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The Special Issue of Nanomaterials “Nanoparticles for Biomedical Applications” high-
lights the use of different types of nanoparticles for biomedical applications, including
magnetic nanoparticles, mesoporous carbon nanoparticles, mesoporous bioactive glass
nanoparticles, and mesoporous silica nanoparticles. The wide variety of applications cov-
ered by the 16 articles published here are proof of the growing attention that the use of
nanoparticles has received in recent years.

Nanoparticles can find application in bone diseases. For instance, Estévez and cowork-
ers developed biocompatible electrospun scaffolds made of type I collagen containing
superparamagnetic iron oxide nanoparticles [1]. The authors found that the magnetic prop-
erties were kept after incorporating them within the matrix, paving the way for exploring
the use of a magnetic stimulus for bone regeneration. Narayanaswamy et al. also explored
the synthesis of magnetic nanoparticles with potential biomedical application [2]. In rela-
tion to bone diseases, Kavasi and coworkers prepared an article on the biocompatibility
of nanohydroxyapatite particles [3]. These nanoparticles showed an absence of toxicity
on MC3T3-E1 cells and lay the foundations for further applications in bone regeneration,
tooth implants, and drug delivery. Mutlu et al. prepared SiO2-CaO hollow mesoporous
bioactive glass nanoparticles for bone applications using a combination of etching and
impregnation strategies [4]. The authors demonstrated that differentiation of MC3T3-E1
cells occurs after incubation with these nanoparticles, showing their effectiveness in bone re-
generation. Similarly, Casarrubios and coworkers reported calcium-containing mesoporous
nanospheres loaded with ipriflavone [5]. The results demonstrate that these nanoparticles
were able to promote the expression of VEGFR2 and angiogenesis, which could help to
deal with osteoporosis.

Nanoparticles have long been applied to cancer treatment. For instance, Alfei et al.
prepared polystyrene-based cationic nanomaterials [6]. The authors found that their for-
mulations could generate a high amount of reactive oxygen species, which was highly
effective against etoposide-resistant neuroblastoma cells and could be further explored in
combination with chemotherapeutic drugs. Candela-Noguera and coworkers designed
dendrimer-like mesoporous silica nanoparticles for cancer treatment [7]. The authors were
able to transfect a plasmid encoding for β-galactosidase, which was able to convert a
doxorubicin prodrug into active doxorubicin once inside the cancer cells. Möller et al.
reported crosslinked cyclodextrin nanoparticles [8]. The authors showed the anticancer
activity of curcumin in a number of cancer cell lines, demonstrating the utility of this
biocompatible nanocarrier. Forsback and coworkers reported a biodegradable silica depot
containing triptorelin [9]. This biomaterial could be applied to prostate cancer treatment
and outperformed commercially available Pamorelin in vivo. Nanoparticles can be used
not only for therapy, but also for diagnostics. In this sense, Geetha Bai and coworkers
prepared a biosensor based on reduced graphene oxide for the detection of cancer [10].

Nanomaterials 2022, 12, 1189. https://doi.org/10.3390/nano12071189 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12071189
https://doi.org/10.3390/nano12071189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-9815-0354
https://orcid.org/0000-0002-6104-4889
https://doi.org/10.3390/nano12071189
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12071189?type=check_update&version=1


Nanomaterials 2022, 12, 1189 2 of 3

The authors decorated the nanoparticles with folic acid, being able to detect overexpressed
folate receptors from cancer cells with accuracy. It is also important to determine the
bioavailability of nanoparticles upon different routes of administration. In this regard,
Mamai et al. evaluated the biodistribution of orally administered mesoporous carbon
nanoparticles [11]. The authors showed the biocompatibility of this type of nanomaterial,
demonstrating accumulation in the gastrointestinal tract and complete elimination from
the organism within 24 h.

Complete characterization of nanoparticles is often needed for understanding their
biological behavior. In this regard, Azor-Lafarga and coworkers reported on the usefulness
of atomic resolution electron microscopy for characterizing different types of nanomaterials
and understanding their biological behavior [12].

Our Special Issue also covers some high-quality review articles. For instance, Aguilera-
Correa et al. provide an in-depth description of the use of inorganic and polymeric nanopar-
ticles for the treatment and prevention of viral and bacterial infections [13]. Also in rela-
tion to infectious diseases, Gheorghe and coworkers reported on the use of nanoparticles
against the particular case of inner ear infections [14]. Finally, the field of stimuli-responsive
nanoparticles has also been reviewed within this Special Issue. For instance, Longo et al.
described the recent advances of electromagnetically responsive biomaterials [15]. Finally,
Gisbert and coworkers reported the recent updates on redox-responsive mesoporous silica
nanoparticles applied to cancer treatment [16].

In summary, this Special Issue presents several examples of the latest advancements
on nanoparticles for biomedical applications. We hope the readers will enjoy reading these
articles and find them useful for their research.
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