure unload-
ing process (σxp changes from σxp, max to σ0), the contact angle θ′1 changes from θ1|σxp, max to

θ1|σ0 × (1− γ). Mathematically, we have 0 ≤ γ
(

σxp, max−σxp
σxp, max−σ0

)λ
≤ 1. As a result, parameter

θ′1 is smaller than θ1, which implies that even if the effective stress decreases to its original
value, the contact angle can never return to its original state (i.e., the pore structure can
never recover). If the effective stress decreases to the initial value σ0, the contact angle can
be determined as θ′1 = θ1(1− γ). So, parameter γ denotes the decreasing extent of contact
angle after effective stress decreases to the initial value. Furthermore, the parameter λ in
Equation (16) represents the speed of contact angle recovery. In other words, it determines
how fast the contact angle recovers during the pressure unloading process.

Based on Equations (15), (16), (A8) and (A10), the permeability during the pressure
unloading process Kxp is

Kxp =
2DT, xp × π × Df, xp × r

Df, xp−DT, xp−1
xp, max

16×
(

π×Df, xp
2−Df, xp

) DT, xp+1
2

(
r

2−Df, xp
xp, max

r
2−Df, xp
xp, min

− 1

) DT, xp+1
2


r

3+DT, xp−Df, xp
xp, max −r

3+DT, xp−Df, xp
xp, min

3+DT, xp−Df, xp
+

4 2−σv
σv

ξ
1−b0ξ

r
2+DT, xp−Df, xp
xp, max −r

2+DT, xp−Df, xp
xp, min

2+DT, xp−Df, xp

, (17)

where

Df, xp = 2 + (Df0−2)rmax, 0
(3−Df0)rxp, max+(Df0−2)rmax, 0

ϕxp =
(

rxp, min
rxp, max

)2−Df, xp

DT, xp = 1 + ln τ̄xp

ln

(
Df, xp−1√

Df, xp

√
1−ϕxp
4ϕxp

π
2−Df, xp

rxp, max
rxp, min

)

τxp = 1
2


1 + 1

2

√
1−

(
rxp, min/rxp, max

)2−Df, xp

+

√[
1−
√

1−(rxp, min/rxp, max)
2−Df, xp

]2
+ 1

4

[
1−(rxp, min/rxp, max)

2−Df, xp
]

1−
√

1−(rxp, min/rxp, max)
2−Df, xp



, (18)



Nanomaterials 2022, 12, 4234 11 of 24

where ϕxp is stress-dependent porosity during the pressure unloading process. By com-
bining Equations (8) and (17), the normalized permeability during the pressure unloading
process is

Kd = Kxp/K0. (19)

2.2.3. Workflow of Permeability Hysteresis Determination

Figure 3 presents the determination process of the hysteretic pressure-sensitive per-
meability of nanohybrids by using the proposed model. The suggested methodology
workflow is summarized:

Start

Agree with experimental 
data ?

N Update 
parameters 

Y

End

Determine rmax0 and rmin0 using Equation (7)

Determine rxpmax and rxpmin using Equation (15) 

Determine K0 using Equation (8) and Equation (9)

Input relevant parameters

Determine Dfxp and DTxp using Equation (18) 

Determine Kxp using Equation (17) 

Agree with experimental 
data ?

Update 
parameters 

N

Y

Determine permeability hysteresis curve using 
Equation (13) and Equation (19)

Select β and σjp, determine θ1, rmax and rmin using 
Equation (6) and Equation (7) 

Determine Df and DT using Equation (11) and Equation 
(A8) 

Determine φ and K using Equation (11) and Equation 
(12)

Agree with experimental 
data ?

Update 
parameters 

N

Y

Select γ, determine θ1ʹ using Equation (16) 

Figure 3. Solution procedure for the derived model.

