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Abstract: Breast cancer has attracted tremendous research interest in treatment development as one
of the major threats to public health. The use of non-viral carriers for therapeutic DNA delivery
has shown promise in treating various cancer types, including breast cancer, due to their high DNA
loading capacity, high cell transfection efficiency, and design versatility. However, cytotoxicity and
large sizes of non-viral DNA carriers often raise safety concerns and hinder their applications in
the clinic. Here we report the development of a novel nanoparticle formulation (termed NP-Chi-
xPEI) that can safely and effectively deliver DNA into breast cancer cells for successful transfection.
The nanoparticle is composed of an iron oxide core coated with low molecular weight (800 Da)
polyethyleneimine crosslinked with chitosan via biodegradable disulfide bonds. The NP-Chi-xPEI
can condense DNA into a small nanoparticle with the overall size of less than 100 nm and offer
full DNA protection. Its biodegradable coating of small-molecular weight xPEI and mildly positive
surface charge confer extra biocompatibility. NP-Chi-xPEI-mediated DNA delivery was shown to
achieve high transfection efficiency across multiple breast cancer cell lines with significantly lower
cytotoxicity as compared to the commercial transfection agent Lipofectamine 3000. With demonstrated
favorable physicochemical properties and functionality, NP-Chi-xPEI may serve as a reliable vehicle
to deliver DNA to breast cancer cells.

Keywords: iron oxide nanoparticles; gene therapy; breast cancer

1. Introduction

The ability to modulate genetic behaviors of cells opens up a wide array of possibilities
in treating diseases such as cancer. As a major threat to public health, breast cancer is the
most common cancer in the female population with approximately 2.3 million new cases
and 685,000 deaths worldwide in 2020 alone [1]. Gene therapy enabled by plasmid DNA or
mRNA transfection has been proven to be efficacious for treating breast cancers in recent
studies [2–4]. Despite the recent fervor for mRNA therapy, DNA remains as a promising
therapeutic option for anticancer gene therapy because (1) DNA is more resistant to heat
and enzymatic degradation than mRNA [5] and (2) mRNA is more immunogenic than DNA
and can cause unwanted inflammation and autoimmune responses [6,7]. Nonetheless,
successful DNA transfection in cancer cells is not without challenges, which include cellular
membrane penetration and timely DNA release. Judicious gene carrier designs are needed
to overcome these challenges. Non-viral gene carriers have captured much of the spotlight
in gene delivery research owing to their versatile designs, facile production, and high load-
ing capacity [8]. Moreover, the safety concerns of viral vector-related immunogenicity [9]
and mutagenesis [10] also led to the active development of non-viral carriers.

In successful non-viral DNA carriers, which are mostly composed of cationic polymers
and lipids, several critical factors are well-balanced. The presence of sufficient cationic
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moieties is required to tightly condense DNA for its protection from nucleases and facile
cell uptake. Meanwhile, condensed DNA also needs to be unwrapped and enter cell
nuclei before the transcription can occur. In addition to the intricate balance between DNA
condensation and release, the relationship between transfection efficiency and cytotoxicity
also needs to be balanced. Insufficient cationic moieties cannot effectively condense DNA
while the over-abundance of cationic moieties could damage cells by destabilizing cellular
membranes [11,12] and releasing radical oxygen species [13]. The optimal size and zeta
potential range of non-viral gene carriers are between 50 and 100 nm and around 10 mV,
respectively [14]. Serum stability is also critical for the non-viral DNA carrier’s performance.
If the DNA carrier’s surface chemistry is not properly tuned, serum proteins could form
thick layers on the DNA complex and significantly increase its size and hinder the cell
uptake process downstream. Therefore, fine-tuning the chemical composition and in turn
the physicochemical property of a non-viral DNA carrier to find the balance between
various critical factors is crucial.

Known for their superior transfection efficiency but also their pronounced cytotoxic-
ity [15], cationic lipids became the attractive subjects for chemical modifications aiming to
reduce their toxicity while retaining their transfection prowess. However, cationic lipids
are rarely a stand-alone DNA condensing agent due to the limited reactive sites for modifi-
cations in their headgroups (usually less than 10) [16]. Hence, cationic lipids are usually
accompanied by other helper lipids, such as phospholipids and cholesterol-derivatives,
to form lipoplexes with DNA. Nonetheless, a multi-component lipoplex system would
require tremendous efforts in optimizing the relationship between each lipid component
before satisfactory DNA delivery results can be achieved. As another gold standard in
non-viral gene delivery, high molecular weight (HMW) PEI also faces the quandary of
being highly efficient in transfection and toxic at the same time [17–19]. Fortunately, PEI
possesses abundant reactive amine groups for versatile functionalization and has the po-
tential to be decorated as a stand-alone DNA condensing agent [20–23]. Interestingly, it
has also been found that PEI can promote the nuclear entry of DNA for transcription while
lipid-bound DNA is not transcription-active [24,25]. The toxicity related to high molecular
weight PEI [26,27] can be greatly alleviated by crosslinking low molecular weight PEI via
biodegradable linkages such as disulfides [28–33]. Nevertheless, most of the polyplexes
formed by these crosslinked PEI and DNA are hundreds of nm in size; large cationic
polyplexes have more difficulty entering cells and can inflict cell damage by the sheer
amount of positive charges they carry if they are not rapidly degraded into nontoxic small
segments after cellular entry [34,35].

