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Abstract: To counter the rising threat of bacterial infections in the post-antibiotic age, intensive efforts
are invested in engineering new materials with antibacterial properties. The key bottleneck in this
initiative is the speed of evaluation of the antibacterial potential of new materials. To overcome this,
we developed an automated pipeline for the prediction of antibacterial potential based on scanning
electron microscopy images of engineered surfaces. We developed polymer composites containing
graphite-oriented nanoplatelets (GNPs). The key property that the algorithm needs to consider is
the density of sharp exposed edges of GNPs that kill bacteria on contact. The surface area of these
sharp exposed edges of GNPs, accessible to bacteria, needs to be inferior to the diameter of a typical
bacterial cell. To test this assumption, we prepared several composites with variable distribution of
exposed edges of GNP. For each of them, the percentage of bacterial exclusion area was predicted by
our algorithm and validated experimentally by measuring the loss of viability of the opportunistic
pathogen Staphylococcus epidermidis. We observed a remarkable linear correlation between predicted
bacterial exclusion area and measured loss of viability (R2 = 0.95). The algorithm parameters we used
are not generally applicable to any antibacterial surface. For each surface, key mechanistic parameters
must be defined for successful prediction.

Keywords: antibacterial; bacterial exclusion area; graphene flakes; algorithm; vertical

1. Introduction

Misuse of antibiotics and the global rise of antibiotic resistance is heralding a post-
antibiotic era in which humanity will need to find alternatives to classical antibiotics. One
venue that is being extensively explored is the discovery of new materials resulting in
surface structures with antibacterial properties. These comprise natural and artificial fab-
ricated surfaces. Natural biocidal surfaces include insect wings with nanopillars (cicada
wing [1–3]) and animal skins with nanostructures (shark and gecko skins [4,5]). In addition
to these, a variety of chemical and mechanical methods were used to replicate these natu-
rally occurring surfaces [6–9]. Nanostructures on metals such as Cu, Al, Ti, and Au [10–15],
TiO2 [16], silica and Al2O3 [17], black silicon [18], polymers [19], and nanocomposites such
as Ti/Au [20] and Ag/polylactide [21] are examples of these fabricated surfaces. All these
nanostructures have various mechanisms of antibacterial action but summarily result in
reduced attachment of bacterial biofilms. The key limitation in this process is our ability
to measure the antibacterial efficiency of newly developed surfaces rapidly and reliably.
Proper microbiology assays which involve assessment of cell viability are needed for this,
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and these typically require days to weeks. SEM imaging is a valuable tool to assess sur-
faces modified by nanostructures. However, the information that we can provide by SEM
observation is only qualitative information on the density and positioning of the flakes.

To address this bottleneck, we attempted to develop an automated pipeline for the
prediction of antibacterial potential of a surface based on scanning electron microscopy
(SEM) images. We propose that in order to be efficient, such algorithms cannot be overly
generic and must take into account a certain level of mechanistic understanding of the
antibacterial properties of the specific surface. To test this assumption, we developed an
example involving a polymer composite containing oriented exfoliated graphite nanoflakes,
recently reported by our group [7]. The orientation and density of distribution of exfoliated
graphite nanoplatelets within our polymer nanocomposite can be controlled in such a way
as to reduce bacterial viability by a factor of 99.9999%, which is currently the benchmark in
the field [7]. The key antibacterial property of this material is the density of sharp exposed
edges of exfoliated graphite flakes that are accessible on the surface and kill bacteria on
contact. The mechanism of interaction of graphene-based materials, including exfoliated
graphene, with bacterial cells includes mechanical damage, electron transfer, insertion,
lipid extraction, pore formation, and wrapping of cells [22]. Graphene material insertion,
lipid extraction, and pore formation are classified as mechanical damage to the cell. Lipid
peroxidation and electron transfer cause oxidative stress. Masking mode could also be the
underlying basis of the wrapping mechanism.

