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Abstract: In the last few decades, the vast potential of nanomaterials for biomedical and healthcare
applications has been extensively investigated. Several case studies demonstrated that nanomateri-
als can offer solutions to the current challenges of raw materials in the biomedical and healthcare
fields. This review describes the different nanoparticles and nanostructured material synthesis
approaches and presents some emerging biomedical, healthcare, and agro-food applications. This
review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets,
nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and
their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicro-
bial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity),
nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes,
and films. As toxicological assessment depends on sizes and morphologies, stringent regulation
is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives
for an industrial breakthrough of nanomaterials are related to the optimization of production and
processing conditions.

Keywords: nanostructures; nanomaterials; drug delivery systems; tissue-engineered scaffolds;
wound dressings; skincare; risks and toxicities; market and regulations

1. Introduction

In the last 50 years, material researchers have been extensively studying how to exploit
nanoparticles and nanostructured materials in different biomedical and healthcare sec-
tors [1]. The term “NP” usually defines minute particles of matter (1 to 100 nm in diameter),
but other names can be used to describe larger particles (up to 500 nm in diameter). For
example, nanorods, nanowires, and nanofibers are nanoparticles with a diameter in the
1–100 nm range but with one dimension outside the nanoscale dimension [2]. Nanostruc-
tured materials are nanomaterials with one dimension in the nanoscale range (<100 nm) and
are made of a single material or multiple materials. Therefore, nanostructured materials are
composed of interlinked parts in the nanoscale range [3]. Nanoparticles and nanostructured
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materials can be made of simple materials (e.g., metal, carbon, polymer) [4], of composites
(e.g., polymer-metal, silica-metal, graphene-metal), or in the core-shell form [5–8].

Nanomaterials are typically synthesized by one of two main approaches, i.e., bottom-
up approach and top-down approach. Among all the methods, recently, the synthesis of
nanomaterials by physical vapor deposition, chemical vapor deposition, electrospinning,
3D printing, biological synthesis, and supercritical fluid have gained importance, which
is mingled with other methods to improve the synthesis efficiency [9,10]. Nanomaterials
display many interesting features, such as superior mechanical performance, the possi-
bility of surface functionalization, large surface area, and tunable porosity, compared to
their bulk materials [11–13]. These outstanding features explain why nanomaterials are
the perfect candidates in the biomedical sector for the production of tissue-engineered
scaffolds (e.g., blood vessels, bone), drug delivery systems (gene therapy, cancer treat-
ments, drugs for chronic respiratory infections), chemical sensors [4,5], biosensors [6,7],
and wound dressings [14,15]. Remarkably, several studies suggest that ancient civilizations
in India, Egypt, and China used nanotechnology (metallic gold) for therapeutic purposes
in 2500 BC [16]. Nanomaterials’ discrete features can complicate the assessment of the
effects and the toxicity risk associated with their use in a biological environment. Indeed,
nanomaterials’ chemical composition, size, shape, surface charge, area, and entry route in
the body can influence their biological activities and effects [17].

In bioimaging, tailored fluorescent nanoparticles could outperform traditional molec-
ular probes as fluorescent indicators, particularly in terms of sensitivity [18]. Tissue-
engineered nanofiber scaffolds are considered the best option to manage tissue loss and
end-stage organ failure and have already helped millions of patients worldwide [15]. Three-
dimensional nanofibrous scaffolds are polymer-based structures with balanced moisture,
absorption, strongly organized porosity (60–90%), and gas permeability, comparable to
native extracellular matrices [15]. One and two-dimensional nanomaterials can be used for
signal amplification, are nanosized (≤100 nm), have high electrical conductivity, and are
compatible with drugs [13] and biological molecules [12]. They have also been used for
the early detection of diseases (e.g., virus, bacterial, cancer). Antimicrobial nanomaterials
(e.g., Ag, Au, CuO NPs) are frequently employed in dermatology because they contribute
to accelerating wound healing and preventing/treating bacterial infections [19,20].

Based on dimensionality, nanomaterials are classified mainly into four groups [1]: 0D,
where length, height, and width are fixed at a single point; 1D, where only one parameter
exists (e.g., carbon nanotubes); 2D, where length and width exist (e.g., graphene); and 3D,
where length, height, and width exist [21]. For example, a graphene nanosheet is a typical
example of a 2D nanostructure with a thickness in the nanoscale range. Theoretically,
single-layer graphene is 0.345 nm thick (one atom thickness) and up to 500 nm in diameter.
Based on their chemical composition, nanoparticles and nanostructured materials can be
categorized into four types: organic nanomaterials (e.g., micelles, dendrimers, polymer-
somes, hydrogels, nanoconjugates), inorganic nanomaterials (e.g., metals, metal oxide,
and ceramic nanomaterials), carbon-based nanomaterials (fullerenes, carbon nanofibers,
diamonds carbon nanotubes, and graphene), and composite nanostructures [1,22]. The
synthesis of traditional nanosized products contributes to the present and future economic
growth of many countries. Based on porosity, nanomaterials can be classified into porous
and non-porous materials [3]. Porous materials have a less dense molecular structure to
allow airflow or the absorption of atoms, ions, and molecules. Non-porous materials are
denser, do not absorb well, and allow limited airflow. Mesoporous (or super-nanoporous)
nanomaterials are nanoporous materials with pores of 2–50 nm in diameter [23,24]. Recent
research has focused on mesoporous nanomaterials for delivering therapeutic agents to tu-
mor cells with little drug leakage into healthy cells. The high porosity, surface functionality,
and small pore size of mesoporous nanoparticles allow the controlled release and efficient
drug loading at the target site [22].

Considering the growing use of nanomaterials over the last decades, our group re-
viewed the key aspects of different types of nanomaterial design and their emerging
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applications in the biomedical fields [1–3,15]. This review article discusses the unique
features of nanomaterials that are exploited for different biomedical applications (Figure 1).
It also presents recent trends on nanomaterials use for biomedical engineering, with a
particular emphasis on the preparation methods used for designing nanomaterials. The
advancement of nanomaterials in the biomedical and health sectors (bioimaging, tissue
engineering, wound dressings, drug delivery, biosensors, food industry, and agriculture)
is discussed. The review deals with various relevant nanomaterials variables, such as
charge, concentration, particle surface modification, and size, which must be considered
during the bioimaging of living cells. Various targeted drug delivery systems for treating
chronic diseases are described. The use of nanomaterials to improve dental implants is also
discussed, as well as the fabrication methods [14]. As many review articles have already
described the biomedical applications of nanomaterials [1–4], this review will be extended
to discuss the nanomaterial’s toxicity, risks, and regulations in the biomedical sector.
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2. Fluorescent Nanomaterials for Bioimaging

Bioimaging is an advanced non-invasive technology used to visualize internal struc-
tures and physiological processes in living cells/organisms in real-time. It is a safe and
effective technique for monitoring biological functions without affecting normal life pro-
cesses (e.g., respiration and movement). It also helps to obtain data on the sample 3D
nanostructure [25] and to investigate tissues at the subcellular and multicellular scale [26].
Several nanoprobes have been developed for bioimaging and the treatment of many dis-
eases (cancer, heart, and inflammatory diseases) [27–29]. Nanomaterials are ideal materials
for nanoprobes because they can be exactly characterized using nuclear magnetic resonance
or gel permeation chromatography and are easily secreted from the body. However, their
functions are limited, and researchers are always looking for new materials. In recent
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days, magnetic nanoparticles have gained great interest because of their progress in image-
guided therapy (e.g., fluorescence, magnetic resonance, X-ray CT) and cancer theranosis
favorable properties, such as tunable size, generating reactive oxygen species (ROS) or heat,
simple fabrication, energy transfer, and X-ray absorption properties (Figure 2). Moreover,
their long-term toxicity and dispersion stability must be specifically investigated.
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Figure 2. Schematic representation showing the utilization of magnetic nanoparticles in tumor
bioimaging and therapy [30]. Copyright 2016, American Chemical Society.

Fluorescent nanoparticles’ specificity, light-emission (NIR-IR emission), and biocom-
patibility with the target tissues can be customized by changing their shape, size, and
surface properties [27]. The cell uptake of nanoparticles used for bioimaging is influenced
mainly by the following factors [31,32]: (i) size, smaller nanoparticles with identical surface
properties are better absorbed than bigger nanoparticles [33]; (ii) charge, positively charged
nanoparticles are preferentially taken up by living cells due to the cell membrane negative
charge [34,35]; (iii) cell-specific targeting, this is achieved by conjugating nanoparticles
with ligands that can interact with receptors at the cell surface [36,37]; (iv) the conjugation
of proteins on the nanoparticles’ surface may promote rapid absorption and endosome
bypass [38]; (v) oligodeoxynucleotide conjugation can help in the presence of comple-
mentary cellular DNA at a specific subcellular location [39,40]; (vi) endosome egress of
nanoparticles that are positively charged at the surface in the low pH environment of late
endosomes. It was reported that small nanoparticles can bypass the degradation pathways
more efficiently than larger size particles with the same chemical composition [41].