Step 1: Input relevant parameters (e.g., Rmax, Rmin, ϕ0, σv, b0, pav, d, kB, T, α0, α1,
τ). In this paper, the average pressure between the inlet and outlet of the nanohybrid
pav = 2 MPa, the elastic modulus E = 34.9 GPa, the Poisson’s ratio ν = 0.25, the temperature
T = 298.15 K, and the Boltzmann constant kB = 1.3806505 × 10−23 J/K. In addition, the
parameter σv = 1, b0 = −1, d = 3.64 × 10−10 m, the rarefaction coefficient α0 = 1.19,
parameter α1 = 4, and τ = 0.4 [22]. During the modeling, ϕ0 should be identical to the
experimental data. Determine the initial permeability K0 using Equations (8) and (9). If
the predicted K0 is inconsistent with the measured value, update the parameters Rmax and
Rmin until the predicted K0 is consistent with the measured initial permeability.

Step 2: Select parameters β, Π, σ0, and σxp, max. Determine the parameters θ1, rmax,
and rmin of nanohybrid during the pressure loading process using Equations (6) and (7).
Then, the permeability K during the pressure loading process can be calculated using
Equations (A8), (11) and (12). During the modeling in this stage, σ0 and σxp, max should be
assigned based on the experimental conditions. In addition, parameters ω, β, and Π will
be updated to make sure the predicted permeability curves during the pressure loading
process are consistent with the measured results.

Step 3: Select the parameters γ and λ, and calculate the parameter θ′1 using Equation (16).
Then, the parameters rxp, max and rxp, min can be determined with Equation (15). Finally, the
permeability Kxp during the pressure unloading process can be calculated using
Equations (17) and (18). Mathematically speaking, during the modeling in this stage, pa-
rameters γ and λ will be updated to make sure the predicted permeability curves under the
pressure unloading process are consistent with the measured results.

Step 4: By combining Equations (11) and (18), ϕ and ϕxp can be determined. Then,
determine the permeability hysteresis curve according to Equations (13) and (19).
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3. Results
3.1. Validation with Experimental Results

To verify the derived hysteretic pressure-sensitive permeability, the experimental data
in Figure 1 are used. The predictions from the derived model are compared in Figure 4. To
ensure the initial petrophysical properties (ϕ0 and K0) of the simulated nanohybrids during
the simulation are identical to those of experimental samples, the relevant parameters are
assigned and summarized in Table 2.

It should be noted that, besides the parameters listed in Table 2, other parameters
applied in the modeling are the same as those stated in Step 1 of the workflow. Results
depicted in Table 2 suggest that the calculated initial permeability K0 of each nanoporous
media is consistent with that of the experimental data, which, to some extent, reveals that
the parameters assigned in the calculations are suitable and reasonable. As plotted in
Figure 4, the calculations (e.g., the normalized permeability) of our derived model fit well
with the experimental results. It can be understood that, for a given core sample, once
the relevant parameters in the proposed model are determined accurately by fitting the
available experimental data, this derived model can be used to predict permeability under
other effective stresses.

To further validate our derived model, Figure 5 compares the experimental porosity
data with the predicted porosity. We can also see that the predicted porosity is also
consistent with the experimental results, which reveals the derived model significantly
coordinates with the experimental data. Moreover, it can be seen from Figures 4 and 5 that,
compared with the predicted permeability, the predicted porosity is more consistent with
the experimental results. Specifically, the maximum relative error between the calculated
permeability and the measured results is 6.08%. However, the calculated porosity is
more in agreement with the experimental results with the maximum relative error of
0.5%. It is because that, compared to porosity, permeability is more sensitive to effective
stress. Thus, under certain effective stress, the variation in permeability is greater than
that in porosity. In general, during the permeability tests, both the permeability and
porosity under differ-ent effective stresses can be measured. However, compared to porosity,
permeability is more sensitive to the test condition (e.g., the experiment speed and the
confining pressure), thus, the permeability test data is more scattered than the measured
porosity data. As a result, the calculated porosity is more consistent with the experimental
results. Moreover, Figure 4 depicts that the permeability curve of the pressure loading
process or pressure unloading process can be divided into two stages: stage 1 (e.g., effective
stress σ is smaller than σ0Π) and stage 2 (e.g., effective stress σ is larger than σ0Π). At stage
1, the difference between permeabilities for the pressure loading process and the pressure
unloading process is obvious. However, during stage 2, the two curves almost coincided,
and the discrepancy between these two curves is within the precision interval and can be
ignored. In general, during stage 2, structural deformation almost does not vary and solid
material deformation is the dominant deformation mechanism. Thus, it is reasonable and
safe to infer that the structural deformation of nanoporous media is one of the principal
reasons for permeability hysteresis.