In general, larger size, sharper edge, and aggregation are advantageous to insert-
ing/cutting, lipid extraction, and pore formation modes, resulting in stronger destabiliza-
tion of membrane [23]. The size of graphene nanosheets positively correlated with the
extent of lipid extraction. Larger graphene flakes had more phospholipid extraction power,
thereby demonstrating stronger antibacterial activity compared to smaller flakes [24]. Small-
sized graphene materials induce oxidative stress because the density of defects increases
with reduction of the size of the materials [23]. The wrapping or masking mechanism
also requires large lateral size, specifically, of micrometer-sized graphene materials [25],
as smaller graphene could easily pierce the phospholipid membrane [26]. Wrapping can
basically be ruled out with nanoflakes embedded in a polymer matrix. The orientation of
graphene materials could also be engineered to confer superior antibacterial property [27].
Magnetic field and chemical vapor deposition methods are used to control the orientation of
graphene materials [28,29]. Our group demonstrated that vertically aligned graphene ma-
terials are more lethal for bacteria than randomly orientated ones [7]. This might be due to
the synergistic effect of physical puncturing of cell membrane and effective electron transfer,
as vertical graphene and cell membrane are in contact with each other efficiently [30].

In a nutshell, for a particular antibacterial surface to work, the surface area of sharp
exposed edges of exfoliated graphite flakes accessible to bacteria needs to be inferior to the
diameter of a typical bacterial cell (Figure 1).

To develop and test our predictor of the antimicrobial effectiveness of these poly-
mer nanocomposites, we devised an algorithm that analyzes SEM images of the surface,
identifies exposed (accessible) edges of exfoliated graphene, predicts bacterial exclusion
areas around the edges (based on bacterial diameter), and calculates the remaining area
available to bacterial cells (Figure 1). Next, we prepared six composite samples in which
the distribution and orientation of exfoliated graphite nanoflakes varied considerably, and
we measured the loss of bacterial viability on each surface. SEM images of those same
surfaces were randomly obtained and analyzed by our algorithm. The correlation between
predicted bacterial exclusion area and the measured loss of viability for each surface turned
out to be proportional, with an R2 coefficient of 0.95. An overview of the analysis presented
in this study is shown in Figure 1. We concluded that prediction of antibacterial potential
from SEM images is possible for this type of material. We argue that our approach is
generally applicable; however, for other types of surfaces, the approach will be valid only
if the antibacterial mechanism is understood well enough to include the key parameters in
the prediction.
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Figure 1. Overview of our comparison of prediction with experimental results. SEM image analysis
of the materials is the input. Antibacterial testing, based on counting of colony-forming units (CFUs),
can require days to weeks. Prediction based on SEM image analysis and assessment of bacterial
exclusion area is carried out in minutes. Predicted and measured antibacterial effect for each tested
surface is compared and correlated. Figure was created with BioRender.com.

2. Results and Discussion
2.1. Algorithm Predicts Bacterial Exclusion Areas from SEM Images of Composite Surface

We fabricated 6 polymer composite samples with varying density of graphene flakes
(5, 10, 15, 20%) sliced in a longitudinal (L) and/or transversal (T) direction (Table 1). For all
samples, SEM images were randomly obtained and submitted to computational analysis.
To assess the antibacterial property of the samples, software was developed to implement
an algorithm for predicting and quantifying the bacteria exclusion area, defined as a fixed
radius around each detected graphene edge (Figure 2). The algorithm identifies flake
edges (Figure 2a), identifies zones in which flake edges are vertically oriented and exposed
enough to have antibacterial effects (Figure 2b), defines the exclusion zone as a perimeter
around each edge that is not accessible to the bacteria (Figure 2c), and, finally, predicts the
bacterial exclusion area as a % of the surface not accessible to bacteria (Figure 2d). It should
be noted that the graphene-integrated area is not necessarily the same as the bacterial
exclusion area of the graphene-integrated polymer surface. In fact, the bacterial exclusion
area is the area where the attachment of bacteria is impossible due to the exposed edges of
exfoliated graphene, and not due simply to the presence of graphene within the polymer.
The boundary of bacterial exclusion area is determined based on geometrical assumptions
that the bacteria are not able to attach in the vicinity of these exposed sharp graphene edges.
Thus, the radius of the nonattachment area is determined based on the average size of
bacteria, which is 0.9 µm in the case of Staphylococcus epidermidis. The basic concept behind
the bacterial exclusion area in the algorithm is that the area with exposed sharp graphene
edges is a “killing zone” for bacteria since the graphene edges disrupt the membrane of
bacterial cells and thereby confer an antibacterial property to the material. The concept
might be generalized to other materials if they exhibit the same mechanism of physical
damage to bacterial cells as graphene.
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Table 1. Comparing loss of viability of S. epidermidis from entire surface with varying density of
graphene flakes (5, 10, 15, 20%) sliced in longitudinal (L) and/or transversal (T) direction. The average
of predicted bacterial exclusions was calculated from several images characterized by graphene flakes
randomly obtained at different magnifications. The generated outputs were measured using these
parameters: minimum_edge_area = 5 and exclusion_radius = 0.9. SEM images were obtained from
random positions on 8 different samples. The first four images from two samples have no proper
orientation. The loss of viability of S. epidermidis measured from whole surface of sample was
obtained from our previous study [7]. The data represent the mean ± SD of independent replicates
with repetitions.