The fluorescent nanoparticles used in bioimaging can be classified into two categories:
(1) fluorescent nanoparticles that can emit specific optical signals, such as carbon and
metallic quantum dots, (2) fluorescent nanoparticles that require labeling with a fluorophore
to be visualized, such as fluorescence mesoporous SiO2 and Fe2O3 NPs, liposomes, protein-
based, and polymeric nanoparticles. Many classical fluorophores emit fluorescence at a
short wavelength (e.g., the ultraviolet (UV) and visible regions) that can be easily absorbed
and scattered by human tissues. This can lead to specific issues, for instance, elevated auto-
fluorescence, low signal-to-background ratio, and limited tissue penetration. High-energy
light could be used to overcome these drawbacks, but it can cause phototoxicity in human
tissues. Optical imaging in the near-infrared (NIR) region is a possible alternative (Figure 3).
Fluorophores in the first near-infrared window (NIR-I, 700–900 nm) have been tested and
show good sensitivity; however, their application in bioimaging is limited due to their
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poor tissue penetration (less to 1 cm) and large photon scattering losses in biological matter.
Therefore, fluorescent quantum dots (≤10 nm) that allow fluorescent bioimaging in the
NIR-II window (1000–1700 nm) have been developed [42].
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versus rare-earth-metal doped nanoparticles. (A) The spectral range of classical fluorescence imaging
methods. NIR, near-infrared region. (B) Examples of probes in the NIR-II region: single-walled
carbon nanotubes (SWNTs), rare-earth-metal doped nanoparticles (RENPs), organic dyes, conjugated
polymers, and quantum dots (QDs). (C) Nanoparticles are doped with rare-earth metals (Nd, Tm, Pr,
Ho, Er) [42]. Copyright 2020, Frontiers.

Fluorescent metal quantum dots (e.g., Au, ZnSe, InAs, CdTe, InP, or CdS) with a size
in the 1–10 nm range show broad absorbance bands and narrow emission bands and are
interesting for bioimaging in the NIR range [43]. These inorganic nanoparticles are the most
frequently used in bioimaging because of their intense color, shape, size, and high-power
surface photoluminescence. They allow the non-invasive detection of disease and the
monitoring of its progression/response to treatments in humans and animals [44]. Metal
oxide (Fe3O4, WO3, WO2.9) [30,32], lanthanide-doped nanoparticles [45], and quantum
dots (QDs) [30] have also been tested for bioimaging and therapy. The nanoparticles
optical and physical features can be tailored by structure amplification, which is their
most distinctive advantage for optical imaging. Ceramic nanomaterials (mesoporous TiO2
and SiO2 NPs) also are among the most interesting candidates for bioimaging because of
their size-manageable morphology, easy functionalization, and biocompatible hydrophilic
surface [46,47]. FDA-approved silica is less toxic and is biocompatible [48]. Magnetic metal
oxide nanoparticles can be exploited as nanocarriers for substances that are optically active
or that can emit optical signals upon excitation, depending on their structural composition.
However, using magnetic metal oxide nanoparticles in bioimaging is challenging due
to their loading capability, synthesis complexity, regulatory hurdles, imaging efficiency,
toxicity of the intrinsic ingredients, batch reproducibility, production cost, in vivo stability,
and storage [49,50].

Fluorescent carbon nanoparticles are also interesting for bioimaging applications [51]
for several reasons, particularly source abundance, simple synthesis, low cost, and non-
toxicity [52]. Fluorescent carbon nanoparticles, such as fullerenes and carbon quantum
dots, are considered to be promising nanomaterials alternatives to fluorescent semiconduc-
tor quantum dots, which are composed of toxic heavy metals, such as cadmium [53,54].
Fullerenes and carbon quantum dots are strong candidates for bioimaging applications [55].
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Indeed, they are superior to the currently used inorganic quantum dots and traditional
organic fluorophores in terms of photo-bleaching resistance, easy surface functionalization,
and chemical inertness [56]. Their greater aqueous solubility, minimum cytotoxicity, and
substantial fluorescence quantum yields explain their suitability for biomedical applica-
tions, specifically for in-vitro and in-vivo bioimaging [57,58].

Rare-earth metals are primarily used to develop nanoparticles with persistent lu-
minescence [58]. However, the major issue linked to the use of rare-earth metal-based
nanoparticles in vivo is their potential cytotoxicity and their low tunability for surface
modification [59,60]. Therefore, non-toxic conjugated polymer nanoparticles with tremen-
dous optical properties have been developed to act as persistent luminescence materi-
als that can replace the conventional rare-earth metal-based nanoparticles. Conjugated
polymer nanoparticles display excellent photoelectronic properties due to the highly local-
ized π electrons on their backbones [61]. Additionally, due to their light-harvesting and
light-amplifying properties, conjugated polymers act as biological photoactive materials.
Water-soluble conjugated polymers have been developed and used in drug/gene delivery,
biosensing, bioimaging, and antitumor/antimicrobial therapeutics [62,63]. Moreover, it has
been demonstrated that conjugated polymers do not have any cytotoxic effect on the host
cells and have structure-dependent tunable optical properties [64,65]. Currently, conjugated
polymer nanoparticles can be prepared using four different approaches: solvent exchange
(nanoprecipitation), mini-emulsion, self-assembly, and emulsion polymerization.

Du et al. [66] described a fast and multimodal approach for in vivo fluorescence
bioimaging through the synthesis of Fe and Zn nanoclusters in HepG2, HeLa, and U87 can-
cer cells. They showed that fluorescent magnetic Fe3O4 nanoclusters and ZnO nanoclusters
are synthesized by cancer cells in which Zn2+ and Fe2+ (which are biocompatible) have been
introduced. These nanoclusters are promising candidates for multiplexed imaging that
integrates fluorescence imaging, computed tomography, and magnetic resonance imaging.
Moreover, they did not observe any significant variation in the fluorescence signal before
and after the injection of Zn2+ and Fe2+ in normal human liver cells (L02) and tissues. This
suggests that this multiplexed bioimaging system could be interesting for monitoring the
response to cancer treatment and also for cancer diagnosis. Wang et al. manufactured multi-
colored conjugated polymer nanoparticles for targeted tumor imaging (Figure 4) [67,68].
Functionalized conjugated polymer nanoparticles with carboxyl groups were fabricated
by coprecipitation of poly (styrene co-maleic anhydride) (PSMA) with four conjugated
polymers (P1, P2, P3, and P4) with blue, green, yellow, and red fluorescence emission,
respectively [67]. Energy could be transferred from nanoparticles with shorter wavelength
emission to nanoparticles with longer wavelength emission, leading to the formation of
multi-colored nanoparticles with whole visible light absorption and emission spectrum
via only one excitation. For enhancing their specificity towards tumor cells, conjugated
polymers (P1-4/PSMA) were labeled with an antibody against EpCAM (a protein overex-
pressed in many cancer types). Excitation was recorded in antibody-labeled conjugated
polymers (P1-4/PSMA/anti-EpCAM) at different wavelengths. Then, due to the antibody
cross-reactivity, Wang et al. used P3/PSMA/anti-EpCAM and P3/PSMA/anti-ErbB2 to
differentiate between HeLa and MCF-7 cells (EpCAM), and SK-BR-3 cells (ErbB2), although
MCF-7 and SK-BR-3 cells were derived from the same patient [67,69].
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of P2, 4.0 µg/mL of P3, 12.0 µg/mL of P4, and 20.0 µg/mL of PSMA) into water. (c) Multi-channel 
fluorescence images of MCF-7 cells using P1–4/PSMA/anti-EpCAM polymer nanoparticles. The ex-
citation wavelengths are indicated above the panels [67]. Copyright 2014, Wiley. 
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taken to investigate novel and improved cell labeling and imaging techniques, and much 
has already been learned from these approaches. The capacity to visualize these cells pre-
cisely could help in the diagnosis and prognosis of disorders, such as atherosclerosis, neu-
rodegenerative diseases, cancer, and myocardial infarction. Understanding the behavior 
of circulating cell populations, such as monocytes, macrophages, and circulating tumor 
cells (CTCs) spread from solid tumors, could provide crucial information on features that 
could aid in the development of better treatments [70]. Chen’s team observed CTC behav-
ior in blood arteries surrounding solid tumors using a multiphoton device with a 30 Hz 
collection rate. The highest number of circulating tumor cells each minute was estimated 

Figure 4. Multicolor conjugated polymer with carboxyl groups were fabricated from poly (styrene
co-maleic anhydride) (PSMA) with four conjugated polymers (P1, P2, P3, and P4), for cancer cell
bioimaging and detection. (a) UV-vis absorption, and (b) fluorescence emission spectra of P1–4/PSMA
nanoparticles in water (excitation wavelength: 360 nm). The conjugated polymer nanoparticles
were fabricated by precipitation of the tetrahydrofuran solution (2.0 µg/mL of P1, 7.0 µg/mL of
P2, 4.0 µg/mL of P3, 12.0 µg/mL of P4, and 20.0 µg/mL of PSMA) into water. (c) Multi-channel
fluorescence images of MCF-7 cells using P1–4/PSMA/anti-EpCAM polymer nanoparticles. The
excitation wavelengths are indicated above the panels [67]. Copyright 2014, Wiley.

Understanding biological causes and developing therapeutic strategies requires the
ability to track cell migration and circulation in vivo. Many attempts have been under-
taken to investigate novel and improved cell labeling and imaging techniques, and much
has already been learned from these approaches. The capacity to visualize these cells
precisely could help in the diagnosis and prognosis of disorders, such as atherosclerosis,
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neurodegenerative diseases, cancer, and myocardial infarction. Understanding the be-
havior of circulating cell populations, such as monocytes, macrophages, and circulating
tumor cells (CTCs) spread from solid tumors, could provide crucial information on features
that could aid in the development of better treatments [70]. Chen’s team observed CTC
behavior in blood arteries surrounding solid tumors using a multiphoton device with a
30 Hz collection rate. The highest number of circulating tumor cells each minute was
estimated to be around 100, which could be linked to cancer progression [71]. Furthermore,
by labeling circulating tumor cells with antibody-conjugated quantum dots, the behavior
of uncommon subpopulations of circulating tumor cells with higher metastatic potential,
such as CD24+ and CD133+ CTCs, has been observed. Jia’s team produced doxorubicin
(DOX)-loaded MSNs that are decorated with anti-EpCAM and anti-CD44 aptamers to
deliver cancer metastasis chemopreventive medications selectively toward circulating tu-
mor cells. DOX-fluorescence MSNs enable the self-tracking of targeting efficacy and drug
administration into colorectal cancer cells. It was possible to track not only how the trans-
planted CD45-CD541CD1571 lung stem/progenitor cells were precisely located in vivo
but also how these cells incorporated and reformed themselves over time at a single-cell
resolution using a combination of fluorescent nanodiamonds, fluorescence-activated cell
sorting, and fluorescence lifetime imaging microscopy. HNF3 plasmid DNA (pDNA) was
efficiently transported by fluorescein isothiocyanate (FITC)-tagged MSNs as a differentiat-
ing agent for iPSCs. The indoctrination procedure was simultaneously observed due to
their self-monitoring capacity [72].