Iron oxide nanoparticles (IONPs) have shown promises as a carrier platform for
DNA delivery due to their biocompatibility, tunable surface chemistry for modifications,
and exploitable magnetic properties. IONPs are commonly coated with high molecular
weight PEI (e.g., 10 kDa and 25 kDa PEI) for effective DNA condensation and intracellular
trafficking. However, they will inevitably inherit some toxicity from non-degradable large
PEI [36–38]. Even though the rigid inorganic core of an IONP can provide structural support
for DNA complex to render its size and shape more controllable [39], it is not uncommon
that IONP-based DNA delivery systems could still be hundreds of nanometers in size. It
has also been noted that the presence of serum could significantly hinder the transfection
of IONP-based DNA complexes [40,41]. If an IONP-based DNA carrier can integrate the
conducive features of small size, serum stability, and biodegradable cationic coating all at
once, its transfection performance will likely be significantly enhanced. Herein, we report
the development of an ultrasmall, serum-stable and biodegradable IONP-based nanocarrier
for safe and effective DNA delivery to various types of breast cancer cells. The nanoparticle,
termed NP-Chi-xPEI, was constructed by first crosslinking low molecular weight branched
PEI (800 Da) molecules with linear chitosan (MW 3.9 kDa, deacetylation degree 90%)
chains to form chitosan-PEI crosslinked polymer (Chi-xPEI), followed by conjugating Chi-
xPEI onto a 10-nm superparamagnetic iron oxide nanoparticle (NP) to form NP-Chi-xPEI.
Low molecular weight branched PEI was chosen for its favorable biocompatibility and
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its branched structure for DNA condensing capability [42]. A biodegradable disulfide-
containing homo-bifunctional crosslinker dithiodipropionic acid (DTDPA) was used to
crosslink PEI so that the crosslinked polymer can be degraded into non-toxic fragments in
cytoplasm after DNA delivery [43]. Chitosan, a primary amine-rich linear polysaccharide,
serves as the binding template for PEI molecules to boost the crosslinking efficiency as well
as enhance the biocompatibility of the crosslinked polymer [44]. The 10-nm NP provides a
robust inorganic platform for crosslinked polymers to reside on and in turn contribute to a
more controllable ultrasmall size profile for the entire DNA carrier system. With its high
in vitro transfection efficiency and minimal cytotoxicity demonstrated on multiple breast
cancer cells, NP-Chi-xPEI could be a potent DNA carrier for breast cancer gene therapy.

2. Materials and Methods
2.1. Materials

Plasmid pDsRed-MAX-N1 was purchased from Addgene (Watertown, MA, USA).
DH5–α competent E. coli was purchased from New England Biolabs Inc (Ipswich, MA,
USA). Plasmid Giga Kit was purchased from Qiagen (Germantown, MD, USA). Chitosan
was purchased from Acmey Industrial (Shanghai, China). DAPI, Lipofectamine 3000,
2-Iminothiolane (Traut’s reagent), Succinimidyl Iodoacetate (SIA), Ultrapure Agarose,
antibiotic-antimycotic, Tryple Express Enzyme solution, RPMI 1640 and DMEM cell culture
medium were purchased from Invitrogen (Carlsbad, CA, USA). PD10 desalting columns,
Sephacryl S-200 resin, and HyClone characterized fetal bovine serum (FBS) were purchased
from GE Healthcare Life Sciences (Pittsburgh, PA, USA). NHS-Cy5 and NHS-AF488 were
purchased from Lumiprobe Corp (Hunt Valley, MD, USA). Label IT Tracker Intracellular
Nucleic Acid Localization Kits were purchased from Mirus Bio (Madison, WI, USA). Spec-
traPOR7 dialysis membrane was purchased from Repligen Corp (Waltham, MA, USA). All
other chemicals were purchased from Sigma-Aldrich (St Louis, MO, USA).

2.2. Plasmid DNA Preparation

The pDsRed-MAX-N1 plasmid was propagated in DH5-α E. coli competent cells and
purified using the Plasmid Giga Kit following the manufacturer’s procedures. Purified
pDsRed-MAX-N1 was dissolved in ultrapure water at 1 mg/mL and stored at −20 ◦C.

2.3. Nanoparticle and Polymer Synthesis

The synthesis procedure of iron oxide nanoparticles coated with primary amine
functionalized PEG (NP) has been reported previously [45]. The Chi-xPEI polymer was pro-
duced by crosslinking chitosan (MW 3.9 kDa, deacetylation degree 90%) with low molecular
weight branched PEI (MW 800 Da) via a disulfide-containing homo-bifunctional crosslinker
dithiodipropionic acid (DTDPA). The molar ratio between DTDPA, PEI, and chitosan was
8.00:5.00:0.25. Specifically, the terminal carboxylic acid groups on DTDPA (40 mg/mL
in DMSO) were first activated by 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-
hydroxysuccinimide (EDC/NHS) chemistry with the DTDPA:EDC:NHS molar ratio of
1.0:1.5:1.5 in DMSO for 3 h with vigorous stirring at room temperature. PEI and chitosan
were dissolved in DMSO at 200 mg/mL and 15 mg/mL respectively. 800 Da PEI and
chitosan solution were added to the DTDPA solution drop-wisely and the mixture was
vigorously stirred at room temperature for 16 h. An equal volume of Milli-Q water was
added to the mixture DMSO solution, and the resultant solution was dialyzed against
Milli-Q water for 2 days using 25k MWCO SpectraPOR7 dialysis membrane. The dialyzed
solution was then freeze-dried, re-dissolved in Milli-Q water at 200 mg/mL of Chi-xPEI
and stored at 4 ◦C.