Image
Contrast

Threshold for a
Valid Edge

Average of Predicted
Bacterial Exclusion
from Images from

Different Positions
in One Sample (%)

Magnification Measured Loss
of Viability (%)

M25-6.tif 50
9.73 ± 1.45

1000×
−16 ± 42.4

M25-2.tif 50 1000×
23.tif 80

20.61 ± 5.62
1000×

13.518 ± 19.49
11.tif 90 1400×

5%-L2.tif 40

35.97 ± 3.7

1000×

28.18 ± 7.3

5%-L-3.tif 40 500×
5%-L-5.tif 40 650×
5%-L1.tif 40 1000×
5%-L4.tif 20 1000×
5%-T1.tif 25

30.58 ± 0.58

2500×

40.80 ± 10.485%-T2.tif 15 5000×
5%-T4.tif 20 5000×
10%-L1.tif 30

61.85 ± 4.46

800×

61.12 ± 4.9
10%-L2.tif 28 800×
10%-L3.tif 20 1500×
10%-L4.tif 20 1500×
15%-T1.tif 25

73.85 ± 6.84

1500×

78.54 ± 7.98

15%-T2.tif 10 5000×
15%-T3.tif 25 1000×
15%-T4.tif 7 5000×
15%-T6.tif 12 2500×
20%-T1.tif 15

84.23 ± 5.33

2500×

94.51 ± 0.66

20%-T2.tif 8 5000×
20%-T3.tif 23 1000×
20%-T4.tif 10 2500×
20%-T5.tif 8 5000×
15%-L1.tif 30

89.86 ± 2.91

1000×

99.99 ± 0

15%-L2.tif 30 1000×
15%-L3.tif 22 1200×
15%-L4.tif 20 1200×
15%-L5.tif 25 800×
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Figure 2. Automated prediction of bacterial exclusion areas. (a) Detection of graphene flake edges,
(b) definition of areas with correct graphene orientation (marked in blue), (c) the exclusion zone
around each edge (dotted line with exclusion radius = 0.9 µm) that is not accessible to the bacteria
(tan disc shows a schematic S. epidermidis cell with 1.5 µm diameter), and (d) predicted bacterial
exclusion areas (marked in white) on the analyzed surface.

The software is available from this link: https://github.com/SysBioChalmers/bacter
ial-exclusion-prediction (created on 21 February 2023). There are different versions of the
software for different operating systems, such as Linux, MacOS, or Windows, that can be
installed as explained in the installation section. The input for the algorithm is an image in
“tif” format. The software makes use of Tesseract, a robust text recognition algorithm [31],
and can automatically read the text showing the magnification written on SEM images.
Thus, the software can adapt the results to the scale and the estimated size, provided in
µm, of the flakes.

https://github.com/SysBioChalmers/bacterial-exclusion-prediction
https://github.com/SysBioChalmers/bacterial-exclusion-prediction
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Several parameters can be controlled in the “Bacteria exclusion” section of the web
interface. One can adjust the contrast threshold and the minimum area (pixel2) for identify-
ing an edge. The radius around the graphene edge (µm) to exclude bacteria can also be
adjusted to accommodate bacterial cells of different sizes or shapes [23]. We recommend
using images with magnification between 1000×–2500×. The algorithm can be run in batch
mode, allowing the user to specify a directory from which all existing images are analyzed
together, and the output is stored inside an automatically generated subdirectory, “output”,
so as not to clutter the working directory.

