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Abstract: The use of semiconductors for bacterial photoinactivation is a promising approach that
has attracted great interest in wastewater remediation. The photoinactivator Cu-TTC/ZTO/TO was
synthesized by the solvothermal method from the coordination complex Cu(C3H3N3S3)3 (Cu-TTC)
and the hybrid semiconductor ZnTiO3/TiO2 (ZTO/TO). In this study, the effect of photocatalyst com-
position/concentration as well as radiation intensity on the photoinactivation of the gram-negative
bacteria Escherichia coli and the gram-positive bacteria Staphylococcus aureus in aqueous solutions
was investigated. The results revealed that 25 mg/mL of photoinactivator, in a Cu-TTC:ZTO/TO
molar ratio of 1:2 (w/w%) presents a higher rate of bacterial photoinactivation under simulated solar
light (λ = 300–800 nm) in comparison to the individual components. The evidence of this study
suggests that the presence of the Cu(C3H3N3S3)3 coordination complex in the ZnTiO3/TiO2 hybrid
semiconductor would contribute to the generation of reactive oxygen species (ROS) that are essential
to initiate the bacterial photoinactivation process. Finally, the results obtained allow us to predict that
the Cu-TTC/ZTO/TO photocatalyst could be used for effective bacterial inactivation of E. coli and S.
aureus in aqueous systems under simulated solar light.

Keywords: semiconductors; reactive oxygen species (ROS); bacterial photoinactivation;
Staphylococcus aureus; Escherichia coli; solar light

1. Introduction

Water is essential for the maintenance of plant and animal life, so the conservation
of this resource must be assumed as a priority for the inhabitants of the planet [1]. Cur-
rently, as a result of human activities, there are worrying levels of various contaminants
in the water, which deteriorate the quality of this natural resource and make it potentially
dangerous, preventing its use and consumption [2,3]. Large amounts of effluents from
various sources are usually disposed of through direct discharge; however, this method is
not environmentally friendly because it adds a significant number of contaminants to the
natural water resource. Additionally, some wastewater has a high nutrient composition
that can provide a suitable habitat for a variety of microorganisms such as viruses, bacteria,
fungi, and parasites that kill natural aquatic life. Consequently, safe disposal and proper
treatment for the reuse of wastewater are presented as global sustainability strategies [4,5].

The gram-negative bacterium Escherichia coli is a representative foodborne pathogen
as is the gram-positive bacterium Staphylococcus aureus. These microorganisms have been
detected in surface water and wastewater and can survive on material surfaces for a long
time [6]. The literature mentions several diarrheal intestinal diseases caused by pathogenic
strains of E. coli; likewise, it is indicated that 65–75% of cases of urinary tract infections
are caused by this bacterium [7,8]. Among the main bacteria that have been shown to
colonize the nose is the ubiquitous bacterium S. aureus, which is a normal microbiota of
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mucous membranes and skin that can also behave as an opportunistic pathogen that causes
serious diseases [9,10]. Therefore, the application of effective methods of disinfection of
aqueous effluents, which guarantee clean and safe access to this vital resource, is of great
importance [11].

For the efficient reduction of most microorganisms in aqueous systems, chlorination
has been proposed as a conventional method since it allows for reduction of the incidence
of infectious diseases, it is easy to use and it is low cost. However, despite these advantages,
some health effects are mentioned, such as skin and eye irritation, as well as the generation
of by-products that are toxic and modify the taste and smell of water [12]. Faced with these
secondary effects and limitations, alternative methods have been proposed for wastewater
treatment, including other biological, physical, and chemical processes such as ion exchange,
reverse osmosis, biological denitrification, adsorption, and photocatalysis [13]. Among
these methods, disinfection mediated by photocatalysts has advantages such as the use of
green energy (sunlight) and the non-existent formation of toxic by-products [14].

The application of photocatalysts based on titanium oxide (TiO2) for the elimination
of microorganisms has gained great importance in recent years [15,16]. In fact, several
studies have reported the advantages of using this oxide for antimicrobial purposes due to
its ability to produce reactive oxygen species (ROS) that damage the cell membrane [17,18].
In addition, TiO2 has other advantages such as its high photocatalytic activity, physical and
chemical stability, low price, and low toxicity [19–22]. However, the disadvantage of this
oxide is related to the high rate of generation and recombination of charge carriers and
the band gap that only allows it to adsorb ultraviolet light which represents only 5% of
sunlight spectrum [23–25].

Currently, due to the important evolution of photoassisted technologies for micro-
bial disinfection, the development of electron transport materials (ITEM) [26–29] with
great quantum efficiency, suitable for photochemical application under sunlight radiation
(~300–800 nm), has been promoted [30]. Among the alternatives used for the development
of these materials, the coupling of semiconductors, doping, and the use of sensitizers
are mentioned [31]. Semiconductor coupling allows the combination of the particular
characteristics of the components in an integrated semiconductor whose stability and final
physicochemical properties depend on the compatibility between the individual semicon-
ductors [32]. In a previous study, we reported that ZnTiO3 is suitable for the potential
coupling of TiO2 [33] since, like other coupling semiconductors such as ZnO, Fe2O3, CuO,
ZrO2, SiO2, MgO, MoO3, SnO2, CdS, ReS2 and WO3 [34–37], it allows a higher efficiency in
charge separation, a long lifetime of charge carriers and a better interfacial charge transfer
towards the adsorbed substances [38,39].

