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Abstract: The review is devoted to the methods of introducing aryl functional groups to the CNT
surface. Arylated nanotubes are characterized by extended solubility, and are widely used in
photoelectronics, semiconductor technology, and bioelectrocatalysis. The main emphasis is on
arylation methods according to the radical mechanism, such as the Gomberg–Bachmann and Billups
reactions, and the decomposition of peroxides. At the same time, less common approaches are also
considered. For each of the described reactions, a mechanism is presented in the context of the effect
on the properties of functionalized nanotubes and their application. As a result, this will allow us to
choose the optimal modification method for specific practical tasks.

Keywords: carbon nanomaterials; semiconductor nanotubes; metal nanotubes; carbon nanotube
functionalization; Gomberg–Bachmann reaction; Billups reaction

1. Introduction

Carbon nanotubes (CNTs), a present-day material discovered in 1993 [1], are widely
used in various fields of human activity. Numbers of different CNTs forms have been
obtained [2]. CNTs division is of the utmost interest, that depends on the number of
layers (single-walled, double-walled, and multi-walled), as well as on the structure type
(armchair”-like and zigzag), which affects the conductivity type (metallic and semiconduc-
tor, respectively) [3–5]. These types of nanotubes are the most notable for their properties.
Due to the strong van der Waals interaction between aromatic systems, CNTs “stick to-
gether” into dense aggregates, making them almost insoluble, thus it significantly compli-
cates the composite materials generation based on them. The use of various methods of
CNT surface functionalization has been proposed to solve this problem, thereby weakening
intermolecular interactions. The development of CNT functionalization methods has also
enabled the extension of the application area due to a greater variety of CNT properties.
A number of reviews [6–18] present data on this topic; however, most of them describe
the CNTs’ chemistry generally. Although several reviews on specific methods of CNT
functionalization have been published over the last few years [14,18–21], not all sections of
CNT chemistry have been covered in sufficient detailed [22–24]. Moreover, a number of
new studies require analysis and reflection.

The purpose of this work is a critical analysis of the CNT surface functionalization
methods by aryl fragments to determine their effect on the properties of modified nanotubes.
This reaction class has been chosen due to the wide application areas of arylated nanotubes,
both by themselves and for further modification. At the beginning, various methods
of arylation and their mechanisms are described in the context of the influence of test
conditions on the structure and properties of functionalized CNTs. This is followed by
a summary of the properties of nanotubes functionalized by aryl fragments, and their
application.
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2. Methods of Introducing Aryl Fragments to the CNT Surface
2.1. The Gomberg–Bachmann Reaction

Arylation by the Gomberg–Bachmann reaction with diazonium salts (Figure 1) is
the most common method of modifying the surface of carbon nanomaterials. There is a
number of publications on this topic [20–23]; therefore, we do not intend to compile an
exhaustive review of it. This article emphasizes the data analysis of the reaction mechanism
and various CNT modification methodologies since these aspects play an important role in
the practical application of the Gomberg–Bachmann nanotube functionalization.
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Figure 1. Scheme of CNTs arylation by the Gomberg–Bachmann reaction with diazonium salts.

Diazonium salts are unstable in solution and extremely explosive in dry form, ex-
cluding some complex fluorides, aryl sulfonates [25], and o-benzene disulfimides [26].
Aqueous solutions of arylenediazonium borofluorides are most commonly used for the
arylation of CNTs. Their functionalization is carried out either electrochemically [27] or
due to the spontaneous decomposition of diazonium cations [28]. However, this approach
has a number of disadvantages. CNTs are dispersed in water with the use of SDS, which
certainly bind to nanotubes due to the strong hydrophobic interactions, and this is not
always acceptable in a number of areas, such as electrochemistry and bioelectrocatalysis.
Furthermore, arylenediazonium borofluorides are poorly soluble in water.

The production of arylenediazonium in non-aqueous media in situ is also widely used,
this is achieved by the reaction between isoamyl nitrite and aromatic amine. However, this
approach is not environmentally friendly, as well as the dispersibility of native nanotubes
in organic solvents does not meet the requirements. The reaction has been proposed to be
carried out in a two-phase water-isoamyl nitrite system [29], but this approach does not
solve most of the problems.

The study [30] suggests a Gomberg CNT functionalization without the solvents. The
technology is eco-friendly and can be easily scaled for the industrial use. Arylation takes
place in a mixture of amine and isoamyl nitrite when heated to 60 degrees and extensively
stirred. At the same time, CNTs are exfoliated from their aggregates by the mixing and
under the influence of aryl radicals. Alkyl nitrite can be substituted with sodium nitrite
in the presence of acid. These are CNT bundles that undergo functionalization, but not
particular nanotubes. Nevertheless, solubility after functionalization increases significantly.

