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Abstract: In this paper, a photo-excited metasurface (MS) based on hybrid patterned photoconductive
silicon (Si) structures was proposed in the terahertz (THz) region, which can realize the tunable
reflective circular polarization (CP) conversion and beam deflection effect at two frequencies indepen-
dently. The unit cell of the proposed MS consists of a metal circular-ring (CR), Si ellipse-shaped-patch
(ESP) and circular-double-split-ring (CDSR) structure, a middle dielectric substrate, and a bottom
metal ground plane. By altering the external infrared-beam pumping power, it is possible to modify
the electric conductivity of both the Si ESP and CDSR components. By varying the conductivity
of the Si array in this manner, the proposed MS can achieve a reflective CP conversion efficiency
that ranges from 0% to 96.6% at a lower frequency of 0.65 THz, and from 0% to 89.3% at a higher
frequency of 1.37 THz. Furthermore, the corresponding modulation depth of this MS is as high
as 96.6% and 89.3% at two distinct and independent frequencies, respectively. Moreover, at the
lower and higher frequencies, the 2π phase shift can also be achieved by respectively rotating the
oriented angle (αi) of the Si ESP and CDSR structures. Finally, an MS supercell is constructed for
the reflective CP beam deflection, and the efficiency is dynamically tuned from 0% to 99% at the
two independent frequencies. Due to its excellent photo-excited response, the proposed MS may
find potential applications in active functional THz wavefront devices, such as modulators, switches,
and deflectors.

Keywords: metasurface; circular polarization conversion; photoconductive silicon; terahertz; tunable
reflective deflector

1. Introduction

Terahertz (THz) radiation pertains to electromagnetic (EM) waves within the frequency
range of 0.1 THz to 10 THz. In comparison to X-rays and microwaves, THz radiation
exhibits a smaller single photon energy and a more diverse spectral range. Consequently,
the technologies and applications derived from THz radiation have tremendous potential
for development in several fields [1], such as biomedicine [2–4], astronomy [5], and next-
generation wireless communications [6]. Nevertheless, progress in the development of
THz technologies and applications has been limited due to the difficulty of naturally
occurring matter producing an efficient EM response to THz waves [7,8]. In the past few
years, the THz frequency range was once known as the “THz Gap” [9]. However, with
the advent of EM metamaterials (MMs) [10–13], the research in THz technologies and
applications has gained significant traction. MMs are man-made materials that consist of
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artificially designed microcellular structures arranged in specific arrangements. Despite
being composed of natural materials at their core, MMs can achieve a series of EM wave
modulation phenomena that the scope of natural materials cannot achieve, such as negative
refraction [14,15], imaging [16,17], transformation optics [18], perfect absorption [19], and
deflection [20,21], among others.

To overcome the limitations of high loss, large size, and complex fabrication techniques
associated with three-dimensional (3D) MM themselves [22], researchers have developed
two-dimensional (2D) ultrathin arrays, called metasurfaces (MSs) [23–25]. Compared to
MMs, MSs offer the advantage of being lighter, thinner, and easier to fabricate, while also
providing more flexible modulation of THz waves. Thus, various THz devices with single
or composite functions, such as abnormal refraction/reflection, perfect absorption, beam
splitters, orbital angular momentum, polarization conversion, beam deflection, and so on,
have been proposed intensively [26–41]. Among these functions, polarization conversion
and beam deflection are some of the most fundamental functionalities in photoelectric
information processing systems. In recent years, a large number of MSs from microwave
to even visible frequencies have been proposed and investigated intensively, which can
be functioned as various polarization converters and beam deflectors [33–36,42,43]. For
example, Zhao et al., proposed a transmission-type MS based on bilayer metallic patches,
which functioned as a high-efficiency THz beam deflector [33]. Cheng et al., designed a
tri-band high-efficiency circular-polarization (CP) converter based on a tri-layer split-ring
structure, which can convert the incident CP wave to its orthogonal component after trans-
mission [34]. Liu et al., demonstrated a novel design of a deeply subwavelength structure,
which was constructed as a THz reflective beam deflector [35]. Jia et al., proposed an achro-
matic dielectric MS, which demonstrated an achromatic feasibility of the beam deflector
from 0.6 to 1.2 THz [36]. Although the THz MSs can achieve the polarization conversion
or beam deflection function, most functionalities are fixed and unchangeable once they
are designed and fabricated, thus restricting their scope of application. As the application
blooms increasingly, developing tunable MSs is necessary and highly desirable [44–49].
Ha et al., proposed a new strategy for on-chip planar compact MS made of gold and
phase-change material GST, which can achieve a continuous beam-steering at 10.6 µm [46].
Kim et al., proposed an innovative approach for designing a nanophotonic beam deflector
with superior performance characteristics, including broadband operation, extensive active
tunability, and high signal efficiency, all achieved simultaneously [47]. Yu et al., proposed
a novel and reconfigurable MS capable of dynamically switching the deflection angles in
the opposite direction, while also exhibiting an impressive relative bandwidth of up to
47.6% for achromatic reflection in the microwave region [48]. Recently, photoconductive Si
has increasingly received great attention due to its active tunable behavior of the electric
conductivity induced by external optical pumping power [49]. The photoconductive Si
can be used to construct the various MS devices with tunable functions in the THz re-
gion [49–59], such as absorbers, switchers, and polarization converters. The patterned
photoconductive Si is usually embedded in or combined with the metal resonator to form a
hybrid structure for dynamically manipulating the THz wave, which can be prepared and
fabricated easily using standard lithography and E-beam evaporation technology [49,55,56].
The electric response of the patterned photoconductive Si is determined by the infrared
pumping power. However, photoconductive Si-based tunable MSs with functionalities
such as polarization conversion and beam deflection have not been studied yet.