Surface functionalization of nanoparticles is a crucial issue for their use in bioimaging
applications (Table 1) [68,69]. However, the selection of the most suitable nanoparticles
for a specific bioimaging application (e.g., computed tomography) is difficult, and several
aspects (biological safety, sensor capacity, size, brightness, and photostability) must be
taken into account. After finding the best material for a specific application, all experimental
methods must be adapted and adjusted to the selected material. This is not an easy task. A
deeper knowledge of the impact of nanoparticles on living cells will help to understand the
imaging potential of those nanoparticles and how it is adsorbed by cells. Therefore, more
research efforts are needed to promote nanoparticle exploitation in bioimaging applications.

Table 1. Different nanomaterial types are used for bioimaging applications.

Nanomaterial Functionalization Cell Lines Refs

Graphene-based nanosheets
Surface functionalization by

bio-compatible targeting ligands
and coatings

MDA-MB-468 (MCF-7) [70]

Molybdenum disulfide
nanosheets

Chitosan; PLGA, PEG
functionalization

Breast cancer cells (MDA-MB-468), HeLa
uterine cancer cells, human lung

cancer cells
[71]

Transition metal nanoparticles
decorated with polymers Polymer functionalization Mice bearing 4T1 breast cancer

cell xenografts [72]

Lanthanide-activated
nanoparticles Doping with lanthanide Cancer cells xenografted in mice [73]

Group IV quantum dots Surface functionalization Various cancer cell types [74]

Graphene oxide nanosheets Surface functionalization Tumor cells [75]

Peptide-based nanoparticles Chemical functionalization Peptide-treated HeLa cells preloaded
with Hg2+ [76]

Silver nanoparticles Aptamer conjugation Leukemia cells, neural stem cells, kidney
tissue, renal carcinoma cells [77]
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Table 1. Cont.

Nanomaterial Functionalization Cell Lines Refs

Gold nanoprisms Conjugation with
polyethylene glycol Gastrointestinal carcinoma cells (HT 29) [78]

Gold nanorods Encasing by mesoporous silica Carcinoma cells [79]

Magnetofluroscentnanoprobe Surface functionalization Human Breast Cancer (MCF-7),
HeLa cells [80]

Dye-loaded nanoemulsions Lipids conjugation with
polyethylene glycol

Human colon cancer (HCT116),
HeLa cells [81]

Cadmium telluride quantum dots Capping by shells Human bronchial epithelial cells [82]

3. Nano-Drug Delivery Systems

Drug delivery systems are quite new, but is a rapidly expanding technology. In these
systems, nanoscale materials are used to deliver the therapeutically active drug or the
imaging molecule (when used as diagnostic tools) to the targets [83]. Nanostructures (made
of metals, organic/inorganic, and polymeric materials) are often used for the development
of drug delivery systems (Figure 5). Nanoparticles and nanostructured materials are crucial
components in these carrier systems that play a key role in personalized medicine by im-
proving drug formulation/targeting/controlled release [83,84]. Such systems can deliver a
drug to a specific site at a predetermined rate and in a predesigned manner; consequently,
the drug bioavailability will be enhanced, while side effects will be reduced. Drugs can be
physically or chemically adsorbed into the nanoparticles surface through various adsorp-
tion methods, or they can be loaded on nanoparticles during their production [83,85]. The
drug and carrier properties, such as drug-carrier solubility, molecular weight, drug-carrier
chemical interaction, and carrier size, will determine the drug loading efficacy on/into
the carrier [83,86]. The drug release rate from the nanoparticlesis mainly influenced by
(1) the release of the adsorbed drug from the surface of the nanoparticles; (2) the drug
diffusion from thenanoparticles; and (3) the nanoparticle erosion and drug diffusion from
the nanoparticles. Therefore, the drug release rate from the nanoparticles will be governed
by polymer biodegradation and drug diffusion. The drug release time and location can
be modulated by the nanoparticles composition (e.g., thermosensitive and pH-sensitive
materials) and engineering (e.g., monolayer and multilayer nanoparticles, nanocapsules),
and also by better understanding the physiological factors involved in this process [83,87]
(Figure 5).

Many researchers worldwide are investigating whether and how nanoparticles
(e.g., metals, metal oxides, carbon, quantum dots, liposomes, dendrimers) can be used
as carriers for different therapeutic agents [88,89]. Graphene oxide nanosheets, graphene
quantum dots, single/multiwalled carbon nanotubes, and graphene oxide nanosheets are
carbon-based nanomaterials with different drug-loading capacities, targeting specificity,
and drug release kinetics. This partly explains the discrepancies in the therapeutic efficiency
of these different nanomaterials when used as drug-carrier systems. Biodegradable polymer
nanoparticles are used in new drug delivery systems because of their flexibility and many
interesting characteristics, such as controlled release, stability in blood, non-immunogenic,
and non-toxic nature [85]. Micelles, liposomes, emulsions, and nanoparticles are colloidal
drug carriers that are used to increase the number of drugs that can pass through the
blood–brain barrier. Similarly, colloidal systems are used to regulate the drug release rate
at target locations (cells or tissues).
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Drug delivery via nanocarrier systems presents some strengths compared with con-
ventional drug administration methods, particularly very high accuracy, targeting ability,
stability, and sustainability at the target location [83,90]. Delivery systems made of large-size
materials display major drawbacks, such as poor absorption, in vivo stability, bioavailabil-
ity, and solubility, which may decrease their efficacy and target specificity. The major goal of
using nanoparticles as drug carriers is to reduce the drug toxicity and increase its bioavail-
ability, target specificity, and delivery without any loss of the therapeutic effects [83,91].
The key challenges when looking for suitable carriers are: (1) drug release kinetics and
integration, (2) shelf life and stability of the formulation, (3) biocompatibility of the for-
mulation, (4) biodistribution and targeting, and (5) possible nanocarrier accumulation in
the body in the case of prolonged treatment using drug-loaded nanocarriers. Currently,
the available data do not allow the determination of the toxicological and environmental
impacts of drug-loaded nanocarriers [83,92]. Furthermore, drugs can also be synthesized
at the nanoscale, and then they can act as their own “carrier” for delivery. Table 2 lists
different nanocarriers used for the delivery of therapeutic molecules/drugs.
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Table 2. Nanomaterials used for drug delivery.

Nanocarrier Loaded Drug Therapeutic Action Ref

Metal-based nanoparticles

Gold nanoparticles Doxorubicin Anticancer effect in HeLa cells [93]

Gold nanoparticles
Theophylline (THP),

1,3-dipropyl-8-
cyclopentylxanthine (DPCPX)

Neuron reconstruction in vivo [94]

Silver nanoparticles Methotrexate-coated PEG Anticancer effect in MCF-7 cells [95]

Metal oxide-based nanoparticles

Fe3O4 nanoparticles Doxorubicin Anticancer effect in HeGP2 and Lo2 cells. [96]

Fe3O4 nanoparticles Fluorouracil Anticancer effect in MCF-7 cells [97]

Carbon-based nanoparticles

Multilayer carbon nanotubes Dexamethasone
Anti-inflammatory effect in

Highly-Aggressively Proliferating
Immortalized cells (HAPI)

[98]

Single-layer carbon nanotubes Cisplatin Anticancer effect in head and neck squamous
carcinoma in vivo and in vitro [99]

Quantum dots

Ag–In–Zn–S quantum dots modified
with 11-mercaptoundecanoic acid,

L-cysteine, lipoic acid, and decorated
with folic acid

Doxorubicin Anticancer effect in A549 cells (human
alveolar basal epithelial cells) [100]

Nano-clays

Laponite nanoplates Anionic dexamethasone Anti-inflammatory effect in MG-63
osteoblast-like cells [101]

Dendrimers

Poly-amido-amine dendrimers Methotrexate

Anticancer effect in methotrexate
-sensitive and resistant human acute

lymphoblastoid leukemia (CCRF-CEM) and
Chinese hamster ovary (CHO) cells

[102]

Polymeric nanoparticles

Poly-lactic acid Paclitaxel Anticancer effect in a mouse model of ovarian
cancer in vivo. [103]

Chitosan Tacrine Therapeutic effect in a rat model of
Alzheimer’s disease in vivo (preclinical study) [104]

Liposomes

Liposomes Dexamethasone phosphate Anti-inflammatory effect in a rat model of
adjuvant-induced arthritis in vivo. [105]

Liposomes Cetuximab and oxaliplatin Anticancer effect in mice xenografted with
colon cancer cells in vivo [106]

Nanofibers

Polyvinyl alcohol PEG2000-Pt(IV) micelles and
dichloroacetate

Anticancer effect in mice xenografted with
cervical cancer cells in vivo [107]

Polylactic acid electrospun nanofibers Doxorubicin Anticancer effect in mice with secondary
hepatic carcinoma in vivo [108]

3.1. Nano-Vehicles for Anticancer Drugs

After heart disease, cancer is the second most common cause of death
worldwide [109,110]. Functionalized nanocarriers can be used to develop targeted anti-
cancer treatments. Compared with systemic chemotherapy, in these systems, nanoparticles
loaded with therapeutics and targeting molecules are specifically delivered to the tumor
cells and show good efficacy at lower doses and, consequently, with fewer undesirable
effects [111]. Several studies suggest that nanocarriers are interesting tools to improve
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cancer diagnosis (as imaging agents) and treatment [112,113]. Over the last two decades,
nanoparticles products have been evaluated in several clinical trials [114].