Triazenes are proposed to be used as an alternative to arylenediazonium borofluorides
due to their greater stability and solubility in water [31]; however, the use of surfactants is
also necessary to create CNT dispersion. Alternatively, a solid-phase reaction can be consid-
ered between CNT salts obtained by fusion with metallic potassium and arylenediazonium
borofluorides. It is technically difficult and does not solve the instability problems of
some borofluorides, although it allows increasing the selectivity of nanotubes with metallic
conductivity [32].
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The study [33] has shown that mechanochemical arylation of CNTs by Gomberg–
Bachmann is possible by grinding nanotubes with arylenediazonium salts in the presence
of ionic liquids based on imidazolium and potassium carbonate at room temperature
for several minutes. The reaction is environmentally friendly, while the nature of the
arylenediazonium cation and its counterion does not affect the degree of functionalization.
It seems most promising to carry out arylation using a urea melt as a solvent, in which
nanotubes are perfectly soluble without exposure to ultrasound, and diazonium cations
can be obtained by the interaction of aromatic amine with sodium nitrite [34–37]. This
approach is also highly environmentally friendly.

There is still no consensus on the detailed mechanism even for the classical Gomberg–
Bachmann reaction; nevertheless, there have been attempts to describe the mechanism
of CNT arylation, mainly for aqueous CNT dispersions in the presence of surfactants at
different pH values [38–42]. The radical nature of the mechanism has been confirmed
by the fractional order of the reaction, and the ability of free radical traps to stop the
reaction [39]. The formation of an aryl radical from a diazonium cation can occur either due
to spontaneous decomposition or due to reduction by a carbon nanotube (Figure 2) [39].
The first mechanism is typical for an alkaline medium, as confirmed by the absence of
nucleophilic addition on the CNT surface [38]. The authors of [33] have proposed the second
mechanism for an acidic medium, but there is no direct evidence of the formation of CNT
cation radicals. The EPR spectrum signal from radicals with high electron delocalization
can be correlated with aryl-CNT radicals formed at the next stage. At the same time, this
study shows that metal nanotubes play the role of catalysts, due to the active reduction of
arylenediazonium cations. There is no data about a side effect of the nucleophilic addition
of fluoride or hydroxide ions, which should actively proceed with nanotube cations. This
fact raises many questions.
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Figure 2. The formation of aryl radicals from arendiazonium salts: (a)—decomposition of diazonium
salts in an alkaline medium. (b)—a one–electron reduction of the CNT diazonium cation by the type
of the Zandmeir reaction in acidic media.

The occurring aryl radicals attach to nanotubes, reacting as electrophiles. Due to this
fact, there can be observed both the selectivity to CNTs with a metallic type of conductivity
and a higher reaction rate of aryl radicals with acceptor substituents [39]. The resulting
aryl-CNT radicals react with diazonium salt, while the structure is stabilized. In the acidic
media, a nucleophile from the solution should be attached to the CNT; however, no data
confirming this could be found in the literature (Figure 3). The aryl fragment is split off
from the nanotube if there occurs no addition of the diazonium cation to the aryl-CNT
radical. This has been shown by measuring the electrical conductivity of nanotubes during
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the reaction. Electrical conductivity increases after the termination of the reaction, which is
explained by the cleavage of a part of the aryl groups [40].
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Studies [41,43], based on Raman spectroscopy data, state that the selectivity of Gomberg
arylation is due to the formation of an intermediate with charge transfer from the arylene-
diazonium cation to the nanotube. Schmidt et al. [39] have shown that free radical traps
stop the functionalization of nanotubes, which indicates the presence of phenyl radicals in
free form. Further, the formation of a charge transfer complex contradicts the mechanism
determined by GC-MS and X-ray fluorescence analysis [38].

Adding diazonium cations in small portions has been suggested to achieve a high
degree of arylation selectivity [43]. The attachment of a radical to the CNT surface facilitates
the arylation of neighboring positions, due to which the selectivity to metal nanotubes
increases. The study [44] confirms this fact and shows that the selectivity completely
disappears at a high concentration of the diazonium cation in solution.

The Gomberg–Bachmann reaction shows selectivity both to the type of CNT conductiv-
ity, and to their diameter, but the data is contradictory. Studies [41,45] report that arylation
proceeds more easily for CNTs of smaller diameter, while the publications [39,42] observe
the opposite effect. The authors of [39] explain these differences by using surfactants of
different natures. This hypothesis requires further studying and confirmation. It should be
also noted that long chains of benzene rings are attached due to the radical reaction during
the arylation of CNTs [46].