2.4. Quantification of Iron [Fe] Concentration in NP by Ferrozine Assay

The ferrozine solution was prepared by dissolving 1.761 g ascorbic acid, 1.927 g
ammonium acetate, 0.032 g ferrozine, and 0.0135 g neocuproine in 10 mL of DI H2O. A
volume of 1000 ppm Fe stock solution was diluted to 1 ppm, 2 ppm, and 4 ppm with 10 mM
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HCl as Fe standards. A volume of 10 mM HCl was used as a 0 ppm Fe control. To prepare
the NP sample, 5 µL of NP solution was dissolved in 45 µL of concentrated HCl, followed
by 50× dilution in DI H2O. A volume of 6 µL of the diluted NP solution was mixed with
694 µL of DI H2O and 90 µL of ferrozine solution. A volume of 300 µL of each 0 ppm,
1 ppm, 2 ppm, and 4 ppm Fe standards were then mixed with 400 µL of DI H2O and 90 µL
of ferrozine solution. After 10 min, the 562 nm absorbance of the samples was measured
with a SpectraMax i3 multimode microplate reader (Molecular Devices, Sunnyvale, CA,
USA). The iron concentration of NP is denoted as [Fe].

2.5. Conjugation of Chi-xPEI onto NP

An amount of 1 mg [Fe] NPs were reacted with 0.1 mg 2-iminothiolane (Traut’s
Reagent) for 1 h in thiolation buffer (0.1 M sodium bicarbonate, pH 8.0, 5 mM EDTA) before
removing unreacted Traut’s Reagent using a PD-10 column equilibrated with thiolation
buffer. Concurrently, 40 mg Chi-xPEI was reacted with 1.35 mg succinimidyl iodoacetate
in thiolation buffer. The modified Chi-xPEI was then added to NP-Traut’s solution and
the resultant solution was gently rocked for 2 h before placed at 4 ◦C for 16 h to drive
the reaction to completion. Unreacted Chi-xPEI was removed through size exclusion
chromatography using S-200 Sephacryl resin equilibrated with 20 mM HEPES buffer
(pH 7.4).

2.6. NMR Analysis

The polymer samples were prepared by dissolving polymer and TSP in D2O and NMR
spectra were obtained using a Bruker Avance 300 spectrometer (Bruker, Billerica, MA, USA)
operating at 300.13 MHz (1H) and 298 K (number of scans = 64, acquisition time = 3.9 s,
delay (D1) = 2 s).

2.7. FTIR Analysis

The FTIR spectra were obtained using a Nicolet 6700 spectrometer (Thermo Scientific
Inc., Waltham, MA, USA). The spectra were obtained at 4 cm−1 resolution and the signal
was averaged over 64 scans. The samples were pressed into a pellet with KBr for analysis.

2.8. NP-Chi-xPEI-DNA Complex Formation

The NP-Chi-xPEI and DNA (pDsRed-MAX-N1) were mixed in 20 mM HEPES buffer
(pH 7.4) at NP-Chi-xPEI [Fe]:DNA wt/wt ratios of 1:1, 5:1, and 10:1. NP-Chi-xPEI-DNA
solutions were incubated for at least 10 min with gentle rocking to allow the formation of
DNA complexes.

2.9. TEM Imaging

The TEM samples were prepared by the addition of 5 µL of NP, NP-Chi-xPEI, or
NP-Chi-xPEI-DNA solution to a Formvar/carbon-coated 300-mesh copper grid (Ted Pella,
Inc., Redding, CA, USA) and allowed to air dry. The TEM images were acquired on a Tecnai
G2 F20 electron microscope (FEI, Hillsboro, OR, USA) operating at a voltage of 200 kV.

2.10. Hydrodynamic Size and Zeta Potential Measurements

The hydrodynamic sizes and zeta potentials of NP-Chi-xPEI and NP-Chi-xPEI-DNA
complexes were obtained using a Zetasizer Nano-ZS (Malvern Instruments, Worcestershire,
UK). The samples were analyzed in 20 mM HEPES buffer at room temperature. For the
serum stability study, the NP-Chi-xPEI [Fe]:DNA wt/wt ratios of 10:1 solution was mixed
with RPMI-1640 cell culture medium (supplemented with 10% FBS and 1% antibiotic-
antimycotic) to achieve 10% v/v of NP-Chi-xPEI in medium and placed in 37 ◦C water bath
for the duration of experiment.
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2.11. Cell Culture

The SKBR3 and MCF7 cells were cultured in DMEM supplemented with 10% FBS and
1% antibiotic-antimycotic. 4T1 cells were cultured in RPMI-1640 supplemented with 10%
FBS and 1% antibiotic-antimycotic. The cultures were maintained at 37 ◦C in a humidified
incubator with 5% CO2.

2.12. Fluorophore Labeling of NP-Chi-xPEI and DNA

A volume of 2 µL of NHS-AF488 fluorophore (250 mM in DMSO) was mixed with 1 mg
of [Fe] NP-Chi-xPEI and the mixture was gently rocked for 30 min at room temperature.
The unreacted NHS-AF488 molecules were removed by PD-10 desalting columns equili-
brated with 20 mM HEPES buffer (pH 7.4). The DNA was labeled with Cy5 following the
manufacturer’s protocol of the Label IT Tracker Intracellular Nucleic Acid Localization Kits.