The efficacy of chemotherapeutic agents at the target site can be increased by encapsu-
lating them in nanoparticles that target the tumor cells actively or passively. Nanoparticles
offer various advantages when used for drug delivery: (i) overcoming the stability and
solubility issues of chemotherapeutic drugs; (ii) protecting the drug from modifications by
enzymes (e.g., proteases and other metabolic enzymes) and, thus, also increasing the drug
half-life in blood; (iii) increasing drug targeting and distribution; (iv) modulating the drug
release kinetics; and (v) reducing resistance to treatment by delivering multiple drugs [84].

Often, after reaching the target, the anticancer drug efficacy is significantly reduced for
many different reasons (e.g., too low concentration) [84]. As the therapeutic effect of a drug
is possible only if present at the right concentration and in the correct form, nanoparticles
used as carriers could increase the local drug concentration inside and around tumor cells.
This also decreases the risk of toxicity for healthy cells. The drug-carrying nanoparticles
deliver the drug directly into its targeted body area (organ, cellular, and subcellular level of
specific tissue) to overcome the specific toxic effect of conventional drug delivery, thereby
reducing the amount of drug required for therapeutic efficacy. As a result, the use of
nanoparticles in drug delivery opens new possibilities for improving drug distribution and
changing cancer management [115]. The interaction of nanoparticles with ligands (nucleic
acid aptamers, peptides, antibodies, carbon dioxide, and tiny molecules) may contribute to
the active targeting of cancer cells and organs.

Polymeric nanoparticles can be used for the controlled release of the encapsulated
drugs by surface erosion, diffusion, and swelling, followed by diffusion, depending on the
time and condition. The most widely used biocompatible polymers for controlling drug
release are poly(D, L-lactide), poly(glycolide), and its co-polymer poly(lactic-co-glycolic
acid) [116]. Biodegradable polymer nanoparticles for cancer treatment have been exten-
sively studied [117,118]. Liposomes were the first nanoparticles to be used to administer
chemotherapy. Cohen and Bangham were the first to describe liposomes 40 years ago [119].
Liposomes are structured like vesicles with an aqueous interior and one or more con-
centrically phospholipid bilayers with diameters ranging from 30 nm to several microns.
They are produced using different methods and display different sizes, lipid compositions,
and surface chemistry. Liposomes can be used as flexible carriers that can be tailored to
various functions and have a specific drug delivery role [120]. Several materials, such as
biodegradable polymers, dendrimers, and nucleic acid-based nanoparticles, have also been
used to develop targeted cancer treatments [121,122].

Electrospun nanofibers have also been evaluated for localized anticancer drug de-
livery [113,114]. They can efficiently deliver the desired drug to the target cancer cells
compared with conventional diffusion-based drug delivery vehicles [122–125]. Zhang et al.
manufactured a nanofiber-based localized anticancer drug delivery system by electrospin-
ning a solution containing self-assembled PEG2000-Pt(IV) micelles with dichloroacetate
(DCA) that “acts as a prodrug” and with polyvinyl alcohol. This delivery system allowed
the quick release of PEG2000-Pt(IV)-based micelles and DCA that showed a synergistic
apoptotic effect on cancer cells through two apoptotic mechanisms [107]. Table 3 lists
various nanomaterial types exploited in delivery systems for anticancer agents.
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Table 3. Different examples for nanomaterials being used in anticancer drug delivery systems.

Nanomaterial Anticancer Drug Targeted Cancer Cells Refs

Silver nanoparticles Terminaliachebula Breast cancer cells (MCF-7) [126]

Glycerylmonooleate
nanostructures Doxorubicin hydrochloride Breast cancer cells (MCF-7, MDA-MB-231) [127]

Poly (3HB-co-4HB)
biodegradable nanoparticles Docetaxel Breast and prostate cancer cells [128]

Carbon nanodots Irinotecan Breast cancer cells (MCF-7, MDA-MB-231) [129]

Polysaccharide nanoparticles Lapatinib Breast cancer cells (MCF-7/ADR) [130]

Fe3O4 nanoparticles Doxorubicin HepGP2 liver cancer cells and LO2 liver cells [96]

Fe3O4 nanoparticles Fluorouracil Tumor cells and in vitro analysis [97]

Porous silicon nanoparticles Doxorubicin and siRNA Prostate cancer cells [131]

Thermosensitiveliposomes
coated with cetuximab Doxorubicin EGFR-expressing breast cancer cells [132]

Iron oxide nanoparticles Cetuximab A431 (epidermoid carcinoma) cell lines [133]

3.2. Nanostructured Materials as Drug Delivery Vehicles for Antioxidant Drugs

Antioxidants are reactive molecules that are produced by the body in response to
environmental stress and other stimuli and that contribute to limiting cell damage by free
radicals. Therefore, they are also called “free-radical scavengers”. Antioxidants are present
in many food types and can also be synthesized. However, due to their limited cellular
absorption, potency, and lack of precise transportation systems to a specific organ, cell,
and tissue, their use for treating diseases in which oxidative stress plays a major role is
still limited, particularly for neurodegenerative diseases where the brain targeting is still
challenging [83]. Nanotechnology can address these drawbacks, especially the targeting
of dietary antioxidants with neuroprotective properties. Indeed, antioxidant molecules
can be protected from degradation using nanotechnology-based delivery mechanisms that
improve their bioavailability and physicochemical drug-like properties [134].

However, most nanoparticle-based formulations tend to cause oxidative stress in the
cells, and this hampers their routine clinical use. Importantly, the amount of reactive oxygen
species (ROS) produced by the cells is proportional to the concentration of nanoparticles
to which the cells were exposed [135]. Moreover, the cellular redox balance is influenced
by nanomaterials, and this can lead to the inhibition or induction of ROS production [83].
Excess reactive oxygen species production and endogenous antioxidant system overload
are common side effects of high nanoparticle concentrations, resulting in cytotoxicity and
inflammation [83,136]. As a result, determining the maximum permissible doses is impor-
tant to minimize negative effects. However, several studies suggest that low nanoparticle
exposure levels can unintentionally boost the antioxidant defenses and reduce oxidative
stress. Moreover, some nanomaterials have enzyme-like antioxidant properties, and they
reduce oxidative damage and scavenge reactive oxygen species and free radicals [137].

Nanoparticles’ antioxidant properties depend on their surface load, volume surface
ratio, chemical composition, particle size, and surface coating [138]. Nanoparticles offer
many advantages compared with traditional methods of antioxidant supplementation,
including the environmental safety of bioactive materials, improved bioavailability and
selective antioxidant supplementation, and controlled release at the target site [139,140].
The antioxidant function of transition metal oxide nanoparticles (CuO, NiO NPs) has
been widely studied and exploited [141–144]. Cerium oxide nanoparticles (CeO2 NPs)
are particularly interesting because of their reactive oxygen species (ROS) scavenging and
regenerative effects [145]. These nanoparticles display special features: the coexistence in
both oxidation states (Ce3+ and Ce4+), reversible switching between these states, and reduc-
tion potential of 1.52 V [146]. Gold nanoparticles (Au NPs) have been extensively evaluated
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by the pharmacology and biomedical sectors due to their inert and non-toxic nature [147].
Silver nanoparticles (Ag NPs) also have a strong antioxidant capacity (reduction power and
free-radical scavenging) [148]. Arriagada et al. [149] prepared antioxidant mesoporous SiO2
nanoparticles on porous nanoplatforms with rosmarinic acid (nano-RA) as an antioxidant
that was loaded on the mesoporous SiO2 nanoparticle surface. Morin flavonoids were
incorporated on the antioxidant nanocarrier by the impregnation/solvent evaporation
technique with high drug loading (23% wt/wt) compared to bare mesoporous SiO2 NPs
(9% w/w). In addition, the rosmarinic acid and mesoporous SiO2 nanoparticle (nano-RA)
release profile was evaluated using two biorelevant media. The antioxidant activity of the
rosmarinic acid and mesoporous SiO2 nanoparticles (nano-RA) was maintained, suggesting
the correct disposition of the moiety (Figure 6) [149]. These results suggest a promising
antioxidant nanocarrier suitable for future application in drug delivery [149]. Table 4 lists
different nanomaterial types used as carriers for antioxidant delivery.
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Table 4. Different nanomaterials are used as carriers for antioxidant delivery.