Doping semiconductors with metal or non-metal ions is also a common method to
reduce electron–hole recombination (e−/h+) and extend the action of the photocatalyst
against visible light. In relation to TiO2, which has a wide band gap (~3.2 eV), some
effective dopants are mentioned, such as Au, Mo, Co, Rb, La, Ag, or Cu [40–42], which
cause the band gap to decrease through the formation of defective states [43]. These
states serve as active centers to trap electrons, limiting their mobility and increasing the
separation of charge carriers [44,45]. The doping of TiO2 with Cu has been widely studied
for antibacterial purposes [46–48], since this element has a favorable ratio of bacterial
inactivation and cell damage, without causing a decrease in biocompatibility [49,50]. The
integration of Cu into TiO2 can increase the donor density and improve charge transport
through the shift towards the TiO2 conduction band (CB). In addition, Cu facilitates the
formation of ROS on the surface of TiO2, generating greater reactivity and consequently
greater damage to the bacterial cell membrane [51,52].

On the other hand, several studies have shown that the photochemical efficiency
of TiO2 can be improved by the use of sensitizers [53–56], including transition metal
coordination complexes, such as the Cu(C3H3N3S3)3 complex (Cu-TTC), which was ref-
erenced in previous studies [57]. This complex formed by Cu(I) and trithiocyanuric acid
(C3H3N3S3) proved to be an effective photosensitizer in the Cu(C3H3N3S3)3/ZnTiO3/TiO2
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(Cu/TTC/ZTO/TO) system since it allowed the insertion of e− between the conduction
band of the hybrid semiconductor ZnTiO3/TiO2 and the excited molecule [58]. Further-
more, the Cu-TTC complex demonstrated highly efficient charge transfer from metal to
ligand and was suggested as a generator of reactive oxygen species (ROS), which are
essential for microbial inactivation processes.

The Cu[C3H3N3S3]3 (TTC) complex presents an interesting structure consisting of
three molecules of trithiocyanuric acid (C3H3N3S3) that act as ligands and coordinate with
a central core of Cu(I). Trithiocyanuric acid (TTCA), also known as 2,4,6-trimercapto-1,3,5-
triazine or simply trimercaptotriazine, presents a symmetric conformation characterized
by the presence of three sets of σ-donor atoms (N and S), which exhibit a high capacity to
stabilize transition metals in high oxidation states [57]. Furthermore, the literature reports
that in many coordination complexes, trithiocyanuric acid often exists as a tautomeric
structure, either as a thione or a thiol [59], as shown in Figure S1: Tautomeric structures of
trithiocyanuric acid (TTCA).

Several studies have highlighted the potential of trithiocyanuric acid to coordinate
with metallic elements (Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Ag+ and Tl+) through N and/or S
atoms, or even through the SH-C=N group, forming a η2-fashion chelation. Consequently,
due to the availability of σ donor atoms, the TTCA ligand has been able to act as a bridge
in several polymeric structures reported in the literature, including the Cu-TTC complex
[Cu(C3H3N3S3)3] [60–62].

On the other hand, also in a previous study, the chemical structure of the
Cu-TTC/ZTO/TO compound was suggested and supported by DFT studies. In that
study, the Cu-TTC/ZTO/TO compound presented the coordination sphere of the of the
tautomer-thione Cu-TTC in the form of a trigonal dipyramid anchored on the surface of
semiconductors. In fact, in the Cu-TTC/ZTO/TO compound, the two triazine rings acted
as bidentate ligands that coordinated through their S atoms with a Ti atom on the ZnTiO3
and TiO2 surfaces (Figure S2: Anchoring modes of the Cu-TTC molecule on the surface
of (a) ZnTiO3 and (b) TiO2), the coordination on the ZTO surface being more energetically
stable than on the TO surface at the calculation level used.

Finally, the results of previously reported experimental and theoretical studies then
allowed us to suggest the feasibility of using Cu-TTC as a possible ROS-generating pho-
tosystem, as well as a photosensitizer of the heterogeneous ZnTiO3/TiO2 photocatalyst.
However, despite these interesting results, the fact that, to date, there are no studies on the
bacterial photoinactivation capacity of the novel photocatalyst Cu-TTC/ZTO/TO moti-
vated the authors to carry out this study for the first time, which is also intended to evaluate
the effect of the operational parameters, concentration/composition, of the photocatalyst
and intensity of the radiation in the rate of photoinactivation of the gram-negative bacteria
Escherichia coli and the gram-positive bacteria Staphylococcus aureus in aqueous solutions.

2. Materials and Methods
2.1. Materials

All reagents were purchased from commercial sources and used without further
purification: Trithiocyanuric acid [C3H3N3S3] (Sigma-Aldrich, St. Louis, MO, USA, 95.0%),
Copper(II) perchlorate hexahydrate [Cu(ClO4)2·6H2O] (Sigma-Aldrich, St. Louis, MO,
USA, 98.0%), N,N-Dimethylformamide [(CH3)2-N-CHO] (Fisher Scientific, Waltham, MA,
USA, 99.9%), Isopropyl alcohol [C3H8O] (Sigma Aldrich, St. Louis, MO, USA, ≥99.5%),
Titanium(IV) isopropoxide [Ti(OC3H7)4] (Sigma Aldrich, St. Louis, MO, USA, 98%), Acetic
acid [CH3COOH] (Fluka, 99.8%), Hydrogen chloride [HCl] (Fisher Scientific, Waltham, MA,
USA, 37%), Cetyl-trimethyl ammonium chloride [C19H42NCl] (Sigma Aldrich, St. Louis,
MO, USA, 25%), Hydrogen peroxide [H2O2] (Sigma Aldrich, St. Louis, MO, USA, 35%),
Silver nitrate [AgNO3] (Sigma Aldrich, St. Louis, MO, USA, >99.8%), Nitric acid [HNO3]
(Sigma Aldrich, St. Louis, MO, USA, 69%), Zinc acetate dihydrate [Zn(CH3COO)2·2H2O]
(ACS, St. Louis, MO, USA, ≥98%), Trypticase Soy Broth (Fisher Scientific, Waltham, MA,
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USA), Trypticase Soy Agar (Fisher Scientific, Waltham, MA, USA), GibcoTM Gentamicin
(Fisher Scientific, Waltham, MA, USA).