3.2. Sensitivity Analysis

After validation by these experimental results, this proposed model is applied for
sensitivity analysis. Figure 6 presents permeability hysteresis curves with and without
the nanoscale effect (gas slippage). During the simulation, when the nanoscale effect is
taken into account, the initial maximum pore radius rmax, 0 is assigned as 21.6 nm, and the
initial minimum pore radius rmin, 0 is assigned as 0.2 nm, and other parameters assigned
are identical to those applied in Core 6 for the validation. However, when the nanoscale
effect is ignored, parameter ξ is assigned as 0. It can be observed from Figure 6 that, under
a given effective stress, the normalized permeability with the nanoscale effect (gas slippage)
during the pressure loading/unloading process is larger than that without the nanoscale
effect. That is to say, if the gas slippage effect is ignored in nanopores, the permeability of
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the nanohybrid reduces dramatically. It is owing to that, under the same condition, the gas
slippage effect will increase the flow velocity of the fluid, increasing the permeability of
nanohybrids. With all mentioned above, the impact of nanoscale effects on permeability is
considerable and should not be neglected in nanohybrid.

Figure 4. Experimental permeability data versus predicted permeability: (a) Core 1. (b) Core 2.
(c) Core 3. (d) Core 4. (e) Core 5. (f) Core 6.

Figure 7 presents the influence of parameter β-value on normalized permeability
hysteresis curves. During the simulation, the parameters assigned are identical to those
applied in Figure 6. The values of these parameters assigned are the same hereinafter. It
can be observed from Figure 7 that the normalized permeability decreases as the parameter
β-value increases. The probable reason is that a larger parameter β-value means a faster
change rate of contact angle and a stronger structural deformation of nanoporous media,
leading to a narrower pore radius and a lower permeability. Moreover, as the function of
petrophysical properties of reservoirs, the parameter β-value varies with different nanohy-
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brids. Therefore, to reduce model uncertainty, the parameter β should be evaluated for
every nanohybrid type.

Table 2. Parameters applied in the model for the model validation.

Parameters Core-1 Core-2 Core-3 Core-4 Core-5 Core-6

Rmax/µm 0.38 0.52 0.49 0.36 0.4 0.39
Rmin/10−3 µm 3.15 4.59 4.18 2.75 2.64 3.63

Initial porosity/% 8.26 12.5 11.2 4.39 6.47 8.98
Predicted initial permeability/−3 µm2 0.05 0.15 0.12 0.02 0.04 0.06

ω 0.46 0.47 0.48 0.48 0.44 0.46
Π 2.3 2.1 2.1 2.32 2.4 2.14
β 0.76 0.95 0.92 0.62 0.56 0.56
γ 0.11 0.12 0.12 0.1 0.09 0.08
λ 3.6 2.8 2.9 3.3 3.6 2.6

By fitting the derived model with the experimental data, the recommended value for
parameter Π is approximately 2 [33]. However, as parameter Π is related to the miner-
alogical composition and pore structures of nanohybrids, its value varies with different
rocks. Figure 8 presents the influence of parameter Π value on normalized permeability
curves. As plotted in Figure 8, a larger parameter Π corresponds to lower permeability.
As a larger parameter Π means a stronger structural deformation, permeability decreases
as parameter Π increases. In other words, permeability reduction due to the structural
deformation increases as parameter Π increases. However, it should be noted that the
permeability of nanoporous media after the stress returning to the original state (4 MPa) is
independent of parameter Π, which illustrates that parameter Π affects the compression
process. However, the final state of pores after the stress returning to the original state
is not influenced by parameter Π. Furthermore, we can see from Figure 8 that, in this
case, the permeability curve during the pressure unloading process shows a complicated
shape, which is not monotonic. When the parameter Π is smaller than a certain value
(Π ≤ 2.6 in this case), permeability increases as effective stress decreases. However, when
the parameter Π increases up to this certain value (Π ≥ 2.6 in this case), the permeability
curve during the pressure unloading process is not monotonic. Still, it presents a com-
plicated shape (e.g., the permeability curve presents a V-shape in the black circle area in
Figure 8). The primary reasons will be explained as follows.