2.13. Cellular Uptake and Intracellular Plasmid DNA Release Studies

The SKBR3, MCF7, and 4T1 cells were seeded at 15,000, 15,000, 8000 cells per well in 24-
well plates, respectively, and incubated for 16 h. For the cellular uptake study, NP-Chi-xPEI
was complexed with Cy5-labeled DNA at 10:1 wt/wt [Fe] NP-Chi-xPEI:DNA ratio before
adding to cells at 1 µg/mL DNA concentration. For the DNA release study, NP-Chi-xPEI
and DNA were labeled with NHS-AF488 and Cy5, respectively, before forming a complex at
10:1 wt/wt [Fe] NP-Chi-xPEI:DNA ratio. The NHS-AF488 and Cy5-dually labeled NP-Chi-
xPEI-DNA complexes were added to cells at 1 µg/mL of DNA concentration. Fluorescently
labeled NP-Chi-xPEI-DNA complexes were incubated with cells for 24 h before imaging
with a Nikon TE300 inverted fluorescent microscope (Nikon, Tokyo, Japan) in both studies.

2.14. Cell Transfections

The SKBR3, MCF7, and 4T1 cells were seeded at 15,000, 15,000, 8000 cells per well
in 48-well plates, respectively, for 16 h. The NP-Chi-xPEI-DNA complexes prepared at a
10:1 wt/wt ratio of [Fe] NP-Chi-xPEI:DNA were added to 200 µL of fully supplemented
culture media to give a final DNA concentration of 2 µg/mL in each well. The cells were
incubated with complexes for 48 h and the cell culture media were replenished after 24 h.
Transfections using the commercial agent, Lipofectamine 3000, was performed following
the manufacturer’s protocol. A DNA concentration of 2 µg/mL was used for all the
transfection agents for the transfection study. The cells were imaged 72 h post-transfection
with a Nikon TE300 inverted fluorescent microscope (Nikon, Tokyo, Japan).

2.15. Cell Viability Studies

The SKBR3, MCF7, and 4T1 cells were seeded at 7500, 7500, 4000 cells per well in
96-well plates, respectively, and incubated for 24 h. The cells were then incubated with
NP-Chi-xPEI-DNA at 10:1 wt:wt ratio of [Fe] NP-Chi-xPEI:DNA or Lipofectamine-DNA,
all at DNA concentrations of 0, 0.25, 0.5, 1, 2, 4 µg/mL. The cells were treated for 24 h
before the cell viability was determined using the Alamar Blue assay. The fluorescent signal
readout was obtained by a SpectraMax i3 microplate reader (Molecular Devices, Sunnyvale,
CA, USA) with 550 nm excitation and 590 nm emission. The fluorescence intensities of
all the treatment groups were normalized so that the viability of the untreated cell group
was 100%.

2.16. Statistical Analysis

The results are presented as mean values ± standard error of the mean. The statistical
differences were determined by two-sided Student’s t-test. The values were considered
statistically significant at p < 0.05.
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3. Results and Discussion
3.1. Synthesis and Structural Validation of NP-Chi-xPEI

The 10 nm-diameter iron oxide nanoparticles coated with primary amine functional-
ized PEG were prepared as previously described [45] (herein termed as NP). The coating
polymer Chi-xPEI was produced by crosslinking chitosan (MW 3.9 kDa) with low molecular
weight branched PEI (MW 800 Da) via a disulfide-containing homobifunctional crosslinker
dithiodipropionic acid (DTDPA). The Chi-xPEI was then covalently conjugated onto NP
via succinimidyl iodoacetate (SIA)/2-iminothiolane (Traut’s reagent) chemistry to confer
positive charges onto the NP surface for condensing DNA. The resultant surface structure
of NP-Chi-xPEI is shown in Figure 1. To confirm the successful crosslinking of chitosan
and PEI via DTDPA, 1H NMR spectra of Chi-xPEI and its constituents including chitosan,
PEI, and DTDPA were acquired (Figure 2). The NMR spectrum of Chi-xPEI contains the
characteristic peaks from all the crosslinking constituents, as evidenced by the double
triplet peaks in the 2.5–3.0 ppm region from DTDPA, the broad convoluted peaks in the
3.5–4.0 ppm region and 1.8–2.2 ppm from chitosan and the strong absorbance peak pattern
around 2.7 ppm from PEI. The FTIR was then used to validate the conjugation of Chi-xPEI
onto NP. The FTIR absorbance spectra of Chi-xPEI, NP, and NP-Chi-xPEI were acquired
and compared (Figure 3). Different from the NP’s FTIR spectrum, the spectrum of NP-Chi-
xPEI inherits peaks at 2920 cm−1, 2820 cm−1, 1640 cm−1, and 1550 cm−1 from Chi-xPEI.
Specifically, the stretching of C-H bonds accounts for the absorbance peaks at 2920 cm−1

and 2820 cm−1, while the bending of N-H bonds corresponds to peaks at 1640 cm−1 and
1550 cm−1 [46]. The presence of the featuring FTIR peaks of Chi-xPEI in NP-Chi-xPEI’s
spectrum but not in NP’s spectrum corroborates the successful conjugation of Chi-xPEI
onto NP.
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3.2. Physicochemical Properties