Samples of Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923) were
obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) to
test bacterial inactivation. The irradiation of the bacteria on the photocatalyst-dispersed
solutions was carried out using simulated solar light by a solar box (ATLAS, SUNTEST
CPS+), equipped with an air-cooled 1500 W Xenon lamp (Atlas Material Testing Technology,
Mount Prospect, IL, USA). Irradiance was set to 250 W/m2, and wavelengths of 300–800 nm
(without cut-off filter) or 400–800 nm (with 400 nm cut-off filter) were allowed to pass
through. Field effect scanning electron microscopy (SEM) images of the composites were
obtained on a Zeiss Gemini ULTRA plus electron microscope (Carl Zeiss AG, Oberkochen,
Germany) operating at 3.0 kV. The samples for SEM measurements were dropped and
dried on a piece of silicon wafer.

2.2. Synthesis and Characterization of ZTO/TO and Cu-TTC/ZTO/TO Nanocomposites

The ZnTiO3/TiO2 (ZTO/TO) nanocomposite was synthesized by the sol–gel method,
while the complex of Cu(I) and trithiocyanuric acid (Cu-TTC) was synthesized by the
sedimentation method, as we explained in previous studies [33,57]. The Cu-TTC/ZTO/TO
photocatalyst consisting of the coordination complex Cu(C3H3N3S3)3 and the semiconduc-
tors ZnTiO3 y TiO2 [58] was synthesized by a routine solvothermal method as follows. A
total of 250 mg of Cu-TTC were dispersed in with 30 mL of water and 10 mL of C3H8O. This
mixture was kept under sonication at room temperature for 2 h, after which an adequate
amount of the ZTO/TO hybrid semiconductor was added to obtain the composite Cu-
TTC/ZTO/TO with the proportions (w/w%) Cu-TTC:ZTO/TO of 1:1 (composition P1), 1:2
(composition P2), and 1:4 (composition P3). The resulting suspensions were stirred for 24 h
at room temperature to obtain Cu-TTC/ZTO/TO particles suspended in the water/C3H8O
solution. Then, each solution suspension was placed in a 100 mL Teflon-lined autoclave
and kept at 100 ◦C for 12 h. The final Cu-TTC/ZTO/TO composites were obtained by
precipitation, then washed and dried at 60 ◦C. A color change of the samples from white
to brown-yellow could be detected. For SEM measurements, the samples were dropped
and dried on a piece of silicon wafer. On the other hand, the point of zero charge (PZC)
of both photocatalysts was determined by the pH drift method (∆pH = pHf − pHi = 0) in
the range of pH 3–11 and at room temperature (22 ± 2 ◦C). Points of Zero Charge (PZC)
are pH values at which the surface charge components become equal to zero under given
conditions of temperature, applied pressure, and composition of the aqueous solution. This
does not mean that the surface is discharged at pHPZC, but that there are equal amounts of
positive (+) and negative (−) charges. In this study, the pH drift method was performed
by adding identical amounts of material to a set of solutions of the same ionic strength at
different pH values. In a series of 50 mL centrifuge tubes, 0.1× g of sample was added to
25 mL of a 0.1 M NaCl solution. The pH was adjusted with 0.1 M HCl and 0.1 M NaOH as
necessary to obtain the proper pH range. The pH values of the supernatant in each tube
were denoted as pHi. Samples were shaken for 24 h using a rotary shaker at 220 rpm. After
precipitation, the pH values of the supernatant in each tube were measured and reported as
pHf. The PZC was obtained from the graph of ∆pH (pHf − pHi) vs. pHi. The assays were
repeated with 0.05 and 0.01 M NaCl solutions. Each set of experiments was performed in
triplicate and the mean value was recorded [63].

2.3. Evaluation of Bacterial Photoinactivation

To determine the antibacterial effect of photocatalyst, the time–kill test was used.
According to the literature, this test is a strong tool for obtaining information about the
dynamic interaction between the photocatalyst composite and the bacterial strains [64].
The time–kill test allowed us to investigate the antibacterial effect as a function of the
concentration and composition of the Cu-TTC/ZTO/TO photocatalyst, as well as a function
on the type of irradiation using two bacterial strains. Gram-negative E. coli strain (ATCC
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25922) and gram-positive S. aureus strain (ATCC 25923) were first incubated overnight at
37 ◦C in Trypticase Soy Broth. For the determination of the antibacterial effect dependent
on the concentration and composition of the photocatalyst, aliquots of the respective
overnight cultures in NaCl/KCl (pH = 7) were placed in Petri dishes containing Cu-
TTC/ZTO/TO dispersed in water at different concentrations (0.1 mg/mL, 0.5 mg/mL,
1 mg/mL, 5 mg/mL, 10 mg/mL, 25 mg/mL and 50 mg/mL). The determination of the
antibacterial effect depending on the type of radiation was carried out under simulated
solar light (full and with 400 nm cut-off filter) for 4–8 h. The pH measurement was
performed before and after the photoreactions. The final equivalent concentration of the
bacterial cultures in the Petri dishes was 5 × 106 CFU/mL according to the McFarland
scale. In both assays, growth controls consisting of bacterial culture of adjusted final
concentration without addition of photocatalyst as well as in the absence of radiation were
used. The antibiotic Gentamicin (1 mg/mL) was also used as positive control to compare
the antibacterial effect of the materials synthesized under the conditions tested.