Nanomaterial Antioxidant Agent Applications Refs

Conjugates Superoxide dismutase Superoxide conversion to
hydrogen peroxide [150]

Conjugates Superoxide dismutase Enhancing drug delivery to the brain [151]

Conjugates Catalases Hydrogen peroxide conversion to water [152]

Nanozymes Catalases Hydrogen peroxide conversion to water [153]

GSH-PEGDA oligomer
nanoparticle Glutathione peroxidase

Reduction of lipid hydroperoxides and
conversion of hydrogen peroxides

to water
[154]

Liposomes Vitamins ROS scavenging and upregulation of
antioxidant molecules [155]

Solid lipid nanoparticles Carotenoids
Singlet oxygen quenching, formation of

provitamin A carotenoids (free
radical scavengers)

[156]

Liposomes Lycopene
Singlet oxygen quenching, formation of

provitamin A carotenoids (free
radical scavengers)

[155]

Liposomes Polyphenol flavonoid
catechins

Free-radical scavengers, carcinogenic
activity, inhibition of

proinflammatory kinases
[157]

Quercetin nanosuspensions Quecetin Protection against LDL oxidation [157]

Silica nanoparticles Gallic acid Rapid H-atom transfer to diphenyl
picryl hydrazine [158]

Silica nanoparticles 3,4-di-tert-butyl-4-
hydroxybenzoic acid

Improved thermal and oxidative stability
of low-density polyethylene

(LDPE) composites
[159]

PEG-coated silver nanoparticles Salvianolic acid
Improved reactive oxygen species (ROS)
scavenging and antioxidant activity in

living cells
[160]

Mesoporous silica nanoparticles Poly-tannic acid Good antioxidant activity [161]

Mesoporous silica nanoparticles Morin Potent quencher of singlet molecular
oxygen (1O2), HO· scavenger [162]

Ceria nanoparticles Polyethylene glycol
(PEG)-dendron phospholipids

Biocompatibility, reduction of
cytotoxicity and oxidative stress [163]

PLGA-PEG Curcumin Neuroprotection [164]

4. Antimicrobial Materials

Antibacterial agents are used in the biomedical sector, textile industry, water treatment,
and food industries [165]. The antimicrobial characteristics of nanoparticles are influenced
by several factors [166], including size, shape, and the type of encapsulated antibiotics drug.
For instance, nanoparticles with angular shapes (e.g., triangular, cubic, tetrahedral) cause
mechanical harm to the microbial membrane, and this contributes to increased microbial
growth inhibition compared to spherical nanoparticles [167]. Based on their antimicrobial
properties, antimicrobial nanoparticles can be classified into four main categories: antibac-
terial, antifungal, antiviral, and antiparasitic nanoparticles [168]. Table 5 lists these different
types of antimicrobial nanoparticles, their mode of action, and targeted microorganisms.
For millennia, metals and metallic salts have been used for their antibacterial properties.
For instance, silver pots have been used for drinking water since 4000 BCE [169].

Surface functionalization allows the production of antibacterial nanoparticles with
two different antibiotics to concomitantly kill, for instance, Gram-positive (encapsulated)
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and Gram-negative (attached) bacterial strains. Inorganic disinfectants, such as metal oxide
nanoparticles, are gaining popularity because of the limitations of organic disinfectants,
such as toxicity to humans [166,170]. Currently, nanophysics researchers are investigating
the effects of different metallic nanoparticles in bacteria. The antibacterial mechanism of
metallic nanoparticles is still debated, but three major mechanisms are proposed: (i) reactive
oxygen species (ROS) formation; (ii) metal ion release from metallic nanoparticles; and
(iii) metallic nanoparticles interaction with the cell membrane. Metallic nanoparticles
display higher antibacterial effects than their salts. The antibacterial function is often
influenced by the size of the metallic nanoparticles [20].

Table 5. Classification of antimicrobial nanomaterials based on their antimicrobial properties, their
different modes of action, and targeted microorganisms.

Function Mode of Action Nanomaterial Target Microorganism Ref

Antibacterial

Interaction with DNA, resulting in
DNA replication inhibition

ROS production
Interaction with sulfur-containing

proteins, leading to the inhibition of
the activity of several enzymes

Silver nanoparticles (Ag NPs)

Bacillus subtilis [171]

Staphylococcus aureus [172]

Methicillin-resistant
coagulase-negative [173]

staphylococci [174]

Titanium oxide nanoparticles
(TiO2 NPs)

Escherichia coli 0157:H7 [175]

Staphylococcus aureus [176]

Pseudomonas fluorescens [177]

Copper oxide nanoparticles
(CuO NPs)

Bacillus subtilis [178]

Listeria monocytogenes [179]

Antifungal Disruption of the cell
membrane integrity

Titanium oxide nanoparticles
(TiO2 NPs)

Candida spp. [180]

Penicillium expansum [181]

Aspergillus niger spp. [182]

Penicillium oxalicum [183]

Siver nanoparticles (Ag NPs) Candida spp. [184]

Magnesium oxide
nanoparticles (MgO NPs)

Saccharomyces cerevisiae [185]

Candida albicans [186]

Antiviral
Inhibition of virus attachment to the

host cell membrane

Gold nanoparticles (Au NPs)
Human immunodeficiency virus [187]

Influenza virus [188]

Silver nanoparticles (Ag NPs)
Herpes simplex virus [189]

Respiratory syncytial virus [190]

Titanium oxide nanoparticles
(TiO2 NPs)

Inactivation of bacteriophages [191]

Inactivation of Qβ and
T4 bacteriophages [192]

Antiparasitic

Inhibition of promastigote
proliferation and metabolic activity
Generation of ROS that may inhibit

parasitic infection

Silver nanoparticles (Ag NPs)

Leishmania tropica [193]

Leishmania infantum [194]

Entamoeba histolytica [195]

Copper oxide nanoparticles
(CuO NPs)

Entamoeba histolytica [196]

Cryptosporidium parvum [197]

The antimicrobial properties of silver nanoparticles (Ag NPs) are very well known, and
when compared to other metallic nanoparticles, they have higher toxicity against microor-
ganisms [198,199]. As they are currently used as an alternative to antibiotic treatment, Ag
NPs are often referred to as “next-generation antibiotics”. The antimicrobial potential of Ag
NPs has been tested in many different pathogens, including Gram-(+)/(−) bacteria, viruses,
and fungi. These particles also show antimicrobial activity in many multidrug-resistant
bacteria [200,201]. Despite the many studies on Ag NPs, the precise mechanism of their
antimicrobial effect is still unknown [202]. It is thought that their antibacterial activity



Nanomaterials 2022, 12, 457 17 of 43

relies mainly on the generation of Ag+ ions. Some studies showed that Ag+ ion generation
is influenced by the nanoparticle’s surface area. Specifically, nanoparticles with a larger
surface area generate higher Ag+ concentrations, which leads to enhanced antimicrobial
activity. Conversely, nanoparticles with a smaller surface area generate lower Ag+ concen-
trations and thus display lower antimicrobial activity [203]. This also indicates that the
antibacterial activity is linked to the amount and quality of Ag+ ions generated. In addition,
Ag NPs’ toxic effects against bacteria are influenced by the nanoparticle’s physicochemical
properties. Many studies have shown that Ag NPs disrupt several metabolic pathways and
cellular pathways inside the bacterial cell [35,204,205]. The antibacterial activity of Ag NPs
is influenced by several factors related to the nanoparticles (size, shape, coating) and the
medium (light, oxidative species, ligands, ionic strength). The mechanisms whereby these
factors can modify the antibacterial activity of Ag NPs are many (Figure 7) and include lig-
and replacement, oxidative dissolution, Ag+ ions reduction, passivation of the Ag surface,
passivation layer puncturing, silver speciation, and nanoparticle aggregation [206]. These
phenomena may also be influenced by some chemical species. For instance, chloride can
accelerate or slow down corrosion in the function of its concentration. Therefore, the an-
timicrobial activity of Ag NPs should be assessed in controlled conditions to limit/prevent
unexpected changes in the system. Specifically, Ag NPs must be stored in the dark and
without oxygen. Antibacterial mechanisms can be classified in two groups: non-oxidative
and oxidative mechanisms (Figure 7).
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The antimicrobial and antibiofilm properties of TiO2 NPs are widely known and are
active against pathogens, such as fungi, viruses, parasites, and bacteria. Recently, the use
of TiO2 NPs in the food industry has started and has been approved by the FDA for their
use in drugs, food, and cosmetics [207]. The quantum size effects and photocatalytic effects



Nanomaterials 2022, 12, 457 18 of 43

of these NPs made them ideal in various antimicrobial applications, such as antimicrobial
coatings on medical devices, air, and water purification. Anti Gram-positive and Gram-
negative effects of TiO2 NPs are well known, but the bactericidal activity of these NPs
has been enhanced by plant extracts, such as Garcinia zeylanica. The combination of
inherent antimicrobial activity with plant extract and photocatalytic property of TiO2 NPs
have enhanced their potency as microbicidal agents [208]. ROS generated by TiO2 NPs
destruct the microorganisms by oxidizing the cell membrane. Apart from antimicrobial
activity due to photocatalytic activity TiO2 NPs, these nanoparticles also show activity
in the absence of light by direct contact and adsorption of cells and cause the loss of
membrane integrity [209,210]. The antimicrobial properties of Cu NPs are widely known
on various species of bacteria (e.g., bacillus subtilis, methicillin-resistant staphylococcus
aureus, Pseudomonas aeruginosa, salmonella choleraesuis). The level of agglomeration of
Cu NPs decides the microbicidal activity, which is a common issue with them. Sammler-
sized Cu NPs result from a reduction in the agglomeration, which increases the surface
area and interaction with bacterial membranes that lead to more toxicity. Hydroxyl radicals
were produced from the ionic and metallic forms of copper that damage essential DNA
and proteins [211,212]. Many other nanoparticles, such as Si NPs, CaO NPs, MgO NPs, and
Al2O3 NPs, have good antimicrobial properties with good biocompatibility. Most of them
will act by damaging the bacterial cell wall [212].

5. Gene Therapy

Gene therapy is a method in which genes are modified to prevent and/or treat disease.
With this revolutionary technique, clinicians can treat a disease simply by incorporating the
modified gene into the patient’s cells, without the need for surgery or drugs. Depending
on the disorder, gene therapy may be used to add a functional copy of a gene that is not
working properly or to switch off the gene that is causing the problem. These modified
genes are delivered into the cells using a vector (i.e., a genetically modified transporter).
Due to their nanometric size, large surface-to-volume ratio, and stability, nanoparticles are
attractive agents as gene carriers [83].