Information about side reactions is also contradictory. On the one hand, GC-MS analy-
sis of the filtrate has not revealed the presence of polynuclear aromatic hydrocarbons [38].
On the other hand, the study [47] has treated Gomberg–Bachmann arylated nanotubes
with repeated washing by different solvents and has observed the fluorescence of washing
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waters due to by-products of the reaction. Considering the adopted to-date reaction mech-
anism, there are no theoretical prerequisites for the absence of side processes, unlike the
Billups reaction discussed below. Further research is required to give a decisive answer to
the question of the purity of Gomberg–Bachmann functionalized CNTs.

2.2. Billups Reaction

The reductive arylation of CNT salts with various reagents (the Billups reaction and its
modifications) is of great interest. It has been shown since 1997 that an electron is transferred
from a metal atom to carbon when CNTs are fused with alkali metals [48]. Due to Coulomb
repulsion, CNT salts with alkali metals have high spontaneous solubility—up to 2 mg/g
in DMSO and DMF, and up to 4 mg/g in sulfolane; moreover, the solutions are stable for
up to a year and resemble properties of polyelectrolytes in an inert atmosphere [49,50].
The addition of dibenzo-18-crown-6 increases solubility, due to complexation with sodium
ions [51]. Further, there is no need to use ultrasound, which destroys the structure, when
preparing solutions of CNT salts [52–55].

CNT salts can be obtained by several methods (Figure 4), interaction with an alkali
metal solution in liquid ammonia is the most common [52,53,56–70], and lithium is mostly
used. Alkali metal is embedded inside CNTs, lithium can also form covalent bonds with
carbon atoms [69], and alkali metal is possible to be embedded between the layers of tubes
with subsequent arylation/hydrogenation of the inner tubes in the case of CNTS [71].
The functionalization degree may be controlled by maintaining an optimal metal-carbon
ratio [72]. The study [56] has shown that the nature of the alkali metal does not affect the
course of arylation; however, the research [52] states that the degree of functionalization,
determined thermogravimetrically, increases in the Na-Li-K series. Furthermore, the
addition ratio between 1,4 and 1,2 differs [53]. There is not enough research on this issue,
so it requires further studying.
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The reaction in THF with alkali metals in the presence of electron–carrying catalysts,
such as naphthalene [61,72–76], benzophenone [74], or 4,4’-di-tert-butylbiphenyl is another
commonly used method of obtaining CNT salts [77]. However, the reaction product turns
out to be a contaminated catalyst since it is difficult to remove it due to the strong stack
interactions with CNT. This can lead to deterioration of the electrochemical properties of
CNTs. Several studies use butyllithium or another lithium alkylide in cyclohexane or THF
to produce CNT salts [66,78–84]. However, in this case, alkyl radicals are also sewn onto the
surface of CNTs in addition to aryl ones. The fusion of CNTs with alkali metals in an argon
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atmosphere [32,55,85,86] or interaction with sodium amalgam in toluene in the presence of
dibenzo-18-crown-6 is less common due to the technical complexity [51]. It has also been
proposed to replace liquid ammonia with ethylenediamine, but this approach has not been
widely used [58,87]. The mechanochemical modification of CNT [88] is of interest since this
method can be easily scaled. CNT, metallic potassium, chlorobenzene, and a ball are placed
in a steel capsule, then the mixture is mixed in a planar mill in a nitrogen atmosphere.
Excess potassium is removed by reaction with isopropanol. The functionalized nanotubes
have increased solubility in chloroform, methylene chloride, toluene, and dichlorobenzene.

Aryliodides are mostly used for the arylation of CNT salts [55–57,72,73]; therefore,
their interaction with CNT has been studied in full detail. Thus, it is shown that the degree
of functionalization is higher if there are donor substituents in the aryl radical [56]. Reduc-
ing arylation proceeds more easily for nanotubes of smaller diameters [62]. The study [65]
proposes a reactor to produce alkylated and arylated nanotubes by the Billups–Birch reac-
tion on a semi-industrial scale. It has been shown [63] that careful mixing of the reaction
mixture is necessary to obtain reproducible results during synthesis in this reactor. Strong
cooling slows down the formation of lithium amide, which leads to more accurate compli-
ance with the stoichiometric lithium–carbon ratio, thereby increasing the reproducibility of
the properties of modified CNTs, as well as the degree of their functionalization. Removal
of the residual amount of iron catalyst, for example, by chlorination, leads to an increase in
the functionalization degree, since iron catalyzes the decomposition of solvated electrons.