After each determination, the respective solutions were transferred to a 2 mL sterile
Eppendorf tube containing 1 mL of autoclaved NaCl/KCl saline. Subsequently, these
solutions were thoroughly mixed using a Vortex for 3 min. Serial dilutions were prepared
in NaCl/KCl solution. An aliquot of 100 µL was pipetted onto a nutrient agar plate and
then spread over the surface of the plate. Agar plates were incubated, lid down, at 37 ◦C for
24 h before colonies were counted [48]. Three independent assays were performed for each
photocatalyst. The percentage of dead cells in relation to the number of initial live cells
(CFU/mL) in each tube was then calculated by the agar plate count method. IBM SPSS
Statistics 25 for Windows (Version 25.0., Released 2017, IBM Corp., Armonk, NY, USA) was
used to collect the data and calculate the measures of central tendency. The results were
expressed as mean values.

To verify that no regrowth of either E. coli and S. aureus occurs after the first cycle
of bacterial inactivation, the bacteria–photocatalyst suspension was incubated for 24 h at
37 ◦C. Then, 100 µL of bacteria–photocatalyst suspension were placed in three Petri dishes
to obtain replicas. The samples were incubated at 37 ◦C for 24 h. No bacterial regrowth
was observed in these samples.

3. Results
3.1. Characterization of ZTO/TO and Cu-TTC/ZTO/TO Nanocomposites

The crystallographic phases of the photocatalysts ZTO/TO and Cu-TTC/ZTO/TO
were reported in a previous study [58]. In that study, the presence of zinc titanate (ZnTiO3)
and the anatase phase (TiO2) in both photocatalysts was demonstrated, as well as the
presence of the Cu-TTC complex in the Cu-TTC/ZTO/TO composite. The relative amount
of the ZTO and TO crystallographic phases in the ZTO/TO photocatalyst was estimated at
47% and 53%, respectively, while the relative amount of the Cu-TTC, ZTO and TO crystallo-
graphic phases in the Cu-TTC/ZTO/TO was estimated at 22%, 37%, and 41%, respectively.

Likewise, the UV–vis absorption spectra of the suspensions of the materials evaluated
here were previously determined [58]. From these results, we present here the values of the
molar extinction coefficients (ε) and the bandgap energy (Eg) for ZTO/TO, Cu-TTC, and Cu-
TTC/ZTO/TO. The optical band gap energy (Eg) values were calculated by extrapolation
using the (αhv)2 vs. hv plot and the following expression [65]:

Eg =
1240
λ

, (1)

where Eg is the bandgap energy in electronvolts (eV) and λ represents the lower cut-off
wavelength in nanometers (nm). On the other hand, the values of the molar extinction
coefficients (ε) were calculated using the Lambert-Beer’s law [63]

A = εCL, (2)
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where A is the absorbance at the first extension absorption peak, C is the molar concentra-
tion of the material, and L is the thickness of absorption cell usually as a constant. Table 1
shows the information regarding the maximum absorption peaks, molar extinction coeffi-
cients (ε), and bandgap energy (Eg) for ZTO/TO, Cu-TTC, and Cu-TTC/ZTO/TO, which
were evaluated at a concentration of 2.5 × 10−5 M.

Table 1. Maximum absorption peaks, molar extinction coefficients (ε), and bandgap energy (Eg) for
ZTO/TO, Cu-TTC, and Cu-TTC/ZTO/TO.

Material Absorbance
(a.u.)

Wavelength
(λmax) (nm)

Molar Extinction Coefficient
(ε) (104 M−1 cm−1) Band Gap Energy (Eg) (eV)

ZTO/TO 0.48 390 1.92 3.06
Cu-TTC 0.60 725 2.40 2.62

Cu-
TTC/ZTO/TO 0.69 745 2.76 2.54

In this study, we also report the morphology and point of zero charge (pHPZC) of the
photocatalysts. Figure 1 shows the SEM images of the ZnTiO3/TiO2 and Cu-ZnTiO3/TiO2
nanocomposites. The images reveal that the particles of both composites are almost spheri-
cal, highly agglomerated and have an average particle size of 25 and 35 nm for ZTO/TO
and Cu-TTC/ZTO/TO, respectively.
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Figure 1. SEM images of (a) ZTO/TO and (b) Cu-TTC/ZTO/TO nanocomposites.