Flake sharpness, properly oriented flakes, and predicted areas contributing to bacterial
exclusion from the surface could be visualized in the algorithm output files, including
“edge_sharpness.png”, “graphene.png”, and “bacteria-exclusion.png” files, respectively
(Figure 2a, Figure 2b, and Figure 2d). The “edge_sharpness.png” is derived by calculating
the sum of the absolute contrast for each pixel in each of the four directions (as explained in
the section covering the bacterial exclusion area in Materials and Methods). This provides
an image of the sharpness at each pixel. The “graphene.png” image is derived from the
contrast by using a threshold and then identifying connected regions. These regions, or
flakes, are then filtered by minimum area to remove smaller noise. Finally, the “bacteria-
exclusion.png” image is created by calculating if the distance to the closest flake is below a
threshold or not. The algorithm also visualizes the percentage of excluded bacteria area
(the percentage of white pixels in Figure 2d) in relation to the terminal.

2.2. Predicted Bacterial Exclusion Areas Correlate Well with Experimental Measurements of
S. epidermidis Viability

The percentage of bacterial exclusion areas predicted by the algorithm was compared
to measured antibacterial effects for all tested surfaces [7]. While the CFU counting method
provides an aggregate measure for the entire tested surface (typically a sample area of
0.5 cm2), for practical reasons, the algorithm prediction was obtained from a sample of SEM
images that are representative, but do not cover the entire sample surface (5 SEM images
from random positions, covering a total area of 0.1–0.2 mm2). The average % of bacterial
exclusion from these SEM images was compared with the measured aggregate % of loss
of viability. As shown in Figures 3–5, to obtain the proper bacterial exclusion value, the
user is required to adjust the “contrast threshold for a valid edge” to cover all the flakes, as
indicated in Table 1. It is recommended to choose a lower contrast threshold, in the range
of 7–25, for images with higher magnification (2500×–5000×) (Table 1). However, a higher
contrast threshold, of 20–40, would be required for images obtained at lower magnification
(500×–1500×) (Table 1).

As we previously investigated [7], the ratio of graphite nanoplatelets to total surface
was significantly different among longitudinally (L) and transversally (T) sliced sam-
ples with ≥15% integrated graphite nanoplatelets. The ratio of graphite nanoplatelets to
total surface was significantly higher in longitudinally (L) sliced samples compared to
transversally (T) sliced samples with the same density of graphite nanoplatelets used for
fabrication. Subsequently, there was an clear difference in loss of Staphylococcus epidermidis
viability among these samples, as longitudinally (L) sliced polymers with ≥15% graphite
nanoplatelets showed higher loss of viability compared to the transversally (T) sliced sam-
ples. Thus, the increased ratio of graphite nanoplatelets to total surface in longitudinally (L)
sliced polymers could result in increased loss of viability. Interestingly, these results were
clearly reflected by our prediction and, as it was shown (Table 1), the average predicted
bacterial exclusion of 15%-L images was 89.86% ± 2.91%, which was significantly higher
than that of 15%-T images (73.85% ± 6.84%).
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Figure 3. Prediction of areas contributing to bacterial exclusion from 2 different images at different
magnifications from 5%-L and 5%-T samples. Proper graphene-oriented areas on original image
(left) marked in cyan (middle) and predicted bacterial exclusion areas marked in white (right) on
the surface of samples. The original images were adapted with permission from Ref. [7]. 2023, Shadi
Rahimi.



Nanomaterials 2023, 13, 1605 8 of 14

Nanomaterials 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 

(left) marked in cyan (middle) and predicted bacterial exclusion areas marked in white (right) on 

the surface of samples. The original images were adapted with permission from Ref. [7]. 2023, Shadi 

Rahimi. 

 

Figure 4. Prediction of areas contributing to bacterial exclusion from 2 different samples of 10%-L 

and 15%-T. Two images at random locations and at different magnifications were obtained from 

each sample. Original image is shown on left, proper graphene-oriented areas on the surface of 

samples are marked in blue in middle image, and predicted bacterial exclusion areas are marked in 

white on the right side. The original images were adapted with permission from Ref. [7]. 2023, Shadi 

Rahimi. 