The appropriate size and surface charge are essential for non-viral gene carriers to pro-
mote cellular uptake and maximize transfection efficiency. It was shown that nanoparticles
with hydrodynamic size near to or smaller than 100 nm can be internalized most efficiently
by various cell types in vitro [47]. Moreover, nanoparticles of larger than 100 nm will be
easily taken up by macrophage cells of the reticuloendothelial system (RES) in liver and
spleen, while those smaller than 10 nm will be filtered out by the kidneys in vivo [48]. The
compact sizes of NP-Chi-xPEI (before DNA complexation), NP-Chi-xPEI [Fe] 5:1 DNA,
and NP-Chi-xPEI [Fe] 10:1 DNA complexes, whose hydrodynamic diameters are 31.33 nm,
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53.24 nm, and 45.79 nm, respectively (Figure 4a), not only facilitate the cell internalization
of these complexes but could also be favorable for long-term in vivo trafficking. Although
positive surface charge is important for nanoparticles’ cellular internalization as it can facil-
itate nanoparticles’ attachment to anionic cell plasma membrane and prevent nanoparticle
agglomeration via charge repulsion, too high of a positive charge may also increase the
risk of organelle damages [49]. It has been shown that effective nanoparticle DNA carriers
typically possess a ζ potential of near 20 mV [36,50,51]. The ζ potential of NP-Chi-xPEI,
NP-Chi-xPEI [Fe] 5:1 DNA, and NP-Chi-xPEI [Fe] 10:1 DNA are 11.8 mV, 17.0 mV, and
18.3 mV, respectively (Figure 4b), conforming that NP-Chi-xPEI retains an appropriate
amount of positive charge for transfection after DNA condensation. When compared to
other recently developed non-viral DNA carriers, the hydrodynamic size and zeta potential
profiles of NP-Chi-xPEI-DNA is superior to most of the biodegradable polymeric PEI-DNA
polyplexes (Table 1) and IONP-based DNA carriers (Table 2) as it is more compact in size
while retaining sufficient charge. This could be mostly attributed to the size-conservation
effect of the small 10 nm NP core which provides a solid support with a well-defined shape
for Chi-xPEI conjugation. The NP’s contribution to small DNA complex size is apparent
when comparing the hydrodynamic size and zeta potential profiles of NP-Chi-xPEI-DNA
to that of Chi-xPEI-DNA without NP (Figure S1). The Chi-xPEI-DNA’s hydrodynamic
size was significantly larger than that of NP-Chi-xPEI-DNA (223 nm vs. 45.8 nm) but with
similar zeta potential (18.7 mV vs. 18.3 mV).

Table 1. Comparison of hydrodynamic size and zeta potential data between NP-Chi-xPEI-DNA and
recently reported biodegradable PEI-based DNA carriers in literature.

Non-Viral DNA Carrier Material Hydrodynamic Size Zeta Potential Reference

NP-Chi-xPEI-DNA 45.8 nm 18.3 mV N/A

2,6-pyridinedicarboxaldehyde-Crosslinked 1.8k PEI 160–250 nm 17–27 mV [29]

Disulfide-crosslinked 2k PEI modified with tyrosine 135.6 nm 62.1 mV [31]

Disulfide-crosslinked 2.5k PEI 350–500 nm 20–40 mV [32]

Disulfide and bisepoxide crosslinked 6k PEI 200 nm 20 mV [34]

Oxidized glutathione crosslinked 0.6k PEI 200–400 nm 30 mV [52]

Disulfide-crosslinked 1.8k PEI modified with cyclodextrin and
poly-glutamic acid 250 nm 20 mV [53]

Diglycidyl-1,2-cyclohexanedicarboxylate-crosslinked 10k PEI 125–201 nm 11–20 mV [54]

Table 2. Comparison of hydrodynamic size and zeta potential data between NP-Chi-xPEI-DNA and
recently reported IONP-based DNA carriers in literature.

Non-Viral DNA Carrier Material Hydrodynamic Size Zeta Potential Reference

NP-Chi-xPEI-DNA 45.8 nm 18.3 mV N/A

IONP-Catechol-Chitosan-25k PEI-DNA 54.3 nm 16.2 mV [36]

IONP-Chondroitin-10k PEI-DNA 136 nm 15 mV [37]

IONP-25k PEI-DNA 250 nm 19.2 mV [38]

IONP-PAMAM Denrimer-DNA-25k PEI 190–285 nm 45 mV [40]

IONP-1.8k PEI-DNA 50 nm (dry size) 10 mV [41]

IONP covalently bound to DNA 241 nm −26.4 mV [55]

IONP-Lipids-DNA 50–100 nm 20 mV [56]