The synthesis of electrically conductive polymers is proposed by the interaction of
CNT salts with paradiodobenzene and paradiodobiphenyl, alongside benzene-4,4′-bis (dia-
zonium) and 1,1′-biphenyl-4,4′-bis (diazonium) [55] (Figure 5). The most effective function-
alization occurs using aryliodides as regards the volume of homogeneous functionalization
and the functionalization degree. Phenylene linkers give a greater functionalization degree,
while biphenyl linkers provide a larger surface area and improved electrochemical proper-
ties. The maximum degree of functionalization has been achieved with a stoichiometric
ratio of potassium: carbon 1:4.
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dides.

Using aryliodides as arylating agents leads to the fact that functionalized CNTs turn
out to be contaminated by-products of a combination of radicals that are difficult to re-
move. This has been shown by analysis of GC-MS filtrate after alkylation of CNT [52,59].
Alkylation is carried out with other reagents (Figure 6), such as peroxides [52,64,74], cyclic
halides [64], sulfides and disulfides [68], carbonyl compounds [66], acetylenes [80], diazo-
nium salts [32,55,89] and iodonium [76] to solve this problem. The free radicals formed
from these compounds give unstable combination products that immediately disintegrate.
This is proved by GC-MS analysis of the filtrate regarding cyclic halides [64]. The use
of carbonyl compounds is of particular interest. Unlike peroxides, sulfides, and cyclic
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halides, they are more accessible and more reactive than aromatic acetylenes. The reac-
tion cannot be carried out in liquid ammonia, since the carbonyl group is reduced in this
case. The activity of carbonyl compounds in this reaction depends on the stability of the
intermediate-formed carbocation [66]. The disadvantages of this approach include a low
functionalization degree.
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The common disadvantage of alkylation and arylation reactions by Billups is a side
hydrogenation process, occurring during both the reaction [58] and the decomposition
of the reaction mixture with ethanol [58,71,73,90]. The hydrogenation degree depends
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on the used solvent and decreases in the set of liquid ammonia > ethylenediamine >
THF [90]. The use of sodium amalgam in the crown ether for the synthesis of CNT salts
reduces the hydrogenation degree even more. This approach is difficult to scale, and the
functionalization degree is lower than other methods [56]. The use of ethylenediamine
as a solvent is of the greatest interest, since there is no contamination of functionalized
CNTs with catalysts in this case, as in the synthesis of CNT salts in THF and hydrogenation
occurs to a lesser extent than in liquid ammonia.

2.3. Reactions with Peroxides and Related Compounds

Thermal decomposition of benzoyl peroxide is widely used for CNT phenylation [91–96].
The reaction has been carried out in boiling benzene (o-chlorobenzene) [91,92,94] in an
argon atmosphere or boiling toluene [93] in the air. Despite the higher boiling point of
toluene and the same ratio of reagents, the study [93] shows a lower functionalization
degree than others (Table 1). This results from the fact that oxygen reduces the concentration
of free radicals formed during the decomposition of benzoyl peroxide.

Table 1. Effects of reaction conditions on the degree of CNT functionalization.

Peroxide Solvent Atmosphere Time (Hours) Mole Ratio
(C:peroxide)

Functionalization
Degree (C:group) Ref.

benzoyl peroxide toluene air 9 1:0,83 1:36 [93]

benzoyl peroxide benzol argon 24 1:1 1:14 [91]

benzoyl peroxide benzol argon 2 1:1 1:18 [94]

A solid-phase reaction is also described [96]. Other peroxides can be used in addition
to benzoyl peroxides, such as p-methoxybenzoyl peroxide or phthaloyl peroxide [92].
Peroxides can also be used as initiators of radical reactions with other compounds, for
example, aryl and alkyl iodides [91]. Phenylated nanotubes can also undergo further
functionalization, e.g., sulfonation in oleum to increase their solubility in water [94].

The mechanism of CNTs’ interaction with organic peroxides has been studied in
several studies [92,93,95]. Engels et al. [91] have shown that thermolysis of peroxides
occurs faster in the presence of CNTs, and catalysis occurs due to interaction with CNTs
but not because of the trace amounts of iron remaining after the nanotube synthesis.
A similar effect is observed when benzoyl peroxide is decomposed in ethanol at room
temperature [95]. The analysis of the ethanol solution carried out after the completion
of the reaction by the GC-MS method has not revealed the products of phenyl radicals’
combinations with each other or with a solvent. The formation of free radicals from carbon
nanotubes has also been proved by the EPR method. The mechanism explaining these
processes is shown in Figure 7 [92].