On the other hand, the point of zero charge was determined to be pHPZC 7.0 ± 0.2
and 8.2 ± 0.2 for ZTO/TO and Cu/TTC/ZTO/TO nanocomposites, respectively. The point
of zero charge was determined as the average of the plot lines at each ionic strength with
∆pH = 0, as they are shown in Figure 2. Therefore, the bacteria could have been involved
in the electrostatic attraction (physisorption mechanisms) by a positive charge due to the
protonation of the photocatalyst surfaces below the pHPZC.
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3.2. Evaluation of Bacterial Photoinactivation as a Function of Catalyst Concentration

Bacterial inactivation as a function of catalyst concentration was first evaluated.
For each bacterium, seven different concentrations (0.1 mg/mL, 0.5 mg/mL, 1 mg/mL,
5 mg/mL, 10 mg/mL, 25 mg/mL and 50 mg/mL) of photocatalyst were used for the
photoinactivation assay under simulated solar light (full and with 400 nm cut-off fil-
ter) for about 4.5 h. Bacterial inactivation curves for E. coli and S. aureus are shown in
Figures 3 and 4, respectively. The percentage of bacterial inactivation for Cu-TTC/ZTO/TO
in composition P1 was higher than the percentage of bacterial inactivation for ZTO/TO
and Cu-TTC. Figure 3a–c show that for the photocatalyst Cu-TTC/ZTO/TO, the maximum
percentages of reduction in the bacterial load of S. aureus were 94.4%, 88.9% and 45.1%
under full simulated solar radiation, with 400 nm cut-off filter and in dark conditions,
respectively. For the ZTO/TO photocatalyst, the maximum percentage of bacterial decrease
were 88.9%, 84.9% and 42.0%, under full simulated solar radiation, with 400 nm cut-off
filter and in dark conditions, respectively.

Likewise, Figure 4a–c show that for the photocatalyst Cu-TTC/ZTO/TO, the maxi-
mum percentages of reduction in the bacterial load of E. coli were 87.6%, 83.6% and 42.3%
under full simulated solar radiation, with 400 nm cut-off filter, and in dark conditions,
respectively. For the ZTO/TO photocatalyst, the maximum percentages of bacterial de-
crease were 18.9%, 17.3% and 12.1%, under full simulated solar radiation, with 400 nm
cut-off filter, and in dark conditions, respectively. Finally, in this study, the Cu-TTC complex
showed slight antibacterial activity for both E. coli and S. aureus under the tested condi-
tions. According to the literature, the TTC ligand can induce antibacterial properties, not
dependent on light, in transition metal coordination complexes [66].

3.3. Evaluation of Bacterial Photoinactivation as a Function of Catalyst Composition

In this study, the bacterial inactivation dependent on the composition of the catalyst
was also evaluated. From the minimal increase in bacterial photoinactivation in the reaction
system at concentrations greater than 25 mg/mL, it was decided that this concentration was
the optimal operating condition for continuing bacterial photoinactivation experiments.
Figure 5a–c show the kinetics of bacterial inactivation for S. aureus induced by the coordina-
tion complex, the photocatalysts and the antibiotic Gentamicin (1 mg/mL) under different
radiation conditions.
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Likewise, Figure 6a–c show the kinetics of bacterial inactivation for E. coli induced
by the coordination complex, the photocatalysts and the antibiotic Gentamicin (1 mg/mL)
under different radiation conditions.
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Figure 5a,b and Figure 6a,b present the bacterial inactivation kinetics under simu-
lated solar irradiation. The acceleration effect induced by irradiation evidently leads to
complete bacterial inactivation within ~240 min for the ZTO/TO and Cu-TTC/ZTO/TO
photocatalysts. In contrast, Figures 5c and 6c show that in the dark, only partial bacterial
inactivation occurred within ~240 min for ZTO/TO and Cu-TTC/ZTO/TO due to the lack
of contribution of electronic photoexcitation in these photocatalysts. For both S. aureus
and E. coli, the Cu-TTC coordination complex showed little activity, while the antibacterial
Gentamicin was effective within ~240 min in all tests.

On the other hand, the percentage of dead cells was calculated in relation to the number
of initial live cells (CFU/mL) for each bacterium. Figure 7 presents the bacteria photoinacti-
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vation (%) for S. aureus mediated by the coordination complex, the photocatalysts, and the
antibiotic Gentamicin (1 mg/mL) when applying different radiation conditions.
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Figure 7. Percentage of inactivation of S. aureus under (a) total simulated solar radiation, (b) with a
400 nm cut-off filter, and (c) in dark conditions.

Likewise, Figure 8 presents the bacteria inactivation (%) for E. coli mediated by the
coordination complex, the photocatalysts, and the antibiotic Gentamicin (1 mg/mL) when
applying different radiation conditions. In this figure, it is seen that the photoinactivation
of E. coli proceeds with the same trend as that of S. aureus.
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Figures 7 and 8 show that the percentage of bacterial photoinactivation of
Cu-TTC/ZTO/TO increases as the ratio (% w/w) of the Cu-TTC complex in the ZTO/TO
hybrid semiconductor increases from 1:4 to 1:2. However, in the 1:1 ratio (% w/w), a
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decrease in antibacterial activity was observed due to the possible high agglomeration of
Cu-TTC particles on the surface of the ZTO/TO.

3.4. Reuse of Photocatalyst for Bacterial Photoinactivation

Finally, since the recyclability and stability of a photocatalyst are important factors for
its large-scale application, five consecutive experiments were carried out in this study to
test the reuse of photoinactivators. The results of these assays are shown in Figure 9a,b for
S. aureus and E. coli, respectively.
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As shown in Figure 9, for both S. aureus and E. coli, the results of the reuse exper-
iments showed that, on average, the deactivation of the photocatalysts ZTO/TO and
Cu-TTC/ZTO/TO (composition P2) did not exceed the 10% after five consecutive cy-
cles. Evidence from this study suggests that these photocatalysts could have important
environmental applications for bacterial photoinactivation in aqueous systems.