Equation (16) indicates that the contact angle during the pressure unloading process
is related to parameters γ and λ. In this study, we will study the effect of these two
parameters on hysteretic pressure-sensitive permeability. Physically speaking, parameters
γ and λ reflect the variation of pore structure during the unloading process. As a result, the
permeability curve during loading pressure will not be affected by these two parameters.
Figure 9 displays the curves of permeability versus effective stress with different values
of parameter γ. The results in Figure 9 show that, for a small value of parameter γ,
the permeability curve is monotonic during pressure recovery. Specifically, permeability
increases as effective stress decreases. However, when the value of parameter γ increases
up to a certain extent (γ ≥ 0.10 in this case), the permeability curve during the pressure
unloading process is not monotonic, but presents a complicated shape (e.g., the permeability
curve presents a V-shape in the black circle area in Figure 9). In addition, a normalized
permeability loss increases with the increase of parameter γ. It is chiefly because of that,
during the pressure unloading process, when the effective stress returns to σ0 (the original
state), the contact angle will change from θ1|σ0 to θ1|σ0 × (1− γ) with the loss of θ1|σ0 × (γ).
Thus, a smaller value of γ means a smaller final loss of contact angle, leading to a smaller
permeability loss. On the contrary, a larger value of γ corresponds to a larger final loss of
contact angle, resulting in a smaller permeability value. As depicted in Figure 10, during
the pressure loading process, permeability is not influenced by parameter λ. However, it is
shown that, for a small value of parameter λ, the permeability curve during the pressure
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unloading process shows a complicated shape. However, when the value of parameter λ
increases up to a certain extent (λ ≥ 2.2 in this case), permeability increases as parameter λ
increases with given effective stress during the pressure unloading process. Furthermore,
we can see that normalized permeability loss is independent of λ. The main reason for
this is that, parameter λ affects the speed of contact angle recovery instead of the final
loss of contact angle during the pressure unloading process. As a result, it does not affect
the pressure loading process. In addition, during the pressure unloading process, a larger
value of λ means a fast speed of contact angle recovery and a larger contact angle value,
leading to a larger permeability value. However, as parameter λ does not affect the final
loss of contact angle, it has no effect on the final loss of permeability of nanohybrids.

Figure 5. Experimental porosity data versus predicted porosity: (a) Core 1. (b) Core 2. (c) Core 3.
(d) Core 4. (e) Core 5. (f) Core 6.
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Figure 6. Permeability hysteresis curves with and without nanoscale effect.

Figure 7. Effect of parameter β on permeability hysteresis curve. The solid lines indicate the pressure
loading process curves, and the dashed lines represent curves of the pressure unloading process.

Figure 8. Effect of parameter Π on permeability hysteresis curve. The solid lines indicate the pressure
loading process curves, and the dashed lines represent curves of the pressure unloading process.
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Figure 9. Effect of parameter γ on permeability hysteresis curve. The solid lines indicate the pressure
loading process curves, and the dashed lines represent curves of the pressure unloading process.

Figure 10. Effect of parameter λ on permeability hysteresis curve. The solid lines indicate the pressure
loading process curves, and the dashed lines represent curves of the pressure unloading process.