Figure 4. Prediction of areas contributing to bacterial exclusion from 2 different samples of 10%-L
and 15%-T. Two images at random locations and at different magnifications were obtained from each
sample. Original image is shown on left, proper graphene-oriented areas on the surface of samples
are marked in blue in middle image, and predicted bacterial exclusion areas are marked in white on
the right side. The original images were adapted with permission from Ref. [7]. 2023, Shadi Rahimi.
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Figure 5. Prediction of areas contributing to bacterial exclusion from 2 different samples of 20%-T
and 15%-L. Two images at random locations and at different magnifications were obtained from each
sample. Original image is shown on left, proper graphene-oriented areas on the surface of samples
are marked in blue in middle image, and predicted bacterial exclusion areas are marked in white on
the right side. The original images were adapted with permission from Ref. [7]. 2023, Shadi Rahimi.
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As indicated in Table 1, the average % of bacterial exclusion area predicted by the
algorithm matches the trend of the measured loss of viability of S. epidermidis cells in all
six samples. In addition to the six samples, we have included the first two samples in
Table 1. The surfaces of the latter have no proper orientation and show low loss of viability.
High heterogeneity on the surface of these samples results in high standard deviation in
measured loss of viability; thus, we excluded them from the correlation plot. Based on
the results from Table 1, a linear correlation plot was drawn for the predicted bacterial
exclusion versus measured loss of viability of S. epidermidis (Figure 6). The predicted
bacterial exclusion and the measured loss of viability of S. epidermidis correlate extremely
well, with an R-squared value (R2) of 0.95. Our conclusion was that the algorithm can be
used to provide reliable estimates of antibacterial protection offered by this specific type of
composite surface.
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Figure 6. The linear correlation plot for the predicted bacterial exclusion versus measured loss of
viability of S. epidermidis.

3. Conclusions

In this study, we propose that the key parameter for the antibacterial activity of this
type of material is the density of distribution of sharp exposed edges of exfoliated graphite
flakes that are accessible on the surface and can kill bacteria on contact. Based on this
assumption and using SEM images of the surface, we designed an in silico predictor of
the antibacterial potential of various exfoliated graphite nanocomposites. The predictor
demonstrated a very strong correlation between the actual antibacterial potential of dif-
ferent surfaces (measured experimentally) and the density and orientation of exposed
nanoflakes. We propose that the presented approach has the potential to drastically speed
up the investigation of new materials with integrations with the potential to prevent bacte-
rial attachment. Thus, it is possible to devise an algorithm that can automatically detect key
surface properties from SEM images and, based on this, accurately predict the potential of
the surface to offer antibacterial protection. Such in silico predictions based on SEM images
can be used to screen a large number of materials before selecting the most promising ones
for antibacterial testing (which typically lasts from days to weeks). While we would like to
argue that this approach can be of general utility in the field of antibacterial surfaces, we
wish to stress that its proper use critically depends on two factors. Firstly, the antibacterial
mechanism of the given surface must be sufficiently understood to program the algorithm
to recognize the key surface properties. In the presented case, these key features were
the orientation and distribution of exposed graphene edges. Secondly, the uniformity of
the surface features across the entire sample may play a key role. For materials with less
uniform features, it would be advisable to cover larger areas with SEM analysis, which
may constitute a tradeoff regarding time (acquisition of SEM images) and computational
resources. Within these limits, we would argue that the presented approach has the poten-
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tial to speed up the investigation of new materials with integrations with the potential to
prevent bacterial attachment and curb bacterial infections [4].

4. Materials and Methods
4.1. Polymer Integration with Graphene Nanoplatelets and Scanning Electron Microscopy
(SEM) Imaging

The low-density polyethylene (LDPE) graphene nanoplatelet nanocomposites were
prepared as described previously [7]. LDPE was utilized as the composite matrix. M25
graphene nanoplatelets from 2D Fab (Sweden) with average particle diameter of 25 microns
and thickness of 6–8 nm were used as a filler. LDPE pellets were cryogenically ground into
powder form and mixed with well-dispersed and homogenized suspension of graphene
nanoplatelets with acetone. This process was followed by drying at 60 ◦C. Then, the extru-
sion process of nanocomposites was carried out using a circular die by Brabender 19/25 D
single-screw extruder (Duisburg, Germany) by means of a compression screw (diameter
D = 19 mm and screw length of 25 × 19, compression ratio 2:1). Samples for antibacterial
analysis and SEM imaging were collected. SEM imaging was performed randomly from
the entire surface using Supra 60 VP microscope (Carl Zeiss AG, Oberkochen, Germany).