Nanomaterials 2023, 13, 173 15 of 22

4. Discussion
4.1. Characterization of ZTO/TO and Cu-TTC/ZTO/TO Nanocomposites

As mentioned above, XRD analysis of the composites ZTO/TO and Cu-TTC/ZTO/TO
demonstrated the presence of anatase (TiO2) and zinc titanate (ZnTiO3) in both composites.
Likewise, the presence of the coordination complex based on trithiocyanuric acid (TTCA)
and Cu(I) was demonstrated in the Cu-TTC/ZTO/TO composite. Several studies reported
in the literature have provided sufficient evidence on the antibacterial activity of these
compounds. Thus, it is widely known that bacterial cells exposed to anatase (TiO2) photo-
catalysis suffer a series of consequences, including accelerated cell inactivation at the level
of regulation and signaling, decreased biosynthesis capacity, degradation of heme groups
(Fe-S cluster), decreased capacity to assimilate and transport iron and phosphorus, and
decreased coenzyme-independent respiratory chains, among others. These activities, as
well as the extensive cell wall alterations, are mainly promoted by the efficient photogen-
eration of reactive oxygen species (ROS), which is the most important factor supporting
the high biocidal performance of the photocatalytic nanomaterials [67,68]. In addition
to anatase, other titanium-based photocatalytic materials, including rutile [69], and zinc
titanate (ZnTiO3) [14], as well as trithiocyanuric acid (TTCA)-based coordination com-
plexes [66] and Cu(I) compounds [4], have shown high efficacy against clinically relevant
pathogens. Therefore, it is suggested that Cu-TTC, ZnTiO3, and TiO2 would be contributing
with their individual electrochemical properties (see Table 1) to the overall efficiency of the
Cu-TTC/ZTO/TO composite, allowing to obtain a coupled semiconductor, active under
solar light, with low recombination capacity of e−/h+ pairs, high interfacial charge transfer
capacity, and a great capacity for ROS generation for effective bacterial photoinactivation.

On the other hand, in this study, the semiconductors ZTO/TO and CU-TTC/ZTO/TO,
with particle size <100 nm, reflected a point of zero charge (pHPZC) between 7 and 8.
Consequently, during the bacterial photoinactivation assays that were performed at a pH
lower than pHPZC, it is likely that the surface of both photocatalysts could be positively
charged, which, according to the literature, would enhance the attraction of the negatively
charged microbial cell wall structure, facilitating the bacterial inactivation process [16].

4.2. Evaluation of Bacterial Photoinactivation

There are several reports detailing the impact of operating parameters on the bacterial
photoinactivation process. These parameters include the pH value, the radiation intensity,
as well as the concentration and composition of the photocatalysts in the reaction system.
According to the literature, the effect of pH in photocatalytic processes is crucial since
the change in the value of this parameter allows modulation of the effective charge of the
reaction system. However, there are also several reports in the literature that demonstrate
the non-dependence of pH in bacterial disinfection processes. In fact, it has been reported
that the bactericidal property in a treatment system can be kept constant between pH 5 and
8 [16].

In this study, the assays were performed without adjusting the pH of the system during
the photoinactivation process. The pH measurements before and after the photoreactions
showed that the pH decreases (from 6.8 to 5.4) when the Cu-TTC/ZTO/TO or ZTO/TO
photocatalysts are irradiated for 8 h using simulated solar light with a 400 nm cut-off filter.
However, when the photocatalysts were tested under the full range of simulated solar
light, the pH value remained constant (at 6.8) within the same reaction time. According to
the literature, the decrease in pH during the reaction with the light of λ > 400 nm could
be due to the accumulation of carboxylic acids generated during the peroxidation of the
bacterial cell membrane. In contrast, for photocatalysts that react under full simulated solar
irradiation (without filter), these carboxylic groups could decompose to CO2 due to the
presence of UV-A light [70].

Regarding the concentration of the photocatalyst, in this study, it was shown that it
is an important operational parameter. In fact, several studies reported in the literature
have shown that the bacterial inactivation process improves with increasing photocatalyst
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concentration until the saturation limit is reached. Figures 3 and 4 display the effect of the
concentration of the investigated photocatalysts on the percentage of bacterial inactivation.
These figures show that the photocatalysts rapidly reach the saturation limit, after which the
inactivation percentage remains constant even with increasing photocatalyst concentration.
This is probably due to the fact that the increase in the concentration of the photocatalyst
could finally lead to the turbidity of the reaction medium and consequently hinder the
absorption of the incoming radiation [16]. Therefore, the experiments carried out in this
study allowed us to optimize the concentration of the photocatalyst necessary (25 mg/mL)
for the photoinactivation process in order to avoid its excessive use.

Like the concentration of the photocatalyst, the intensity of the irradiation is also
an important parameter in the process of bacterial photoinactivation [30]. When the
photocatalyst surface is illuminated, the active sites generate reactive oxygen species (ROS)
that initiate the process of bacterial photoinactivation. According to the literature, a higher
intensity of irradiation can result in a higher rate of ROS production and, consequently,
a higher disinfectant effect [16]. In fact, this argument was verified in the present study,
since a higher percentage of bacterial photoinactivation was obtained when irradiated with
simulated sunlight in the 300–800 nm range compared to irradiation in the 400–800 nm
range and in dark conditions.