By combining Equations (6) and (16), with the condition σ
σ0
≤ Π, we have

θ′1 =

(
π

3
+

π

6

(σ0

σ

) σ
Πσ0

β
)[

1− γ

(
σxp, max − σ

σxp, max − σ0

)λ
]
= f (σ)× g(σ). (20)

Mathematically, f (σ) monotonically decreases with the increasing effective stress σ,
which ranges from π

2 to
(

π
3 + π

6Πβ

)
, when effective stress increases from σ0 to σ0Π. How-

ever, g(σ) monotonically increases with the increasing effective stress σ, which ranges from

(1− γ) to
[

1− γ
(

σxp, max−Πσ0
σxp, max−σ0

)λ
]

, when effective stress increases from σ0 to σ0Π. As the

contact angle θ′1, during the pressure unloading process, is affected by the comprehensive
impact of f (σ) and g(σ), its monotonicity is complicated. Mathematically speaking, if
the parameter θ′1 is monotonically increasing as the effective stress changes from σxp, max
to σ0, the corresponding permeability will monotonically increase during this process.
However, it is found that, during the pressure unloading process (i.e., the effective stress
decreases from σxp, max to σ0), the variations are not monotone, parameter θ′1 will firstly
decrease and then increase, leading to permeability firstly decreases and then increases as
the effective stress changes from σxp, max to σ0. Thus, parameter θ′1 will be comprehensively
affected by the relevant parameters (e.g., β, Π, γ, and λ). For example, when other param-
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eters are given, for a small parameter γ, contact angle θ′1 is a monotonically decreasing
function of effective stress. However, when parameter γ increases up to a certain value,
the monotonicity of the contact angle θ′1 changes. Specifically, for a larger γ, when the
effective stress decreases from σxp, max to σ0, parameter θ′1 will firstly decrease then increase,
resulting in permeability firstly decreasing and then increasing during this process. Thus,
permeability curves during the pressure unloading process present complicated shapes,
as shown in Figures 8–10. To improve the model accuracy of modeling permeability, rele-
vant parameters (e.g., β, Π, γ, and λ) should be carefully checked for every type of tight
porous media.

4. Discussion

As an attempt to characterize the permeability hysteresis effect of nanoporous media,
the derived model can provide theoretical foundations for quantifying the deformation
of nanohybrids. Compared with the experimental tests, which are commonly expensive,
time-consuming, and vulnerable to extraneous variables, the derived model can reveal the
mechanism of the deformation of nanohybrids and explain the results. Moreover, for the
coupled flow deformation problem stated here, the numerical models (e.g., the Lattice Boltz-
mann method and the Finite Element method) need accurate pore structure information
of the porous materials [72–74]. For example, if the detailed pore structure information is
unavailable, the permeability of porous materials cannot be obtained accuracy by numerical
simulation. In addition, the numerical models require large computer memory and storage
space to reduce the numerical errors caused by the poor discretization schemes (coarse
meshing) and low space resolution of the pore structure, and are vulnerable to numerical
dispersion. Moreover, numerical modeling is with great uncertainty caused by the complex
nature of nanoporous media. Compared with the numerical models, the derived model is
robust and free from discretization errors. Specifically, the derived model can alleviate the
computational burden when modeling the deformation of nanohybrids.

However, it should be noted that the derived model needs to be extended to address
its limitations. For example, the derived model ignores the effect of water film on the
permeability of nanohybrids. Zhang et al. [22] suggested that the absorption of water
film on the pore surface would affect fluid flow in nanohybrids significantly. Thus, for
actual nanohybrids, the effect of water film on nanohybrids permeability can not be ignored.
Moreover, this derived model is a capillary bundle model which ignores the interconnection
between pores. In general, this capillary tube-based model without the interplay between
pores may underestimate the flow resistance and thus overestimate the permeability of the
nanoporous media. In addition, this study is for intact rocks, which ignores the deformation
of joints and fractures. Moreover, this model is suitable for circular nanopores. However,
for fluid flow through nanopores, the effect of the actual irregular shape of nanopores
on flow behavior is significant [75]. Furhtermore, this study is limited to the fully elastic
deformation of tight porous media. With the increase of effective stress, elastoplastic
deformation and fully plastic deformation will occur, which causes the problem more
complicated. In our further work, elastoplastic deformation and fully plastic deformation of
nanoporous media due to the effective stress change will be taken into account to make more
accurate predictions. In this paper, the pores in the nanohybrids are assumed to be framed
by the cubic packing of the same particles with neglecting the polydispersity of particle
packing. In addition, the fluid velocity is assumed to be approximately symmetrically
distributed with respect to the tube axis, however, for fluid flow in random and disordered
pore space, the velocity distribution will be extremely complicated. Thus, the imposed
boundary conditions are a relatively simple representation of the flow in nanohybrids.