In this work, we have designed and demonstrated a photo-excited THz tunable
MS based on hybrid structures of photoconductive Si ellipse-shaped patch (ESP) and
circular double split ring (CDSR) and metal circular ring (CR), which can be used to
construct a tunable reflective CP converter and a beam deflector, respectively. Since the
conductivity of the patterned Si structures can be adjusted by changing the optical-pump
power, the proposed MSs can realize a continuous modulation of the efficiency of the
CP conversion and deflection at two independent THz frequency ranges. Firstly, the
reflection CP conversion property of the proposed MS was demonstrated numerically
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under the upper optical-pump power. The physics origin of the proposed MS structures
was illustrated by analyzing the electric field and surface current distributions on the unit
cell at two different frequencies. Then, by respectively rotating the azimuth rotation angles
(α1 and α2) of the Si CDSR and ESP structures, 0–2π phase shift of the reflection orthogonal
CP waves could be obtained around 0.65 THz and 1.37 THz, respectively. Thirdly, a tunable
MS reflective-beam deflector with a linear phase gradient was proposed and demonstrated
numerically. This optically tunable reflective-mode MS may find more exciting applications,
such as polarization converters, modulators, and beam deflectors.

2. Structure Design and Simulations

Figure 1 illustrates the scheme of the proposed photo-excited THz tunable MS. As
shown in Figure 1b,c, the unit cell of the proposed photo-excited MS is composed of hybrid
structures of Si ESP and CDSR and metal CR, a middle dielectric substrate, and a metal
ground plane. The top and bottom layers of the proposed MS structure can form a Fabry–
Pérot-like resonance cavity, resulting in a highly efficient polarization conversion through
the multiple interference effect [43,53]. In addition, the symmetry axis of ESP and CDSR
structures of the proposed MS is rotated αi (i = 1, 2) along the x(y)-axis direction, indicating
a typical anisotropy in the x-y plane. This anisotropic design is also very key to achieving
reflective polarization conversion [36,60–63]. Note that the two distinct resonators (Si ESP
and CDSR structure) are responsible for manipulating the THz wave at two corresponding
frequencies independently. The sequence arrangement of discrete ESP and CDSR structures
will inevitably lead to cross-coupling effects, which will cause some discrepancies between
the designed phase and the practical arranged phase, thus finally resulting in a reduction
of MS device efficiency [31,32]. In our design, the metal CR structure is added and used to
reduce the cross-talk and cross-coupling effect between the ESP and CDSR structures. By
constantly changing the radius of the metal CR, we ultimately controlled the impact to a
low degree. Thus, it can be expected that the designed MS can independently control the
reflective beams at two different THz frequency regions.
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views of the unit cell.

The electric conductivity of the photoconductive Si is usually proportional to the
pumping power of the incident infrared light [49,50]. For example, the conductivity of
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the photoconductive Si is only about 1 S/m without infrared pumping (power is zero),
while the one is about 1.5 × 105 S/m under the upper-limiting infrared pumping (central
wavelength of 800 nm and power is about 405 mJ/cm2) [49,50,55]. As shown in Figure 1a,
an excess carrier density will be generated as long as the pumping energy exceeds the
band-gap energy of the photoconductive Si when an infrared beam is illuminated on the
designed MS [49,50]. In this case, the hybrid structures of the photoconductive Si array
are in the metal state. While without infrared illumination, the hybrid structures of the
photoconductive Si are in the insulation state. Note that the entire area of the designed MS
is fully covered by the infrared beam (see Figure 1a).