In addition to the radiation intensity, the electronic properties of the photocatalyst
are also an important parameter in the effective rate of ROS production. For a UV-active
semiconductor material such as TiO2, the rate of bacterial photoinactivation under sun-
light is limited, since UV light only makes up a small proportion of the solar spectrum.
However, semiconductor coupling and sensitization mediated by metal–organic complexes
have proven to be effective methods to improve the quantum efficiency of this oxide and
extend its optical adsorption range toward visible light [25,54,71]. The results shown in
Figures 5 and 6 suggest that the novel photocatalyst Cu-TTC/ZTO/TO showed a significant
improvement in bacterial photoinactivation rate compared to the individual components
Cu-TTC and ZTO/TO. This improvement in the photoactivity of the novel semiconductor
is possibly due to the fact that the incorporation of the Cu-TTC coordination complex
contributes to the efficient separation of the photo-generated e−/h+ pairs between TiO2
and ZnTiO3 [58]. Although the incorporation of Cu-TTC improved the effectiveness of the
ZnTiO3/TiO2 hybrid semiconductor, Figures 7 and 8 show that the percentage of bacte-
rial photoinactivation of Cu-TTC/ZTO/TO increases with the proportion of the Cu-TTC
complex in the ZTO/TO hybrid semiconductor. However, a slight decrease in antibacte-
rial activity was observed as the proportion of the complex in the hybrid semiconductor
continued to increase. These results suggest that the increasing agglomeration of Cu-TTC
particles on the surface of the ZTO/TO could have blocked several of its active sites, thus
decreasing the photoactivity of this hybrid semiconductor.

Finally, the results shown in Figure 9 suggest the feasibility of using the
Cu-TTC/ZTO/TO photocatalyst for several cycles, allowing the effective photoinactivation
of S. aureus and E. coli.

4.3. Proposed Mechanism of ROS-Mediated Bacterial Photoinactivation

In photocatalytic processes, both oxidation and reduction reactions take place simul-
taneously and can generate reactive oxygen species (ROS) such as the superoxide anion
radical (•O2

−), hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl radical
(•OH). These reactive species can be detected through various methods, including col-
oration, chemiluminescence, direct fluorescence, fluorescence probe, direct emissions, direct
absorption in UV and IR regions, electron magnetic resonance, and direct electron spin
resonance. When photocatalytic processes occur in aqueous systems, ROS can be generated
by sequential reactions from both O2 and H2O. In fact, the stepwise reduction mechanism
from O2 generates ROS of •O2

−, H2O2, and •OH, while ROS of •OH, H2O2, •O2
−, and 1O2

are generated in this order by the stepwise oxidation mechanism from H2O. According to
the literature, the surface photocatalytic reactions that are part of these ROS-generating
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mechanisms can occur at both the anion-bridged OH site and the cationic terminal OH site
of semiconductor oxides such as TiO2 [68].

Reactive oxygen species (ROS) are essential to initiate bacterial photoinactivation pro-
cesses. Bacterial photoinactivation under solar light represents a promising antimicrobial
strategy, with numerous advantages and diverse potential applications [72–76]. According
to the literature, photoexcited catalysts can inactivate various types of microorganisms as a
result of the movement of photogenerated electron–hole (e−/h+) pairs on the catalyst sur-
face. The electrons moving toward the catalyst surface react with O2 in solution to generate
•O2 and •OH radicals. These radicals can oxidize the cell membrane of microorganisms,
achieving their photoinactivation [77].

As reported in the literature, ROS-mediated bacterial inactivation has benefits over
other antimicrobial treatments including the use of antibiotics and exposure to ultraviolet
light [78]. This is probably due to the fact that the ROS generated can cause non-specific
damage (they do not have specific cellular target molecules) preventing organisms from
developing genetic mutations and acquiring resistance. Furthermore, nonspecific oxidative
damage to exposed microorganisms facilitates the efficient inactivation of a wide range of
microbial species [79].

In this study, the results confirm that photoinactivation of S. aureus and E. coli bacteria
is improved when Cu-TTC/ZTO/TO is used instead of ZTO/TO photocatalyst or Cu-TTC
complex alone. This agrees with the results obtained in a previous study indicating that the
Cu-TTC/ZTO/TO photocatalyst has higher photoactivity than the ZTO/TO hybrid semi-
conductor [58,80] due to the fact that the Cu-TTC complex could contribute to the efficient
separation of photogenerated e−/h+ pairs between ZnTiO3 and TiO2 [81]. Although the
optical absorption properties of ZTO/TO, Cu-TTC and Cu-TTC/ZTO/TO were not deter-
mined here, Table 1 shows the corresponding values of the maximum absorption peaks, the
molar extinction coefficients (ε) and the bandgap energy (Eg) which were calculated from
the previously obtained electronic absorption UV–vis spectra. From these results and based
on the electronic properties of the ZTO/TO and Cu-TTC/ZTO/TO semiconductors and
the geometry of the previously reported Cu-TTC complex [57,82], it was suggested that the
strong absorption band of the Cu-TTC/ZTO/TO photocatalyst Cu-TTC/ZTO/TO (745 nm)
in the visible region, compared to the absorption band of the ZTO/TO photocatalyst (390
nm), is due to the state of metal–ligand charge transfer (MLCT), as well as to the π→ π*
transitions in triazine rings of the Cu-TTC complex. Therefore, when Cu-TTC/ZTO/TO
is irradiated by simulated solar light, the electrons in the Cu-TTC complex can be eas-
ily excited from the ground state probably because of the MLCT excitations and π →
π* transitions to then move freely on the surface of the ZTO/TO hybrid semiconductor,
improving its photoelectrochemical performance under solar light. Table 1 also shows the
effect of the Cu-TTC complex in the reduction of the bandgap energy of the ZnTiO3/TiO2
hybrid semiconductor. Therefore, the Cu-TTC/ZTO/TO composite (Eg = 2.54 eV) could
have higher photochemical efficiency than the ZTO/TO semiconductor (Eg = 3.06 eV),
constituting a promising alternative for bacterial photoinactivation under solar light.