Surface modifications may be used to bind an infinite number of ligands and recep-
tors [207]. Alternatively, nanoparticles may encapsulate and release nucleic acids into
target cells, with superior efficacy in gene therapy compared with non-viral vectors and
without immunogenicity. Liposomes have been studied as medication and also as a DNA
delivery device [208]. For instance, gene therapy in which liposomes act as vectors has
been used to treat corneal diseases [209], cardiovascular diseases [210], cystic fibrosis [211],
and cancer [212]. In lung carcinoma, cancer with low survival rate, DOTAP:cholesterol
liposomes were used to deliver the tumor suppressor gene FUS1 in mice harboring lung
cancer xenografts [213]. Liposome–DNA complexes were synthesized using a simple mix-
ing method. The complex efficacy in inhibiting tumor growth and metastasis development
was evaluated [37].

Designing nanoparticles for gene delivery is not easy because many factors must
be taken into account. First, nanoparticle functionalization should bring biocompatible
layers and contribute to maintaining the structural integrity and activity of the transported
genes/drugs in the biological fluids. Second, nanoparticle production, like for any thera-
peutic product, must take into account the following issues: physicochemical properties,
biopharmaceutical properties, and pharmacological properties. Therefore, nanoparticles
should have the capacity to treat directly, and this requires new design parameters. Studies
on the Administration, Distribution, Metabolism, and Excretion (ADME) of nanoparti-
cles should be designed to take into account their aggregation and surface characteristics
(Figure 8) [120].
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In plant science, gene delivery plays a vital part in the growth of new plant varieties
and the development of drought-resistant, pest-resistant, high-yield plants [215]. The
main inherent obstacle to gene delivery in plants is the biomolecule movement within
cells through the rigid and multilayered cell wall. Many delivery methods have several
disadvantages, including low production, contamination, and foreign DNA incorporation
into the plant genome [83,216]. The functionalization of biomaterials allows the develop-
ment of bionanomaterials to deliver a gene into plant cells through a nanoneedle that can
overcome the existing limitations in delivering biomolecules to plants [217]. Intracellular
gene delivery has been performed using conventional synthetic vehicles, such as cationic
lipids, dendrimers, and polymers. It safeguards DNA from nuclear enzyme degradation,
ensures efficient movement inside the cells and tissues, as well as the active gene transfer
to the cell nucleus. Mesoporous SiO2 nanoparticles have also been tested to deliver genetic
material to plant cells. Traditional methods of gene transfer have some drawbacks, such
as the limited amount of delivered DNA, cell degradation, limited plant diversity, and
toxicity; however, new vehicles for activators, nucleic acids, and proteins into vegetable
cells are now available showing higher efficiency and additional safety features [218].
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6. Biosensors

Biosensors are devices that combine organic components (e.g., antibodies, enzymes)
and an electronic element to yield a detectable signal that can be quantified [219]. The
electronic elements detect the physiological change produced by the interaction of the
organic component with environmental chemical or biological elements [220,221]. A typical
biosensor consists of five main components (Figure 9): (i) the analyte, a substance the
presence and amount of which are detected [222]; (ii) the receptor, an organic molecule that
can detect the analyte [221]; (iii) the transducer, a device that converts the physiological
change occurring following the analyte-receptor interaction to a quantitatively measurable
optical or electrical signal [220]; (iv) the electronic part that receives and quantifies the
signals from the transducer; and (v) the display, an interpretation system (a computer and a
printer) to display the response output in a manner that can be understood by the user [223].
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The efficient signal collection is one of the main challenges in biosensor development
(transduction). The interaction of the analyte with the biological element is converted
into gravimetric, electrochemical, magnetic, electro-chemiluminescent, or optical signals
using a transducer. Engineered nanomaterials have a greater electrical conductivity, are
nanosized, may be used to amplify desired signals, and are biocompatible. Due to their
potential to trap huge amounts of specific binding units and to operate as a conductive
medium, nanomaterials are good candidates to improve the biosensor detection sensitiv-
ity for specific molecules. Carbon nanotubes, nanodiamonds, semiconductor quantum
dots, polymer nanofibers, and graphene are some of the most studied nanomaterials for
biosensing applications. Indeed, carbon compounds can be used to conjugate biomolecules
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(enzymes, antibodies, DNA, cells). Nanomaterials can improve biosensor performance (bet-
ter sensitivity and lower limit of detection). Nanomaterials with optimal surface-to-volume
ratio, chemical activity, mechanical strength, electrocatalytic capabilities, and diffusivity
can profoundly influence biosensor performance. Moreover, nanomaterials biocompati-
bility is a key feature in building biosensors to monitor bacteria, viruses, DNA, and other
biomolecules [224].

Nanomaterial-based biosensors have been used for diagnostic purposes through the
detection of specific biomarkers in biological samples. For example, Tang et al. manu-
factured a complex biosensor for the detection of prostate cancer biomarkers by using
magnetic nanoparticles as a carrier for the labels and as separators. Specifically, the mag-
netic nanoparticles used for the amperometry detection of four prostate cancer biomarkers
(interleukin-6, prostate-specific antigen, platelet factor-4, and prostate-specific membrane
antigen) were labeled with horseradish peroxidase (HRP) and secondary antibodies (Ab2)
to yield Ab2-MNP-HRP beads. Then, beads were resuspended in a phosphate-based buffer
and incubated with a mixture of protein standards to detect the four markers within this
mixture. Afterward, the mixture was transferred to the sensing compartment labeled with
primary antibodies against the four markers under which ring-shaped magnets were fixed
to facilitate the bead migration to the sensing surface. Following the incubation and wash-
ing steps, the addition of the HRP substrate enabled the development of a detectable and
measurable electrochemical signal [225]. Table 6 lists the benefits of various nanomaterials.

Table 6. Examples of different nanomaterials and their key benefits in various applications.

Nanomaterial Dimentionality Key Benefits Ref

Spherical metallic nanoparticles Zero-dimensional (0D)
Immobilization of bio-receptors

Improved analyte loading
Strong catalytic characteristics

[226]

Spherical quantum dots Zero-dimensional (0D)
Excellent fluorescence,

Charge carrier quantum confinement
size-adjusted band energy

[227]

Nanorods One-dimensional (1D)
Excellent plasmonic materials

Size-adjustable energy regulation to
produce specific field responses

[228]

Nanowires (1D) One-dimensional (1D) Superior charge conduction
Strong sensing characteristics [228]

Carbon nanomaterials
(1D and 2D)

One and two-dimensional
(1D and 2D)

Superior charge conduction
High functionalization potential [229]

7. Tissue Engineering

Tissue engineering is a multidisciplinary approach to develop structures that are made
of biological components (e.g., cells, stimulatory molecules) and biomaterials that can
mimic the native organ/tissue. Engineered tissues may be used at the place of conven-
tional organ/tissue transplant procedures to lower the cost burden [230,231]. The rapidly
evolving nanotechnological and fabrication techniques have allowed the incorporation of
various biocompatible nanomaterials in tissue engineering, including nanoporous scaffolds
and nanofiber membranes [232,233]. Nanomaterials have been used in various tissue
engineering applications (periodontal, neural, bone, and skin tissue engineering) [234].
Nanomaterials can contribute to finely tuning the scaffold characteristics, particularly the
mechanical strength, and regulating the release of bioactive molecules (growth factors,
cytokines, inhibitors, genes, drugs) [235,236].

In dental tissue engineering, novel treatments are required for the effective reconstruc-
tion of periodontal tissue damage due to the gradual loss of the self-healing capacities of
periodontal tissue with age. Nanomaterials have emerged as promising candidates for the
reconstruction of periodontal tissue [237]. Nanomaterials are interesting materials in dental
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tissue engineering as (i) nano-coatings for dental implants, (ii) nanofillers to enhance the
mechanical properties of the biomaterials used in dental tissue engineering, (iii) antimi-
crobial agents to prevent oral infections, and (iv) as ingredients for novel personal care
products and toothpaste [237]. Xi et al. prepared multifunctional vesicles by co-assembling
poly(ε-caprolactone)-block-poly(lysine-stat-phenylalanine) and poly(ethylene oxide)-block-
poly(ε-caprolactone) that were loaded with ciprofloxacin hydrochloride (an antibiotic used
to treat periodontitis) (Figure 10). Their in vitro and in vivo experiments showed that these
multifunctional vesicles eliminated biofilms made by Escherichia coli and Staphylococcus
aureus and greatly contributed to periodontitis treatment [238].
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(b) Encapsulation of ciprofloxacin within the multifunctional corona vesicles. (c) Antibacterial activity
of the multifunctional corona vesicles to remove dental plaque biofilms produced by bacteria [238].
Copyright 2019, American Chemical Society.

In humans, the nervous system is an extremely complex system that comprises the
peripheral nervous system (PNS, motor, and sensory nerves) and the central nervous
system (CNS, spinal cord, and the brain). The nervous system lacks self-healing capacities;
therefore, any trauma or disease-related damage to the CNS or PNS is permanent [239].
The frequency of neurological damage increases with age and is becoming a public health
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issue due to the aging population [240]. Currently, protocols of neurological damage
treatment are based on autologous or allogeneic cell grafts and neurosurgery. However,
these approaches often require the inhibition of the immune response (grafts) and additional
surgical procedures and show moderate effects [241].