Furthermore, the effect of stress relaxation on the mechanical properties of nanohy-
brids (e.g., elastic modulus and Poisson’s ratio) are ignored in this study. In general,
nanohybrids mechanical properties will be affected by effective stress, and the behavior of
the nanohybrids load-bearing structure is stress-dependent. Physically speaking, nanohy-
brids load-bearing structure parameters will alter the area over which the effective stress
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is distributed. Hence, nanohybrids mechanical properties would be affected by effective
stress. As a result, it is critical to study the influence of effective stress on the mechanical
properties of nanohybrids. Consequently, the variation in pore structure during pressure
loading and unloading processes is complex. This model should be extended in the future.

5. Conclusions

In this study, a new fractal-based analytical model is derived for characterizing the
permeability hysteresis effect of nanohybrids during the process of pressure change. The
model predictions agree with the experimental results and reveal that the permeability
hysteresis effect is nontrivial for nanohybrids. The proposed model indicates that the
hysteretic pressure-sensitive permeability of nanoporous media is affected by effective
stress, nanoscale effect (gas slippage), pore microstructure parameters, grain quadrilateral
angle, and the loss rate of grain quadrilateral angle. Compared with the conventional
porous media, nanohybrid permeability increases dramatically due to the gas slippage
effect. During the pressure unloading process, permeability is not a monotonous function
and presents complicated shapes, as affected by the comprehensive impact of multiple
influential parameters. As relevant influential parameters are functions of mineralogical
composition and pore structures of nanohybrids, these parameters should be carefully
checked for different types of nanoporous media to improve the model accuracy and reduce
model uncertainty.

To the best of the authors’ knowledge, it is the very first work on hysteretic pressure-
sensitive permeability of nanohybrids. The proposed model can explain, quantify and
predict the hysteretic pressure-sensitive permeability of nanoporous media reasonably well.
It can also be used to estimate specific parameters with inverse modeling. In addition,
with this derived model, more details and information on the mechanisms that lead to the
coupled flow deformation behavior in nanohybrids can be revealed and studied. However,
it should be noted that some parameters in the derived model need to be determined
through further study.

Author Contributions: Conceptualization, G.L. and C.L.; methodology, G.L. and X.Z.; software,
G.L.; validation, X.Z., W.C.; formal analysis, G.L.; investigation, Q.L.; resources, C.L., X.Z. and W.C.;
data curation, G.L. and X.Z.; writing—original draft preparation, G.L.; writing—review and editing,
W.C.; visualization, G.L.; supervision, C.L. and W.C.; project administration, C.L.; funding acquisition,
C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China grant
number 52074250 and 41802195.

Data Availability Statement: Not applicable.

Acknowledgments: The authors at the China University of Geosciences would like to acknowledge
the funding financial support. The authors would also like to acknowledge Nai Cao for her assistance
in the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Derivation of Nitrogen Flow in Nanopores

Assuming nitrogen flow through nanohybrid in the axial direction z under unidirec-
tional pressure driven, as shown in Figure A1.

For nitrogen flow through a circular nanopore with pore radius rwall, based on
Navier-Stokes equation with viscosity modified, the flow equation can be appropriately
expressed as

µg

r
∂

∂r

(
r

∂vg

∂r

)
= −∆p

L
, (A1)

where vg is the gas velocity (cm/s), ∆p is pressure gradient (MPa/m), L is the length of the
capillary (cm), and µg is the dynamic viscosity of nitrogen (mPa·s), which is [22,62,63].
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Figure A1. Physical conceptual model of nitrogen flow through nanoporous media.
µg =

µgi
1+αKn

α = α0
2
π tan(α1Kτ

n)