Figure 10 shows the proposed mechanism for bacterial photoinactivation mediated
by Cu-TTC/ZTO/TO composite. The values of the valence band (VB) and conduction
band (CB) potentials of Cu-TTC (+0.44, +3.06 eV), TO (−0.26, +2.86 eV), and ZTO (−2.03,
+1.03 eV) shown in the figure were estimated in a previous study using Mulliken’s theory
of electronegativity [58]. From this figure, it is suggested that bacterial inactivation could
involve interfacial charge transfer (IFCT) between the surfaces of the hybrid semiconductor
ZTO/TO and the Cu-TTC coordination complex. In this figure, it is evident that the excited
electrons from the conduction band (CB) of ZnTiO3 are transferred to the CB of TiO2 and
then to the CB of Cu-TTC, while the highly oxidative holes generated by the valence band
(VB) of Cu-TTC are transferred to the VB of TiO2 and then to the VB of ZnTiO3, resulting in
a suitable energy cascade. This multielectron process improves the mobility of electrons
in the compound and reduces interfacial electron/pair recombination, thus promoting an
enhanced photochemical effect [83,84].
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According to the literature, photogenerated holes in photocatalysts involve oxygen-
trapped sites in the lattice. Therefore, electrons can reduce Ti4+ to Ti3+, creating oxy-
gen vacancies in the photocatalyst lattice. Oxygen vacancies increase the affinity for
water as the surface becomes more hydrophilic [48]. Consequently, it is suggested that
Staphylococcus aureus (Gram (+)) and E. coli (Gram (−)) bacteria will present a greater ad-
hesion to the hydrophilic surface of the ZTO/TO hybrid photocatalyst, facilitating their
subsequent photoinactivation.

Furthermore, Figure 10 shows that the Cu-TTC/ZTO/TO semiconductor may offer
an alternative route to generate reactive oxygen species (ROS), which are critical in many
photochemical processes. As mentioned before, bandgap excitation under simulated
sunlight radiation generated conduction band electrons and valence band holes in the
semiconductor. In the following mechanism, it is proposed that the activation of molecular
O2 could proceed by accepting electrons from the conduction band of the semiconductor,
generating O2˙-. The production of H2O2, by disproportionation of O2˙- after protonation
(R1 and R2 reactions) is possible through a Fenton-like mechanism to provide ·OH radicals
(R3 and R4 reactions) [85]. Such a mechanism implies that Cu-TTC/ZTO/TO acts as a
catalyst to ultimately produce the highly reactive species during photocatalysis. These
reactive oxygen species (ROS), in particular ·OH (R3 and R4 reactions), are essential for
bacterial photoinactivation (R5 reaction).

O2˙- + H+ → HO2˙, (R1)

2HO2˙→ O2 + H2O2, (R2)

Cu+ + H2O2 → Cu2+ + ·OH + OH−, (R3)

H2O2 + O2˙- → ·OH + OH− + O2, (R4)

·OH or h+ + bacteria→ photoinactivation. (R5)

In our early reports, we demonstrated the presence of the Cu+ oxidation state with
some Cu2+ impurity in the Cu-TTC photoactive coordination complex [57]. Therefore, the
conduction band electron of the complex is also capable of activating molecular oxygen,
generating free or coordinated superoxo species, Cu2+-O2˙-, and then H2O2 (R1 and R2
reactions). In addition, according to the literature, Cu+ can significantly generate ·OH (R3
reaction), although it should be noted that bandgap excitation and R3 reaction generate
Cu2+ species. However, the recovery of Cu+ in Cu-TTC could be possible due to the
combination with the semiconductors ZnTiO3 and TiO2, with which it forms a type II
heterojunction [85].

5. Conclusions

This study demonstrated the effect of the type of radiation and the concentration/
composition of the photocatalyst on the photoinactivation process of S. aureus and
E. coli bacteria. Greater bacterial photoinactivation was observed in the light range of
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300–400 nm, using 25 mg/mL of photocatalyst Cu(C3H3N3S3)3/ZnTiO3/TiO2
(Cu-TTC/ZTO/TO) synthesized with a ratio (w/w%) 1:2 Cu-TTC:ZTO/TO. The faster
bacterial inactivation observed for the Cu-TTC/ZTO/TO samples relative to the ZTO/TO
and Cu-TTC samples is probably due to interfacial charge transfer (IFCT) between the
ZTO/TO and Cu-TTC surfaces, which leads to faster bacterial inactivation with respect to
ZTO/TO and Cu-TTC samples.

The results of this study suggest that light irradiation induces h+ in the ZTO/TO
valence band (VB) with high oxidative power. Electrons transferred from ZTO/TO to
Cu-TTC reduce oxygen. The oxygen reduction would proceed through a multi-electronic
process. Holes in the VB of ZTO/TO lead to bacterial inactivation. At the same time, Cu(I),
due to interfacial charge transfer (IFCT), reduces adsorbed oxygen and can act catalytically
under visible light, which also leads to bacterial inactivation. Therefore, it is suggested that
the Cu-TTC/ZTO/TO compound could offer an effective route to generate reactive oxygen
species (ROS), which are essential for bacterial photoinactivation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13010173/s1. Figure S1. Tautomeric structures of trithio-
cyanuric acid (TTCA); Figure S2. Anchoring modes of the tautomer-thione Cu-TTC molecule on the
surface of (a) ZnTiO3 and (b) TiO2.
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