CNTs reduce peroxides to radical anions, which immediately undergo the breaking
of O-O bonds. The radicals rapidly react with the cation radicals of the nanotubes after
decarboxylation, and functionalization occurs. In the study [93], the PMR method has
shown that phenyl radicals are attached to CNTs; thus, benzoyl peroxide first cleaves off
carbon dioxide, and only then reacts with CNTs. At the same time, the photoluminescence
of arylated nanotubes has determined the presence of phenyl groups attached via oxygen
bridges [97]. Photoluminescence is much more sensitive than PMR spectroscopy; therefore,
phenyl fragments, sewn to CNTs through an oxygen bridge, are probably negligible.

Reactions of CNT arylation by structural analogs of peroxides have been described,
which apparently proceed by a similar mechanism. Phenyl radicals have been sewn through
a sulfide bridge by boiling CNTs with a twofold excess of organic disulfide in toluene
for 48 h without oxygen [98]. The degree of functionalization has reached 1 functional
group per 39 carbon atoms, which is 2 times lower for a similar reaction with benzoyl
peroxide. Thus, disulfides are less reactive arylating agents, meanwhile, they enable the
introduction of sulfur-containing functional groups onto the surface of nanotubes. This
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specific feature can play an important role both in the further functionalization of CNTs
and in the immobilization of gold or silver nanoparticles.
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Wong et al. [99] have shown that CNT can be joined by radicals formed from hexaphenyl-
disilane under the action of mercury-xenon lamp light. The reaction is selective to CNTs of
small diameter with semiconductor conductivity.

2.4. Other Arylation Methods

There is a report on the use of the Ullmann reaction for the arylation of CNTs [100].
Initially, CNT has been chlorinated by reacting with iodine trichloride in tetrachlorocarbon
for 3 hours. Chlorinated CNTs have reacted with iodobenzene, phenol, or aniline in
the presence of cesium carbonate, copper chloride 1, and phenanthroline in DMF, at
120 degrees for 2 days. The functionalization degree has reached 3.5 mmol/g. It is shown
that functionalization proceeds best for CNTs of smaller diameters.

CNT has been proposed to be arylated with 4-methoxyphenylhydrazine hydrochlo-
ride by boiling in toluene in an oxygen medium [101] or irradiating with microwave
radiation. This turns out to be more effective [102]. Arylated CNTs are better soluble in
o-chlorobenzene. CNT modification with phenylhydrazine by interaction in an aqueous so-
lution in the presence of SDS for 2 days has also been described [103]. Covalent crosslinking
with CNT walls is proved by Raman spectroscopy. The authors do not propose a reaction
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scheme or any product structure. Solubility has increased in modified CNTs, elemental
analysis has shown nitrogen concentration growth.

The study [104] shows the possibility of introducing triphenylphosphine groups to the
CNT surface. Initially, the Gomberg–Bachmann arylation of CNTs with p-bromaniline has
been performed. Then, the interaction with lithium diphenylphosphide has been carried
out. Various physicochemical methods characterize the product. It is shown that a lot of
carbon is formed during thermal decomposition, which can be used in extinguishing fires.

2.5. Alternative Methods of Introducing Aryl Groups to the CNT Surface

The cross-linking of aromatic hydrocarbons with nanotubes via a carboxamide bond
and cycloaddition reactions do not belong to traditional arylation methods, nevertheless,
they allow introducing aromatic fragments onto the CNT surface. Therefore, they can be
used to solve the same problems. The production of aromatic amides from CNTs has a
number of disadvantages: the multi-stage nature of the process, the strong destruction
of the CNT structure, as well as the crosslinking of aryl groups mainly with edge carbon
atoms. This characteristic does not allow to get a high functionalization degree; thus, the
main focus is paid to cycloaddition reactions in this section (Figure 8). There has been a
short review published on them [13]. This approach to the functionalization of the nanotube
surface is used less commonly than others, due to the inaccessibility of precursors, though
there are exceptions: the cycloaddition of anthracene or dimethylanthracene [99,100].
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The studies [105,106] have modified CNT with a mixture of aldehyde and a primary
amine, from which a Schiff base has been formed directly in the reaction mixture, being
attached to CNT by the 1,3-cycloaddition reaction. Functionalized CNTs are highly soluble
in chloroform, methylene chloride, acetone, methanol, ethanol, and water, less soluble in
toluene and THF, and practically insoluble in less polar solvents, including diethyl ether
and hexane. The solubility in chloroform has reached 50 mg/mL without ultrasound
treatment. The functionalization degree has been estimated by the absorption spectra in
the UV region, it has represented 1 group per 95 carbon atoms.