A desirable feature of a DNA nanocarrier is the ability to protect DNA from degrada-
tion by nucleases and destructive enzymes within the endolysosome in the target cell before
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DNA’s endosomal escape and transportation to the cell nucleus. The DNA protection and
condensation were also examined through gel retardation assay (Figure 4c). At both 5:1 and
10:1 NP-Chi-xPEI [Fe]:DNA wt/wt ratios, NP-Chi-xPEI was able to protect and condense
DNA effectively, as shown by the absence of discernible free DNA bands. A small amount
of DNA was observed only in the loading well at 1:1 NP-Chi-xPEI [Fe]:DNA wt/wt ratio,
indicating the DNA was mostly condensed but not fully protected at such ratio. Compared
to NP-Chi-xPEI-DNA, Chi-xPEI (with no NP) was unable to fully protect DNA as shown
by the DNA signal clearly observed in the loading well even at 40:1 of Chi-xPEI to DNA
wt/wt ratio (Figure S2). This phenomenon could be explained by the fact that NP-Chi-xPEI
could condense DNA into a more compact size and hence provide better protection than
Chi-xPEI does. Given that the NP-Chi-xPEI-DNA complex at [Fe] 10:1 DNA wt/wt ratio
not only could fully protect DNA but also possesses small size and sufficient positive
charges, NP-Chi-xPEI [Fe] 10:1 DNA (abbreviated as NP-Chi-xPEI-DNA henceforth) was
selected for further studies.
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Figure 4. Physicochemical properties of NP-Chi-xPEI-DNA complex. (a) Hydrodynamic size distri-
butions of NP-Chi-xPEI, NP-Chi-xPEI 5:1 DNA, and NP-Chi-xPEI 10:1 DNA. (b) Zeta potentials of
NP-Chi-xPEI, NP-Chi-xPEI 5:1 DNA, and NP-Chi-xPEI 10:1 DNA. (c) Gel electrophoresis image of
NP-Chi-xPEI, NP-Chi-xPEI 5:1 DNA, and NP-Chi-xPEI 10:1 DNA. Here, NP-Chi-xPEI is abbreviated
as NP. (d) Serum stability of NP-Chi-xPEI 10:1 DNA in RPMI 1640 cell culture medium supplemented
with 10% FBS assessed by hydrodynamic size measurements over a period of 20 days.

To determine the size stability of the nanoparticles in serum, NP-Chi-xPEI-DNA was
placed into cell culture medium (RPMI 1640 + 10% FBS) and its hydrodynamic diameter
was monitored for 20 days (Figure 4d). The initial size of NP-Chi-xPEI-DNA was around
20 nm at day 0 even though the hydrodynamic size of NP-Chi-xPEI-DNA was shown to be
45.79 nm earlier. This phenomenon could be explained by the fact that the presence of free
small serum proteins in the cell culture media at the beginning of the study lowered the
average size of the sample. As the free serum proteins started to attach onto NP-Chi-xPEI-
DNA’s surface, NP-Chi-xPEI-DNA’s size gradually increased to around 60 nm (similar
to its original 45.79 nm hydrodynamic size) and reached stable equilibrium within 48 h.
Most importantly, NP-Chi-xPEI-DNA was able to maintain its size at around 60 nm in cell
culture medium until the 20th day, demonstrating its ability to stay unaggregated in serum.

TEM was employed to assess the size and shape of NP-Chi-xPEI-DNA. TEM micro-
graphs revealed the spherical shape and mono-dispersed NP and NP-Chi-xPEI with the size
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of around 10 nm (Figure 5). The planar distance of 0.29 nm in NP crystal lattice, which cor-
responds to the characteristic {220} planes of Fe3O4, confirms the composition of magnetite
NP core (Figure S3) [57–59]. The halo surrounding the NPs in the NP-Chi-xPEI micrograph
but absent in the NP micrograph could be attributable to the surface coating of Chi-xPEI on
NP. In the NP-Chi-xPEI-DNA micrograph (DNA invisible in the micrograph due to TEM
high resolution setting), NP-Chi-xPEIs-DNA were brought to closer vicinity than those
in the NP-Chi-xPEI micrograph, indicating the possibility of several NP-Chi-xPEI being
electrostatically drawn to a single DNA molecule (Figure 5). This phenomenon could be
attributed to the larger hydrodynamic size of NP-Chi-xPEI-DNA than that of NP-Chi-xPEI.
The fact that NP-Chi-xPEI was able to stay dispersed after complexed with DNA suggests
that DNA can be effectively condensed by individual or only a few NP-Chi-xPEI into
compact size without the need to form large DNA complex.
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3.3. Cellular Uptake and Intracellular Plasmid DNA Release

As a prerequisite for successful transfection, the cellular uptake of NP-Chi-xPEI-DNA
was investigated on SKBR3, MCF7, and 4T1 breast cancer cell lines. SKBR3 and MCF7 are
both derived from human breast cancer cell lines and have been proven useful preclinical
models for screening therapeutic agents that target human epidermal growth factor receptor
2 (HER2) and estrogen receptor-α (ER), respectively [60,61]. The 4T1 cells are murine breast
cancer cells and have been utilized to resemble human metastatic triple-negative (negative
expression of ER, progesterone receptor (PR), and HER2) breast cancer [62].