Nanofibers were initially defined as fibers with diameters below 100 nm. However, the
scope of nanofibers has been broadened in recent years, with all fibers of diameter less than
1 µm included. Several techniques have been reported to prepare nanofibers, including
the splitting of bicomponent fibers, melt-blowing, physical drawing, flash-spinning, phase
separation, self-assembling, solvent dispersion, centrifugal spinning, hydrothermal, and
electrospinning [242–245]. Nanofibers present diverse applications, such as molecular
filters, bioseparation, bio-sensing, crop protection, bioremediation, anti-counterfeiting, and
antibacterial. The high surface area to weight ratio of nanofibers makes an ideal substrate
for molecular filtration and shows potential for forming a scaffold for protective clothing
applications against biochemical attacks [246,247]. Nanofibrous materials are gaining
interest for tissue engineering applications, including skin regeneration. Nanofibrous
structures mimic the native extracellular matrix and promote the adhesion of various cells
and soluble factors that may promote cell function and tissue regeneration (Figure 11) [248].
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Wound healing is a natural process that involves hemostasis, inflammation at the site
of injury, the proliferation of keratinocytes, and remodeling [249]. Based on the healing
time, skin wounds are categorized in chronic and acute wounds [250]. Compared with
acute wounds, chronic wounds need much more time to heal, and they are mainly observed
in people with comorbidities (e.g., diabetes, obesity) [251]. The formation of a new blood
vessel (angiogenesis) is crucial for the wound healing process because it is required for
the flow of nutrients, waste, and oxygen to the wound site. It also accelerates the rate
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of granulation tissue formation. Any angiogenesis impairment will result in a chronic
wound [252]. Therefore, during the treatment of a skin wound, the successful formation
of the new blood supply must be taken into consideration. Currently, various protocols
are available for chronic wound management, such as ozone therapy, hyperbaric oxygen
therapy, oxygen therapy, and negative pressure wound therapy [253]. Moreover, for large
skin wounds, autologous skin grafts are considered the gold standard. However, their use
is limited by the small amount of donor tissue that can be obtained and by the morbidity at
the donor site [254].

Recently, nanomaterials have been proposed as candidates for nanostructured scaffold
architectures for the management of large skin wounds. This is explained mainly by
their distinct physicochemical features, particularly their nanoscale dimensions and their
very high surface-area-to-volume ratio. Nanomaterials can also be used in skin tissue
engineering as delivery vehicles of therapeutic molecules [19]. Randeria et al. prepared
Au NPs functionalized with small interfering RNAs against ganglioside-mono sialic acid
3 synthase (GM3S), thiolated ethylene glycol, and dispersed in Aquaphor. GM3S is an
enzyme the expression of which is increased in diabetic mice and that causes insulin
resistance, thus slowing down wound healing. The authors found that in diabetic mice,
these functionalized Au NPs could downregulate GM3S expression and that skin wounds
in nanoparticle-treated mice fully healed in 12 days compared with untreated mice [255].

8. Agriculture and Food Industry

Nanotechnology is used in agriculture to enhance food production and also to im-
prove/preserve the nutritional content, quality, and safety of foods. Fertilizers, insecticides,
herbicides, and plant growth factors/regulators are used to enhance agricultural yields.
Nanotechnology is also more and more implicated in the development of approaches to
stimulate seed germination, plant growth, and plant defenses [256]. Metal nanoparticles
(Ag NPs and Cu NPs) have been particularly studied in plant science. Their organic synthe-
sis is very expensive and involves dangerous chemicals [257]; however, nanoparticle surface
functionalization allows the accommodation of more micronutrients in one nanoparticle
for efficient delivery to the plants. These micronutrients may enhance productivity and
increase the nutrient content in agriproducts. Carbon nanomaterials are commonly used in
agriculture because they can influence the plant’s metabolic functions, and ultimately, its
growth. Therefore, these nanomaterials, used at very small concentrations, can go into the
plant cells and could be an effective answer to increase crop yield and fruit production [258].

The plant’s response to nanomaterials is influenced by different factors, including
the nanoparticle’s size, shape, application process, and chemical and physical properties.
Nanomaterials can be used as nanostructured fertilizers to increase the absorption and
efficiency of traditional fertilizers (nutrients and phosphates). It has been shown that
soybean growth and seed yield are increased by 33% and 20%, respectively, when treated
with hydroxyapatite nanoparticles (phosphorous nano-fertilizers) compared with normal
phosphorous fertilizers. Moreover, nano-fertilizers are used at lower concentrations, thus
limiting the nutrient spreading to runoff or groundwater and reducing the risks of degra-
dation and toxic effects due to over-application [259]. Mung bean, cucumber, and rapeseed
plants have been treated with ZnO, Fe2O3, TiO2, and CuONPs, as nano-fertilizers, by direct
addition to the soil or through irrigation or foliar application [260,261]. In tomato cultures,
soil supplements have doubled the number of flowers and fruits, probably by activating
plant-based genes/proteins [262].

In wheat cultures, chitosan nanoparticles have been used to manage the release of
nitrogen, phosphorus, and potassium via foliar intake [263]. In terms of environmen-
tal degradation, organic nanoparticles are more appropriate. However, their nutrient
supply advantages compared with conventional fertilizers need to be more rigorously
demonstrated [259]. Microgel-based fertilizers biofunctionalized for the delivery of the
micronutrients to the plant have been developed for foliar delivery of nutrients [264].
Nano-fertilizers distributed in a controlled manner can boost crop development, yield, and
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productivity. Crop enhancement can also be obtained by gene transfer using nano-based
target delivery approaches. Nano-pesticides can protect crops effectively. Precision farming
is considerably promoted by the development of nanosensors and digital controls. Plant
drought tolerance and soil enrichment can both benefit from nanomaterials. Figure 12
shows some potential applications of nanomaterials in the animals and agriculture industry,
i.e., nano-fertilizers and nano-pesticides, which stimulate animal and plant growth using
nanomaterials; smart monitoring for animals and plants using nanosensors by wireless
communication devices and smart packaging.
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created by Biorender.

Fertilizers significantly increase farm productivity. However, as their over use irre-
versibly changes the soil chemistry, nanomaterial-based fertilizers are more frequently
proposed to increase the fertilizer uptake by plants and to minimize the amount of fertilizer
needed, and thus, its concentration in the soil. Sustainable farming implies minimal use
of chemicals to protect the environment and various plant/animal species against extinc-
tion [265]. Nanomaterials can boost crop growth/yield by facilitating the fertilizer uptake
by the plant, thus ensuring minimal use of inputs and encouraging site-oriented, regulated
nutrient supply. Indeed, nanotechnology research (and funding) on plant protection has
been growing to guarantee better crop yields. Many plants exposed to toxic concentrations
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of metal ions and nanoparticles attempt to prevent or reduce uptake into root cells by re-
stricting metal ions (nanoparticles) to the apoplast, binding them to the cell wall or cellular
exudates, or by inhibiting long-distance transport [266].

Through effective farming, irrigation, and utilization of quality seeds, agricultural
yields can be improved by 35–40%. The use of nano-formulation fertilizers strongly im-
proves crop productivity. Carbon nanoparticles in fertilizers, for example, increase the
yield of rice (by 10.29%), soybean (by 16.74%), winter wheat (by 28.81%), vegetables (by
12.34–19.76%), and spring maize (by 10.93%). Nanomaterials are the best strategy to bring
nutrients to plants that are extremely porous at the nanoscale through the activation of
different biological plant processes. As a consequence, nano-fertilizers may increase the
absorption of nutrients through the plant pores [267]. Furthermore, extensive research has
clearly shown that reducing the nanomaterials size increases the surface mass of particles,
thus adsorbing and slowly and steadily desorbing a vast amount of nutrient ions over a long
period [268]. Surface-modified nanomaterials-based fertilizers can accommodate more than
one nutrient into the same carrier. Thus, nano-fertilizer formulations enhance the growth
of nutritionally healthy crops and increase yields. It should be remembered that improved
crop production will push farmers to increase the use of that product (Figure 12) [269].

To protect the crops from diseases caused by fungi and other plant pathogens and to in-
crease productivity, pesticides and herbicides can be encapsulated into surface-functionalized
nanoparticles. The use of this nano-formulation type has increased exponentially. Traditional
crop management practices involve the large-scale use of fungicides, herbicides, and insecti-
cides at large concentrations. Nanotechnology has been extensively employed to regulate the
application of phytopathogens, and nano-fungicides and nano-pesticides are now commonly
used in agriculture [270]. Encapsulation in nanoparticles allows the gradual and regulated
release of the pesticide active ingredients, often leading to the decrease of pesticide utilization
and, consequently, of their emissions into the atmosphere. The nanosensor-based detection of
pathogens may also reduce the risk of disease in addition to nano-pesticides [265].

Fast-Moving Consumer Goods (FMCG) are fast-selling consumer items, such as house-
hold cleaning materials, toiletries, cosmetics, pharmaceuticals, and also include many
non-sustainable items, such as batteries, glassware, and light bulbs. However, the main
segment consists of food and beverage items that have a limited shelf life, either because
of strong market demand or because the commodity depreciates rapidly or is perishable.
Therefore, the packaging of such products is crucial to reduce waste and to avoid product
damage during its transport to stores and the consumers’ houses [271]. Nanotechnology
research in the food industry is focused on the development of techniques for food man-
ufacturing, packaging, and distribution. Many food items are now supplemented with
nanoparticles that enhance nutrient and bioactive distribution mechanisms, taste and tex-
ture, and microbiological safety. In the field of food production and labeling, nanoparticles
are also used as antimicrobials or as extremely reactive biosensors for the identification
of bacteria, allergens, pollutants, and degradants that may influence food quality and
health [272]. Therefore, today, many food products contain nanoparticles (intentionally
introduced or due to contamination). Nanomaterial pollution may also originate in the agri-
cultural environment where many nanomaterials are used (pesticides and fertilizers, cattle
protection, poultry development) [273]. Table 7 summaries the nanomaterial applications
in the agri-food sector
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Table 7. Summary of nanotechnology and nanomaterials applications in agri-food sector.