The Diels–Alder cycloaddition is also described for CNT. Nanotubes can act both as
dienes and as dienophiles [107]. However, their activity is low in these roles; therefore, it is
necessary either to introduce acceptor groups by fluorination or oxidation [108,109], or to
use active reagents for the reaction [109,110]. The authors of [111] propose to carry out the
reaction at elevated pressure in the presence of chromium hexacarbonyl, which increases
the activity of dienes. Single-walled carbon nanotubes are more active in the Diels–Alder
reaction than multi-walled ones, which is due to the high annular deformation of single-
walled nanotubes [110]. The disadvantages of this approach include high energy costs and
contamination of functionalized CNTs with chromium compounds. It is important to note
that the Diels–Alder cycloaddition is reversible [107].
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The study [112] proposes to carry out the cycloprecoupling of benzene cyclobutene to
CNT. The reaction allows to control the functionalization degree by selecting the optimum.
Further, there is no need to use high pressure, catalysts, as well as pre-functionalized CNTs.
The disadvantages include the inaccessibility of precursors.

2.6. Fractionation of Carbon Nanotubes

All scalable methods of CNT synthesis give a mixture with a wide range of properties:
length, diameter, and type of conductivity. The isolation of individual CNT fractions is im-
portant for the most effective use of their extraordinary properties. The most acute problem
is the separation of metal nanotubes from semiconductor ones [113]. Semiconductor CNTs
are used to create transistors [114]; moreover, they have photoluminescence [115–118].
The admixture of metal CNTs worsens their properties significantly, causing incorrect
transistors’ functioning. Gomberg–Bachmann arylation proceeds selectively to metallic
nanotubes [43,44,119–121]. Selectivity may be lost when the arylenediazonium salt is over
the limit. The optimal ratio is functional group: carbon 1:100–1:50 [44]. The introduction
of various functional groups provides the separation of metallic and semiconductor nan-
otubes based on the difference in solubility [120], electrophoretic mobility [119,121], or
other physicochemical properties. It has been proposed to arylate CNT salts to increase
the selectivity of the reaction [32]. It is important to note that the arylation reactions are
reversible [43,67], which allows the restoration of the original structure of nanotubes after
their fractionation.

It is also possible to fractionate nanotubes by diameter with the help of arylation.
Thus, the Billups reaction [62] and arylation with peroxides [93] or disilanes [99] are mainly
carried out in CNTs of a smaller diameter, while the 1,3-cycloaddition of pyridinium ylides
proceeds more easily in CNTs of a larger diameter [122].

3. Properties and Application of Aryl-Group Functionalized CNTs

The properties of modified CNTs are closely related to the functionalization method
in use, so it is necessary to choose a special approach for each application area. Table 2
summarizes the data described in this work, allowing us to choose the optimal method.

Table 2. Application areas of various methods of CNT surface functionalization with aryl groups.

Reaction Mechanism Advantages Disadvantages Properties and
Application

Gomberg–Bachmann
reaction

Described for aqueous
dispersions of CNTs.

Radical mechanism in
the alkaline media,

cationic-radical
mechanism in the

acidic media. Direct
evidences for the
formation of CNT
radical cations is
currently lacking.

Additional studies of
the mechanism in

non-aqueous media are
required.

The availability of
arylating agents, the
presence of “green”

methods of arylation, a
wide range of

functional groups that
can be introduced on

the CNT surface,
selectivity to different

types of CNTs.

The possible presence
of by-products of the
radical’s combination,
there is no consensus

on this. It is possible to
use electrochemical

reduction of diazonium
salts to guarantee the

elimination of adverse
reactions. However,

this approach is
difficult to scale.

Explosion hazard of
reagents.

Functionalized CNTs
have increased

solubility both in water
and in non-aqueous

media, and are used to
immobilize enzymes
for biofuel cells and

biosensors. The
selectivity of the

reaction with respect to
nanotubes with

different types of
conductivity allows

them to be fractionated.
Activation of CNT

photoluminescence by
Gomberg–Bachmann

arylation is also
possible.
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Table 2. Cont.

Reaction Mechanism Advantages Disadvantages Properties and
Application

Billups reaction

The mechanism of the
anion-radical reaction

is well developed.
There are many options

for both the
preparation of CNTs

radical anions and the
reagents used for their
functionalization. Data
on the influence of the
alkali metal nature on

the course of the
reaction are

contradictory, and
additional studies are

required.

High selectivity and
absence of radical

combination products,
the ability to control the

degree of
functionalization,
scalability to an

industrial scale, a wide
range of functional
groups available for
introduction to the

CNT surface.

A side reaction of
hydrogenation, which
can be minimized by

the selection of a
solvent and the

conditions of the
reaction. The use of
liquid ammonia or
amines as solvents.