As is well known, the geometric phase, also named Pancharatnam–Berry (PB) phase,
has the obvious advantage of being nondispersive of the MS unit cell. The spatial asym-
metry of the MS unit cell will lead to the anisotropy of the polarized wave. The oriented
angles (α1 and α2) of the designed MS exhibit spatially dependent optical axis distribution,
which will bring the additional phase difference ϕ to the two orthogonal CP components.
According to the PB principle, the relationship between the oriented angles (α1 and α2) of
the structural photoconductive Si and the additional phase ϕ can be expressed by ϕi = 2σαi,
where σ = ±1 corresponds to the helicity direction for the CP wave [26], e.g., left-handed or
right-handed CP (“+” RCP, or “−” LCP). Consequently, the continuous 2π phase shift can
be easily achieved by rotating the αi (i = 1, 2) instead of changing the structure parameter
of the MS unit cell.

To demonstrate the functions of the designed MS, a full wave simulation was car-
ried out using the frequency solver by the CST Microwave Studio based on the finite
element method (FEM). In the simulation, the Floquet ports for the incident THz CP
plane waves along the z-axis direction are assigned to the unit cell of the proposed MS
structure. In addition, the distance between the wave ports and the unit-cell structure is
300 µm in order to only get enough propagating information of the reflected THz wave.
In addition, the minimized mesh size is set as 0.22 µm, which is much smaller than the
unit-cell size and the operating wavelength. During the optimization process, the main
objective is to get the maximized magnitude of the reflected orthogonal CP wave at two
distinct THz frequency ranges when the designed MS is under the upper infrared pumping
power (σsi = 1.5 × 105 S/m). The hybrid structure of photoconductive Si was modeled
as a dielectric with a relative permittivity of εSi = 11.7, while the electrical conductiv-
ity σSi is dependent on external infrared beam power in our interested THz frequency
range [49,50]. The metal CR structure and ground plane of the MS are made of a copper
film with conductivity σ = 5.8 × 107 S/m. The low-loss polyimide with a permittivity of
2.35 × (1 + i × 0.0027) was chosen as the middle dielectric substrate layer. After simulation
optimization, the final geometrical parameters of the unit cell are given as px = py = 100 µm,
a = 26 µm, b = 8 µm, r = 40 µm, w = 5 µm, g = 20 µm, tm = 3 µm, r0 = 33.5 µm, w0 = 1.5 µm,
and ts = 35 µm. In addition, the orientations of the outer CDSR and inner ESP are denoted
as α1 and α2 with respect to the x/(y)-axis, respectively.

3. Results and Discussion

Figure 2 presents the reflection amplitude and polarization conversion ratio (PCR) for
the structure under different infrared pump powers (the corresponding conductivity of
photoconductive Si is from σsi = 1 S/m to σsi = 1.5 × 105 S/m) at the lower and higher
frequency ranges. Clearly when increasing the conductivity of photoconductive Si from
1 S/m to 1.5× 105 S/m, the amplitude and PCR of the reflected orthogonal CP wave for the
normal incident RCP(LCP) wave will increase continuously at 0.4–0.9 THz and 1.2–1.5 THz,
respectively. Here, we define the polarization conversion capability of the device as PCR:

PCR+ = |r−+ |2

|r−+ |2+|r++ |2

PCR− = |r+− |2

|r+− |2+|r−− |2
(1)
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where the first subscript indicates the polarization state of the reflected wave, and the
second subscript indicates the polarization state of the incident wave. For example, r−+
and r+− represent the orthogonal CP reflection coefficients, and the r++ and r−− denote the
copolarization CP reflection coefficients.
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Figure 2. The (a,b) reflection amplitude of the orthogonal CP wave and (c,d) the PCR at the (a,c) lower
and (b,d) higher frequency regions for the proposed MS with different conductivity of photoconduc-
tive Si (from σsi = 1 S/m to σsi = 1.5 × 105 S/m).