4.2. Evaluation of Antibiofilm Potential

The antibacterial activity of graphene-integrated materials was tested against the
opportunistic bacterial pathogen S. epidermidis as a model for Gram-positive bacterium [7].
The overnight culture of S. epidermidis bacteria was diluted in fresh tryptic soy broth (TSB)
(Sigma Aldrich, Stockholm, Sweden) to obtain the final inoculum of 2–5 × 106 CFU/mL
and seeded in the pre-sterilized integrated and nonintegrated surfaces. Samples with
bacterial inoculum were incubated at 37 ◦C for 6 h without agitation for the formation of
biofilms. After 24 h of growth, samples were collected in 5 mL of 0.89% of sodium chloride
solution for viability test. The biofilms were detached from the surface and homogenized
by sonication probe at 10% for 30 s. The homogenized biofilm suspensions were serially
diluted into 0.89% of sodium chloride solution and plated onto the LB agar plates. Agar
plates were incubated at 37 ◦C for 24 h and the number of colonies was counted. The
number of colonies grown on integrated surfaces divided by the number of colonies grown
on control nonintegrated surfaces multiplied by 100 were expressed as the percentage of
viability; 100 minus the percentage of viability equals percentage of loss of viability.

4.3. Development of SEM Image Analysis Algorithm

A software implementing an algorithm for analyzing SEM images from surfaces with
graphene orientation was developed. The algorithm was written in the Rust programming
language (rust-lang.org) (accessed on 20 June 2022). The algorithm is packed with a
graphical user interface for simple parameter testing and a batch analysis feature for
efficient screening through a web interface which can be reached through http://127.
0.0.1:8080 once the algorithm is up and running. The software is available from this
link: https://github.com/SysBioChalmers/bacterial-exclusion-prediction (created on 21
February 2023).

4.4. Bacterial Exclusion Area Determination

The source pictures for the analysis were obtained by means of SEM at the fixed
settings. Due to different surface topology and conductivity (due to different conductive
filler dispersion), the pictures had different values of contrast and brightness. All source
pictures were provided in 8-bit pixel form (values ranging from 0 to 255).

The bacterial exclusion area is the area where the attachment of bacterial film is
impossible. It is determined, based on geometrical assumptions, that the bacteria will not
be able to attach in the vicinity of the sharp graphene edge. The radius of nonattachment is
determined by the average size of bacteria; for example, S. epidermidis size was determined
as 0.9 µm.

http://127.0.0.1:8080
http://127.0.0.1:8080
https://github.com/SysBioChalmers/bacterial-exclusion-prediction
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The algorithm operates as following:
1. Graphene edge detection. This procedure searches for the “sharp” contrast area

in the image. Pixel intensities, I, of surrounding pixels were obtained and the absolute
intensity difference of pixels positioned opposite from each other with respect to the
analyzed pixel was averaged as shown in Figure 7. Value ranging from 0 to 255 was
obtained for each pixel, which represents the “absolute” gradient of the intensity of the
image and is denoted as C further on:

C =
1
4
(|IN − IS|+ |IW − IE|+ |INW − ISE|+ |INE − ISW |) (1)
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2. Thresholding is carried out by filtering pixels with a preset value of intensity C0.
This value can be set by user. Binary image is the output of this operation.

3. Denoising is performed according to the following subroutine:

a. The binary image enables us to define groups of connected white pixels isolated from
other pixels by black pixels as individual groups. Each group represents a detected
graphene flake.

b. Calculation of the area of each group by counting the pixels in the group.
c. Remove group if the area is below a threshold set by the user.

4. Calculation of the Euclidean distance for every pixel of the image to the closest
white pixel. Next, the threshold determined by the size of the bacteria is applied to the
calculated value. This operation results in a binary image.
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