Alternative approaches
have been proposed,
but they have their
disadvantages. For

example, alloying with
alkali metals requires
an inert atmosphere

and a chemically
resistant reactor. High
requirements for the

purity of CNTs.

Functionalized
nanotubes are well

dispersed in
non-aqueous media.

The reaction is
convenient to use for

the synthesis of
polymer-based CNT

composites, including
conductive ones, since
anion radicals are the

initiators of
polymerization. It is
possible to use the

reaction for
fractionation of CNTs

by diameter.

Arylation with
peroxides

The mechanism is
radical. Aryl radicals
are mainly attached
directly to the CNT
surface; however,

attachment via oxygen
bridges is also possible.

The simplicity of the
reaction, scalability, the

possibility of
introducing a small

number of aryl groups,
the absence of side

reactions of a
combination of free

radicals with each other
or with a solvent.

A small range of
functional groups

available for
introduction to the

CNT surface. Explosion
hazard of reagents.

The reaction is used to
increase the solubility
of CNTs, as well as to

influence their
photoluminescence. It
is possible to use the

reaction for
fractionation of CNTs

by diameter.

Ullmann reaction

The mechanism is
radical. Poorly studied,

there is only one
publication on the

topic.

Selectivity to nanotubes
of smaller diameter.

The high cost of
reagents and the
complexity of the

reaction.

Up to date, the reaction
has only theoretical

significance.

Arylation with
phenylhydrazine

derivatives

A radical mechanism is
suggested, but there is

no direct evidences.

Simplicity of reaction
and availability of

reagents.

Possible by-products of
a phenyl radical

combination.

Functionalization
promotes the growth of

CNT solubility.

Diels–Alder reaction 4 + 2 cycloaddition
Ability to control the

functionalization
degree.

Requirements for the
presence of acceptor
groups on the CNT

surface, or
hard-to-reach reagents,
or a catalyst and high

pressure.

High solubility in
non-aqueous media.

Amidation of oxidized
CNTs

Nucleophilic
substitution

Simplicity of synthesis,
wide range of

introduced functional
groups, well developed

methods.

Multistage, destruction
of the CNT structure.

It is mainly used for the
immobilization of

enzymes in the
development of a

biofuel cells.

3.1. Solubility of Arylated Carbon Nanotubes

A dispersibility increase in different solvents is one of the most important properties
of CNTs functionalized by aryl groups. Reviews on this topic have recently been pub-
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lished [18,123]. The solubility of functionalized CNTs is not quantified in most studies.
As usual, the authors show that native nanotubes, generally, are not capable of forming
stable dispersions in a particular solvent. The research [30] shows that the CNT solubility
differs from one author to another due to the use of different methods for its determination.
Nevertheless, we have tried to evaluate the effect of the CNT arylation on their solubility
(Table 3). In all cases, except [94], filtration of a stable solution with subsequent drying and
weighing of the filter has been used to determine the solubility. In [94], the concentration of
CNTs in an aqueous solution has been determined spectrophotometrically.

Table 3. Effect of the CNT arylation method on the solubility.

CNT Modification Method Phenyl Radical Solvent S, * mg/mL Ref.

single-walled - - THF 0.005 [124]

single-walled - - o-dichlorobenzene 0.095 [30]

single-walled,
HiPco

Gomberg–Bachmann reaction,
aqueous solution + DDS,

decomposition at room temperature
p-tert butylphenyl

o-dichlorobenzene 0.7

[125]
DMF 0.8

CHCl3 0.6
THF 0.6

single-walled,
gas-phase growth

catalyst—iron

Gomberg–Bachmann reaction,
aqueous solution, electrochemical

reduction
p-tert butylphenyl THF 0.05 [125]

single-walled,
HiPco

Phenylation with benzoyl peroxide
followed by oleum sulfonation p-sulfophenyl H2O 15 [94]

multi-wall,
Bucky

Reductive acylation by
Billups–Birch

p-sulfophenyl,
ammonium salt H2O 30

[57]

p-sulfophenyl H2O 15
p-isopropylphenyl CHCl3 60
p-dodecylphenyl CHCl3 100

Reducing acylation by
Billups–Birch, lithium instead of

sodium
p-dodecylphenyl CHCl3 120

Synthesis from
carbon dioxide by

laser ablation

Gomberg–Bachmann arylation,
heating with isoamyl nitrite and

aromatic amine in
o-dichlorobenzene, 60 degrees

p-nitrophenyl toluene 0.5

[126]

DMF 0.7

p-carboxyphenyl
THF 0.6

CH3OH 0.6
CHCl3 0.8

p-butylphenyl toluene 0.5
DMF 0.7

single-walled Gomberg–Bachmann arylation in
urea melt

dimethylisophthalate

acetone 0.03

[36]

H2O 0.03
DMF 0.09

ethanol 0.03

benzenesulfamide

acetone 0.09
H2O 0.05

DMF 0.09
ethanol 0.09

p-anisole

acetone 0.1
H2O 0.1
DMF 0.1

ethanol 0.1

* Solubility.