Agriculture Food Processing Food Packaging Supplements References

Detection of the specific
molecule to estimate the

enzyme-substrate
interaction

Nanoencapsulation for
bioavailability enhancement

of nutraceuticals

Detection of foodborne
chemicals and pathogens by

fluorescent nanoparticles
attached to antibodies

Nutrient absorption
enhancement by

nanosized powders
[274–277]

Delivery of pesticides
and fertilizers

through nanocapsules

Flavor enhancement using
nanoencapsulation

Monitoring of temperature,
moisture, and time
using nanosensors

Cellulose nanocrystals
function as drug carrier [278–281]

Controlled delivery of
growth hormones

Nanoparticles used as
viscosifying agents

Ethylene detection by
electrochemical nanosensors

Nutraceutical
nanoencapsulation for

enhancement of
absorption and stability

[83,281–283]

Crop growth and soil
condition monitoring

using nanosensors

Replacement of meat
cholesterol by plant-based

steroid containing
nanocapsules

Surface coated nanoparticles
for antifungal and
antimicrobial effect

Coiled nanoparticles
(nano-cochleate) for

cellular delivery
of nutrients

[83,265,284,285]

Nanosensors for detection
of plant and

animal pathogens
Vaccine delivery

using nanocapsules

Removal of pathogens by
selective binding of

nanoparticles from food

Heat resistant films with
silicate nanoparticles

Improvement of
absorption by dispersing

vitamin sprays
to nanodroplets

[286–289]

9. Risks of Exposure to Nanomaterials

Despite their advantages, nanomaterials may also be associated with risk factors.
Nanoparticles can adversely affect different organs/tissues in the body and can be as-
sociated with different disorders (Figure 13). Nanoparticle exposure can promote the
development of neurological disorders (e.g., Parkinson’s disease and Alzheimer’s disease),
lung (asthma, bronchitis, emphysema, and cancer), and cardiovascular diseases (atheroscle-
rosis, arrhythmia, thrombosis, and hypertension). In addition, exposure to nanoparticles
can cause skin irritation, dermatitis, urticaria, and other skin problems.

Various factors influence the toxicity of the different nanomaterials, particularly the
exposure time and dose. The exposure dose can be determined by multiplying the molar
concentration of nanoparticles in the medium by the exposure time [63]. However, other
factors (e.g., aggregation and concentration effects) may also influence the nanoparticle’s
toxicity. For instance, some nanoparticles can aggregate. These aggregates (in the microme-
ter range) might not easily penetrate the body, and thus their toxicity is decreased. Toxicity
is also influenced by the nanoparticle’s size because nanoparticles with a size of ~10 nm can
go through the cell membrane, and thus, can be more toxic than larger nanoparticles [288].
Nanoparticles’ shape also influences their toxicity, which may vary in function of the as-
pect ratio. For instance, 10 µm asbestos fibers cause lung cancer, whereas smaller fibers
induce mesothelioma and asbestosis [289]. Similarly, the nanoparticle effect is inversely
proportional to the nanoparticles size and directly proportional to the surface area. The
cell uptake, subcellular localization, and oxidative mechanisms can also be influenced by
the crystal structure [287]. For example, a comparison of two polymorphous structures of
TiO2 NPs showed that one causes DNA damage through oxidation but not the other [290].
The nanoparticle’s surface properties can also contribute to their toxic effects through
translocation and oxidation processes [291,292]. Table 8 summarizes the risk of toxicity of
different nanoparticles.
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Table 8. Nanoparticles, their toxicity mechanisms and applications.

Nanoparticle Type Toxicity Mechanism Applications Refs

Aluminum oxide nanoparticles
Genotoxicity, changes in protein expression,

oxidative stress, cell viability,
mitochondrial function

Polymers, biomaterials, fuel cells,
paints, textiles, and coatings [290–293]

Gold nanoparticles Non-toxic spherical core, relatively safe; lipid
peroxidation, autophagy in lung fibroblasts Contrast agents and drug carriers [294,295]

Copper oxide nanoparticles
Oxidative damage (stress), cytotoxicity (cell

membrane integrity), nephrotoxicity, genotoxicity,
hepatotoxicity, and spleen toxicity

Antibacterial, semiconductors,
heat transfer fluids, and

contraceptive devices
[296–299]

Silver nanoparticles
Oxidative stress, genotoxicity, cell viability

decrease, nephrotoxicity, cell membrane integrity,
lung toxicity, and cardiovascular toxicity

Wound dressing, prostheses,
coating for surgical instruments,

and antibacterial agents
[300–303]

Zinc oxide nanoparticles

Mitochondrial dysfunction, genotoxicity, oxidative
stress, hepatotoxicity, cell membrane integrity, cell

viability, cardiovascular toxicity, inflammation,
neurotoxicity, cytotoxicity, and reactive oxygen

species production

Sunscreens, gas filters, UV
detectors, wave filters, and body

care products
[303–306]

Iron oxide nanoparticles

Neurotoxicity, mitochondrial function alterations,
genotoxicity, lung toxicity, hepatotoxicity, reactive

oxygen species production, cell viability, and
endothelial permeability

Diagnostic agents and
drug carriers [307–309]

Titanium nanoparticles

Reactive oxygen species production,
nephrotoxicity, genotoxicity, hepatotoxicity,

immune function changes, lung toxicity, spleen
toxicity, and cardiovascular toxicity

Coloring and pigment agents [303,304]

Carbon-based nanoparticles
and fullerenes

Cell membrane integrity, cell viability, bone
toxicity, genotoxicity, hepatotoxicity,

nephrotoxicity, spleen toxicity, cardiotoxicity,
epigenetic toxicity, skin toxicity, carcinogenesis,

neurotoxicity, and immunotoxicity

Drug carriers [310–313]

Polymeric nanoparticles Non-toxic, relatively safe, non-inflammatory,
non-immunologic, and least toxic Drug carriers [314,315]

Nickel oxide nanoparticles Apoptosis and lipid peroxidation increase Antibacterial, antifungal,
and cytotoxic [316–320]

Cerium oxide nanoparticles Apoptosis, cell membrane damage, p38-NRF2
signaling, and inflammation

Antimicrobial, corrosion
protection, polishing, and

solar cells
[321–324]

10. Global Market and Future of Nanomaterials

Nanotechnology has evolved as a solution to many unsolved fundamental biological
problems in the field of medicine, healthcare, and human life. This technology helps in
the identification of various pathogens, toxins, pesticides, imaging of cancers, and also
helps in the transport of active medicaments to the target sites effectively. Currently,
many research institutes are involved in nanosystem research. Some of the outcomes of
these studies are approved by internal nanotechnology organizations (e.g., the National
Center for Nanoscience and Technology and the U.S. Food and Drug Administration)
and are commercialized for their better applications in the fields mentioned above, and
some of them are in the investigational stage. The biomedical application segment led
the market and accounted for the largest revenue share of around 29.98% in 2020. The
global nanomaterials market is expected to reach USD 57,608.26 million by 2026, growing
at a CAGR of 19.86% during the forecast period (2021–2026). This growth is attributed
to the wide range of applications of nanomaterials in the biomedical sector, including
imaging, targeted drug delivery, nanorobots for surgery, nanodiagnostics, cell repair, and
nanobiosensors [1–4].

The importance of nanotechnology and nanosciences open a wider scope for new
biomedical-based applications using newly discovered nanomaterials. However, this
growth in the use of nanomaterials will be limited by several challenges, including: (1) the
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ability to deliver cost-effective production of nanomaterials in large volumes; (2) defined
production techniques that can be scaled up sufficiently to cover the cost required for target-
ing volume markets; (3) the rapid identification of priorities in nanoresearch to guarantee
nanotechnologies’ and nanomaterial’s safety in the future; (4) address the gaps for current
research in risk/toxicity/safety assessment for nanomaterials; and (5) develop an interna-
tional standard for nanomaterial’s safety; to assist in the determination of appropriate risk
management of nanomaterials [325–327].

The new and future innovation is nanomaterials that have exceptionally extraordinary
properties in the food source chain (enhancement of food texture and quality, bioavailabil-
ity, nutrient values, nano-pesticides, nano-fertilizers, and nano-herbicides) in the world
agricultural sector. A large proportion of nanomedicines fail to meet such criteria, and as a
result, they are not available in the pharmaceutical sector. Additionally, the scale-up and
reproducibility of nanomedicines will be a future issue in formulation development. In the
coming decade, nanomaterials will create a new history in the medical field by advancing
new nanomaterials for their sustainable development. Synthesis of newer nanomaterials in
the near future will revolutionize the treatment strategies for many diseases. There is a lot
to achieve in the future in nanomaterial research for their extensive applications in various
fields, such as biomedicine (bioimaging, biosensor), agriculture, environmental protection,
and food processing.

11. Conclusions

Nanomaterials are interesting materials because of their superior and tunable physical,
chemical, and biological features compared with bulk materials. Nanomaterials can be clas-
sified in function of their size, shape, composition, and origin. Researchers have exploited
nanomaterial features by grafting different groups on them, thus making nanoparticles
suitable for biomedical applications. In this review, we presented the applications of
nanomaterials in bioimaging, skincare, tissue-engineered scaffolds, drug delivery systems,
biosensors, and wound healing, as well as in the food and agricultural industries. The use of
nanomaterials for targeted drug delivery has also dramatically progressed with exceptional
applications to reduce the limitations of conventional drug delivery systems. Different
nanomaterial types (e.g., spherical nanoparticles, core-shell, nanorods, nanowires, hollow,
nanofibers, and mesoporous) are studied for the targeted delivery of drugs. Encapsulation
techniques have also been tested to deliver various bioactive cytotoxic agents. Nanoparti-
cles also have their place in tissue reengineering for the repair of various tissues. Thanks
to their larger surface-area-to-volume ratio, nanostructured scaffolds can act as selective
substrates to absorb specific proteins and promote cell adhesion. Carbon and metal-based
nanoparticles for biosensor development can lead to many applications in agriculture and
in the biomedical sector. The review also presented the fluorescence nanoparticles and the
in vivo and in vitro fate of nanoparticles. The applications of fluorescence nanomaterials in
bioimaging were explained clearly. The antimicrobial activities of various nanomaterials
and their advantages and disadvantages are also discussed individually.
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