, (A2)

where µgi is the nitrogen viscosity at standard temperature and pressure state (mPa·s),
which is assigned as 0.0159 mPa·s. α0 is the rarefaction coefficient when Knudsen number
Kn → ∞, α1, and τ are fitting coefficients. In this paper, these parameters are assigned as
1.19, 4, and 0.4, respectively, which are identical to those used in the literature [22]. Based
on the definition of Knudsen number Kn (dimensionless, the ratio of gas mean free path ξ
with a unit of µm to the characteristic dimension), we have

Kn = ξ
2r

ξ = kBT√
2πd2 pav

, (A3)

where T is the temperature, which is 298.15 K in this paper.
In nanopores, the gas momentum transport will be affected by gas-gas interactions

and gas-solid interactions [22]. At the pore boundary (i.e., r = rwall ), Karniadakis et al. [76]
suggested that nitrogen slip velocity vs (cm/s) was

vs|r=rwall
= − 2− σv

σv

ξ

1− b0ξ

(
∂vg

∂r

)∣∣∣∣
r=rwall

, (A4)

where subscript “wall” denotes the pore wall. In this paper, diffuse reflection is taken
into account, and σv is assigned as 1. Parameter b0 in Equation (A2) is the general slip
coefficient, which is 0 for the first-order slip flow and −1 for the second-order slip flow. In
this paper, b0 is assigned as −1. Parameter rwall in Equation (A2) is the pore radius.

For fluid flow in cylindrical capillary, it is assumed that the fluid velocity is approx-
imately symmetrically distributed with respect to the tube axis (i.e., the shear stress at
r = 0 is zero). In addition, based on the continuity of the velocity at pore boundary (i.e.,
r = rwall), the boundary conditions of the model are{ ∂vg

∂r

∣∣∣
r=0

= 0

vg
∣∣
r=rwall

= vs|r=rwall

. (A5)

By solving Equations (A1), (A4) and (A5), we have

vg = −∆p
L

r2

4µg
+

∆p
L

1
4µg

(
r2

wall + 2
2− σv

σv

ξ

1− b0ξ
rwall

)
. (A6)
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By integrating Equation (A6) over the radius of the circular nanotube, the gas flow
rate qg (cm3/s, subscript “g” means gas) equation is

qg =
∫ rwall

0
vg2πrdr =

∆p
L

π

8µg

(
r4

wall + 4
2− σv

σv

ξ

1− b0ξ
r3

wall

)
. (A7)

Based on Equation (A7) and fractal theory, with the porosity ϕ, pore fractal dimension
Df, tortuosity fractal dimension DT, the maximum pore radius rmax and the minimum pore
radius rmin, pore size distribution f and the total volumetric flow rate Qg (cm3/s, subscript
“g” means gas) through the unit cell of fractal nanohybrids is [71,77]

Qg =
(

rmax
rmin

)Df ∫ rmax
rmin

qg f dr

f = Dfr
Df
minr−(Df+1)

L = (2r)1−DT · LDT
0

L0 = rmax

√
πDf

2−Df

1−ϕ
ϕ

DT = 1 +
ln

[
1
2

[
1+
√

1−ϕ
2 +

√
(1−
√

1−ϕ)2+0.25(1−ϕ)

1−
√

1−ϕ

]
ln
[

Df−1√
Df

rmax
rmin

√
1−ϕ
4ϕ

π
2−Df

]

. (A8)

By substituting Equation (A7) into Equation (A8), Equation (A8) can be rewritten as

Qg =
π × ∆p× Df × rDf

max

24−DT × µgLDT
0

(
r3+DT−Df

max − r3+DT−Df
min

3 + DT − Df
+ 4

2− σv

σv

ξ

1− b0ξ

r2+DT−Df
max − r2+DT−Df

min
2 + DT − Df

)
. (A9)

By combining Equation (A9) and Darcy’s law, nanoporous media permeability K can
be obtained as

K = 2DT×π×Df×r
Df−DT−1
max

16
(

πDf
2−Df

1−ϕ
ϕ

) DT+1
2

×
(

r
3+DT−Df
max −r

3+DT−Df
min

3+DT−Df
+ 4 2−σv

σv

ξ
1−b0ξ

r
2+DT−Df
max −r

2+DT−Df
min

2+DT−Df

) . (A10)
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