To identify nanoparticles’ intracellular spatial distribution, NP-Chi-xPEI was com-
plexed with Cy5 fluorophores (in green)-tagged plasmid DNA. The three cell lines in
24-well plates were treated with NP-Chi-xPEI-DNA complex at 1 µg/mL DNA concentra-
tion for 24 h before their nuclei were stained with DAPI (blue) and plasma membranes with
WGA-AF555 (red). It was observed from the images (Figure 6a) that a significant amount of
NP-Chi-xPEI-DNA penetrated plasma membrane and arrived in the intracellular spaces of
SKBR3, MCF7, and 4T1 cells, indicating the cellular internalization process was efficient for
NP-Chi-xPEI-DNA. Even though NP-Chi-xPEI can efficiently ferry DNA across the plasma
membrane, it would be difficult to transcribe DNA if DNA remained tightly condensed
by NP-Chi-xPEI. Therefore, DNA and NP-Chi-xPEI had been labelled with Cy5 (green)
and AF488 (red) respectively before complexation to form dual-labeled NP-Chi-xPEI-DNA
to investigate the process of DNA release from NP-Chi-xPEI-DNA. NP-Chi-xPEI-DNA
was incubated with three cell lines, respectively, at 1 µg/mL of DNA concentration for
24 h before fluorescent images were acquired. From the images of these three cell lines, a
clear separation between the signals of NP-Chi-xPEI (red) and DNA (green) was observed
(Figure 6b), which indicates the releasing of DNA from NP-Chi-xPEI. Although not all the
DNA that arrived in the perinuclear region can successfully enter cell nuclei, indicating
the nuclear envelope could be a hurdle for DNA delivery and transfection in this case,
NP-Chi-xPEI potentially facilitated the nuclear uptake of DNA as the DNA found within
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cell nuclei were mostly accompanied by the presence of NP-Chi-xPEI in vicinity (indicated
by white arrows in Figure 6b).
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Figure 6. Cellular uptake and intracellular plasmid DNA release by NP-Chi-xPEI. (a) Fluorescent
images of cellular uptake of NP-Chi-xPEI-DNA. The cell nucleus was stained blue and the cell
membrane stained red. The DNA was tagged with Cy5 (green). Quantitation of DNA cellular
uptake is presented in bar charts, with * p < 0.05. (b) Fluorescent images of DNA released from
NP-Chi-xPEI-DNA. The cell nucleus was stained blue. NP-Chi-xPEI was tagged with AF488 (red)
and plasmid DNA tagged with Cy5 (green). White arrows point at the DNA colocalized within cell
nuclei and accompanied by NP-Chi-xPEI in vicinity. For both experiments, NP-Chi-xPEI-DNA was
incubated with cells at 1 µg/mL of DNA concentration for 24 h before imaging.

These observations demonstrated that NP-Chi-xPEI-DNA can be readily internalized
by all three cell lines and effectively release its DNA payload intracellularly. Meanwhile,
NP-Chi-xPEI could possibly enhance the nuclear uptake of DNA for facile transcription. It
is also noted that the NP-Chi-xPEI-DNA achieved the highest cell uptake in SKBR3 cells
followed by a slightly lower uptake in MCF7 and 4T1 cells. Regarding the nuclear entry
of DNA, the highest amount of DNA found in cell nuclei were in SKBR3 cells. MCF7 also
showed clear DNA nuclear entry. Although sufficient NP-Chi-xPEI-DNA was able to travel
past 4T1’s plasma membrane, only a small fraction of NP-Chi-xPEI-DNA was able to enter
4T1 cell nuclei. This observation demonstrates that the cellular uptake and DNA release
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profile of NP-Chi-xPEI-DNA is cell-dependent, which is a common phenomenon observed
for many other non-viral DNA carriers as well [63–66]. The fact that these three cell lines
possess different sets of surface receptors may be one of the many factors that result in the
cell-dependent performances of NP-Chi-xPEI-DNA.

3.4. In Vitro Biocompatibility of NP-Chi-xPEI

NP-Chi-xPEI-DNA’s biocompatibility on three breast cancer cell lines (MCF7, SKBR3,
and 4T1) were assessed by treating these cell lines with NP-Chi-xPEI-DNA complex at
various DNA doses (0.25, 0.5, 1, 2, 4 µg/mL) for 24 h. The cell groups were also treated
with Lipofectamine 3000-DNA at the same DNA concentrations for comparison. Cell
viability was quantified by the Alamar Blue assay (Figure 7). The results showed a general
trend where cell viability decreased as the dose of DNA increased. At the highest dose of
4 µg/mL of DNA (Figure 7d), the viability of the NP-Chi-xPEI-DNA-treated cells were
96%, 81%, and 76%, whereas the viability of Lipofectamine 3000-treated cells were only
53%, 14%, and 48% for MCF7, SKBR3, and 4T1 cell lines, respectively. The mild cyto-
toxicity caused by NP-Chi-xPEI-DNA might be attributed to the cytotoxicity of PEI [67].
Nevertheless, the viability of the NP-Chi-xPEI-DNA-treated cells were significantly higher
than that of the Lipofectamine 3000-treated cells at all dosages across all cell lines, demon-
strating NP-Chi-xPEI-DNA’s superior biocompatibility to Lipofectamine 3000-DNA. The
superior biocompatibility exhibited by NP-Chi-xPEI-DNA could be mostly attributed to
the biodegradable Chi-xPEI as well as the small IONP core. Biodegradable disulfides in
Chi-xPEI and the size conservation effect from IONP collectively prevent the presence of
oversized DNA complexes that could otherwise carry too much positive charges and cause
cell damages.
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Figure 7. In vitro cell viability as a function of NP-Chi-xPEI-DNA/lipofectamine-DNA dose on three
cancer cell lines. (a) MCF7, (b) SKBR3, and (c) 4T1 were treated with NP-Chi-xPEI-DNA (green) or
lipofectamine-DNA (blue) at DNA concentration of 0.25, 0.5, 1, 2, 4 µg/mL for 48 h. (d) Summary of
cell viability of NP-Chi-xPEI-DNA and lipofectamine-DNA treated cancer cells at 4 µg/mL for 48 h.
* p < 0.05 between NP-Chi-xPEI and lipofectamine.
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3.5. In Vitro Transfection Efficiency of NP-Chi-xPEI-DNA