Despite the low functionalization degree (1:69–1:272), CNTs, functionalized according
to Billups, have the greatest solubility [57]. Most likely, this is due to the fact that a
stable CNT dispersion is formed due to Coulomb repulsion between particles while the
functionalization. Sewn to the surface, aryl groups prevent the subsequent adhesion of
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CNTs after the nanotubes return to the uncharged form. Other methods do not increase
CNT solubility so effectively since the functionalization occurs mainly on the surface of
the nanotube ropes. Using an aqueous SDS solution for CNT dispersion is apparently less
effective than obtaining nanotube salts.

3.2. Photoluminescence of Arylated Carbon Nanotubes

It is widely known that semiconductor carbon nanotubes are capable of photolumi-
nescence in the near IR range [115–118]. Arylation makes it possible to introduce small
defects in the CNT structure in a targeted manner, which makes it possible to achieve more
intense luminescence [115–117,127–140]. Further, unlike alkylation and oxygen doping,
arylation provides more opportunities to influence the luminescence spectrum: the use
of aryl radicals of different structures [127,128,131,138,140], subsequent modification of
aryl radicals [135,138], selective arylation under the action of light [137,139], biarylation
with different bridge lengths between sewn aryl groups [136]. It is important to note that
arylated CNTs have the rare property of luminescent solvatochromism, which may have
unusual applications in the future [130]. A photoluminescent sensor has been developed
for local determination of pH with an accuracy of 0.2 units [129], as well as a sensor for
selective determination of metal ions [135], based on arylated semiconductor CNTs.

3.3. Development of Bioelectrodes with Surface-Oriented Immobilization of Enzymes

Bioelectrocatalysis plays an important role in modern chemistry [141]. The creation
of electrodes with oriented immobilized enzymes is necessary for the development of
biofuel cells [47,142–152], hybrid batteries [144,153–157], and biosensors [158]. CNTs are
a promising basis for the creation of bioelectrodes due to their high electrical conductiv-
ity and surface area. Enzymes having hydrophobic pockets, such as laccase, bilirubin
oxidase, and fructose dehydrogenase, can bind to aryl radicals on the electrode surface,
which facilitates electron transfer. Aryl groups are often introduced through the acyla-
tion of aromatic amines with oxidized CNTs [47,143,153,159–161] or Gomberg–Bachmann
arylation [47,142,147,152–154,162,163]. A non-covalent modification of CNT by pyrene
derivatives has also been proposed [150,164,165]. Comparing the effectiveness of these
functionalization methods is difficult due to the small amount of information and its incon-
sistency. Thus, the study [47] states that the terephenyl radical binds to laccase at its worst,
whereas the research [143] shows the opposite. Further, each work uses enzymes isolated
from their own type of microorganisms, which also makes it difficult to compare. However,
anthracene arylated nanotubes are used most of all [144–153,155,156,158,160,161,166].

4. Conclusions

Many methods of introducing aryl groups to their surface have been described since
the discovery of CNTs, but a more detailed study of the functionalization mechanisms
is needed, as there are only a few works devoted to this problem and there appear to be
serious contradictions. At the same time, understanding the reaction mechanism will make
it possible to obtain materials with specified properties, which is the ultimate goal. All
the approaches discussed in this review have their advantages and disadvantages (see
Table 2), so they can be used in different industries, but additional research is required for
their effective use. The work in [65], using the example of the Billups reaction, when CNT
functionalization is scaled to industrial scales to obtain reproducible results, shows the
necessity to consider many subtleties that are invisible in laboratory synthesis conditions.
Most of the presented approaches are based on radical reactions; however, the use of the
chemistry of organometallic compounds, which gives unusual results, is of considerable
interest. Based on the foregoing, for each area of practical application, a specific type of
functionalization can be recommended. For fractionation of CNTs according to the conduc-
tivity, it is best to use the Gomberg–Bachmann reaction; the highest increase in solubility
gives the Billups reaction followed by sulfonation; functionalization with peroxides is most
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effective for activation of photoluminescent properties. Concerning the oriented enzyme
immobilization for bioelectrocatalysis, the data are contradictory.
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