The transfection performance of NP-Chi-xPEI-DNA was evaluated on SKBR3, MCF7,
and 4T1 breast cancer cell lines in vitro. Red fluorescence protein (RFP)-encoded pDsRed-
MAX-N1 plasmid DNA was complexed with NP-Chi-xPEI and incubated for 30 min
to form NP-Chi-xPEI-DNA complex before applying to breast cancer cell lines in vitro.
The commercial transfection reagent Lipofectamine 3000 (Invitrogen) was used as the
positive control in this experiment. The untreated cells served as the negative control
group. From the transfection results, both NP-Chi-xPEI and lipofectamine 3000 showed
various degrees of transfection when applied to the three breast cancer cell lines at the
DNA concentration of 2 µg/mL (Figure 8). On SKBR3 and MCF7 cells, NP-Chi-xPEI-
DNA was able to achieve a transfection efficiency comparable to, if not slightly higher
than, that achieved by Lipofectamine 3000. NP-Chi-xPEI-DNA showed lower transfection
efficiency than Lipofectamine 3000 on 4T1. In addition, NP-Chi-xPEI-DNA demonstrated
higher transfection efficiency than Chi-xPEI-DNA (Figure S4). Notably, NP-Chi-xPEI-
DNA enabled more viable cell growth and inflicted significantly lower cytotoxicity than
Lipofectamine 3000 across all cell lines as exhibited by the bright field images: the NP-Chi-
xPEI-DNA-treated cells showed similar proliferation and morphology to the untreated
cells whereas Lipofectamine 3000 induced notable cell growth retardation and morphology
alteration. This result conforms to the previous biocompatibility data. The untreated cell
groups showed no detectable RFP signal, confirming that the breast cancer cells themselves
did not produce autofluorescence to interfere with the RFP transfection results. The highly
effective transfection and superior biocompatibility of NP-Chi-xPEI-DNA can be attributed
to the combinatory effect of the small 10 nm IONP core and biodegradable Chi-xPEI that
is made of nontoxic PEI with a small molecular weight of only 800 Da. IONP core and
Chi-xPEI collectively confer the desirable physicochemical properties, serum stability, and
biocompatibility to NP-Chi-xPEI-DNA system, which leads to a favorable intracellular
trafficking profile and transfection efficiency in breast cancer cell lines in vitro.

The transfection performance of NP-Chi-xPEI-DNA showed a certain cell-type depen-
dency, which could be explained by the previous cellular uptake and DNA release data
(Figure 5). The amount of the cellular uptake of NP-Chi-xPEI-DNA and the amount of
released DNA colocalized within cell nuclei were the highest in SKBR3 among all three
cell lines, corresponding to the highest transfection efficiency of SKBR3. The amount of
the cellular uptake of NP-Chi-xPEI-DNA and the amount of released DNA colocalized
within cell nuclei were relatively lower in MCF7 cells than SKBR3 cells, which explains
why MCF7 transfection was not as high. Although 4T1 cells also had a high amount
of internalized NP-Chi-xPEI-DNA, few of the released DNA were found within the 4T1
cell nuclei, suggesting nuclear uptake could be the main obstacle for NP-Chi-xPEI-DNA
transfection on 4T1 cells. These results collaboratively point out that cellular internalization,
DNA release, and nuclear uptake all play important roles in the DNA transfection of cells.
While the cell-type dependency can cause a variation in NP-Chi-xPEI-DNA’s transfection
performance, the superior biocompatibility and high transfection efficiency across multiple
breast cancer cell lines make NP-Chi-xPEI a safe and effective DNA carrier for breast cancer
gene therapy.
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Figure 8. Fluorescent images of MCF7, SKBR3, and 4T1 breast cancer cells transfected by either
NP-Chi-xPEI-DNA or lipofectamine-DNA (Lipo-DNA). The untreated cells served as the negative
control group. Bright field images of the cells are also provided (directly below their corresponding
fluorescent images). The quantitative transfection results of each cell line are presented in bar charts
on the right side of the corresponding image panels. * p < 0.05, n.s. = statistically insignificant.

4. Conclusions

We have presented a novel DNA carrier, NP-Chi-xPEI, that demonstrates the ability
to deliver DNA to various breast cancer cells for DNA transfection in vitro. NP-Chi-
xPEI has favorable physicochemical properties as a DNA carrier, including sub-hundred
nm diameter, sufficient positive surface charges for DNA condensation, and protection
and long-term serum stability. Although the cell uptake and DNA release profile of NP-
Chi-xPEI-DNA is cell-dependent, NP-Chi-xPEI was able to successfully ferry DNA into
different types of breast cancer cells and release DNA effectively for transfection. Through
comparison studies with the commercially available transfection agent Lipofectamine 3000,
NP-Chi-xPEI not only achieved high transfection efficiency but also displayed significantly
lower cytotoxicity on multiple breast cancer cell lines. As safety must be the highest priority
for a gene carrier in in vivo application, NP-Chi-xPEI may serve as an improved alternative
to the current commercial gene carriers for breast cancer therapy.
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Figure S3: High resolution TEM micrograph of NP-Chi-xPEI-DNA; Figure S4: Fluorescence images
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