As shown in Figure 2a,b, when σsi = 1 S/m, the reflection amplitude of the orthogonal
CP wave for the proposed MS structure is only about 0.02 and 0.03 on average, and
the corresponding PCR is near zero across the whole lower (0.4–0.9 THz) and higher
(1.2–1.5 THz) frequency ranges (see Figure 2c,d). It reveals that nearly no reflective CP
conversion occurs without infrared beam illumination, and the designed structure is in
an “OFF” state in this case. In the absence of infrared beam illumination (σsi = 1 S/m),
the outer CDSR and inner ESP photoconductive Si are in an isolation state, which can not
effectively respond to the incident CP wave. When the structure is under the upper infrared
pumping power (σsi = 1.5 × 105 S/m), the reflection amplitude is up to the maximal
values of 0.816 and 0.709, and the PCR is up to 96.6% and 89.3% at 0.65 THz and 1.37 THz,
respectively, revealing the “ON” state in this case. It means that the reflective CP conversion
efficiency from 0 to 96.6% and 0 to 89.3% can be adjusted dynamically through varying the
external infrared pumping power of the designed MS at the above two distinct frequencies,
respectively. To further illustrate the tunability of the proposed MS structure for the CP
conversion, the modulation depth of the CP conversion is defined as d = PCRmax − PCRmin,
where the PCRmax and PCRmin are the CP conversion efficiency when the proposed MS
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structure is under the upper limiting infrared pumping power (σsi = 1.5 × 105 S/m) and
without infrared pumping power (σsi = 1 S/m). Thus, the corresponding modulation depth
of the CP conversion of the proposed structure is near 96.6% and 89.3% at the lower and
higher frequencies, respectively. Therefore, the reflective CP conversion efficiency of the
proposed MS can be tuned actively by changing the conductivity of the photoconductive Si
through changing the infrared pumping power at two independent frequency ranges.

To illustrate the physics mechanism of the proposed MS for the CP conversion at two
independent frequencies, we presented the induced z-component of the electric field (|Ez|)
and surface current distributions on the unit-cell structure for the normal incident LCP
wave under the upper infrared pumping power (σsi = 1.5 × 105 S/m) at 0.65 THz and
1.37 THz, respectively.

Since both the outer CDSR and inner ESP structures are assumed as the evolved metal
cut-wire structure resonators, thus, a similar electric response can be observed at the two
distinct frequencies. As shown in Figure 3a,b, the induced z-component of the electric field
(|Ez|) is mainly focused and distributed on the outer Si CDSR structure at the 0.65 THz,
while the one is on the inner Si ESP structure at 1.37 THz. It means that the outer CDSR
structure corresponds to the resonance response of the lower frequency, while the inner ESP
structure to the one of the higher frequency. The electric fields of both the incident and the
reflected CP waves are decomposed into two orthogonal components, i.e., u-component and
v-component, respectively. The eigenmode resonances on the Si ESP and CDSR structures
can be excited with electric components along the u- and v-axis directions, respectively. The
excited dipole of the Si ESP and CDSR partly couples to the dipole mode on the interface of
the top layer and air, leading to cross-polarization conversion after reflection. Obviously,
the |Ez| distributions on the Si ESP and CDSR structures reveal effective excitation of
the surface plasmon polaritons (SPPs) at resonances. As shown in Figure 3c,d, at the
lower frequency of 0.65 THz, the induced surface current is mainly distributed on the
upper and down edges of the outer CDSR structure, while the one is on the left-up and
right-down edges of the part inner ESP structure at the higher frequency of 1.37 THz,
which are both consistent well with the induced electric-field distributions along the v-axis
direction, revealing strong electric dipolar resonance responses of the unit-cell structure for
the normal incident LCP wave. Note that nearly no surface current distributions can be
observed on the middle metal CR structure at the above two distinct frequencies. These
electric-field and surface-current distributions on the unit cell reveal that the reflective
CP conversion of the designed structure mainly originates from the fundamental dipolar
resonance and structure anisotropy, showing that the respective control at two independent
frequency regions is available.

To achieve the efficient reflective beam deflection effect for the CP wave, the full 2π
phase coverage should be satisfied at the two distinct frequency ranges by rotating the αi
(i = 1, 2) based on the PB phase principle instead of changing the structure parameter of
the MS. Figure 4 presents the reflection amplitude and phase of the orthogonal CP wave of
the proposed structure with different rotation angles (α1 and α2) under the upper infrared
pump power (σsi = 1.5 × 105 S/m). As shown in Figure 4a,c, at the lower frequency range
of 0.5–0.9 THz, the designed MS exhibits a linear gradient phase of the reflected orthogonal
CP wave when rotating the α1 of the outer CDSR structure by a step of 22.5◦ from 0◦ to
157.5◦, while the corresponding amplitude is nearly unchanged. As shown in Figure 4b,d,
at the higher frequency range of 1.2–1.5 THz, similar results for the reflection amplitude
and phase also can be obtained by rotating the α2 of the inner ESP structure by a step of
22.5◦ from 0◦ to 157.5◦. Obviously, the reflection amplitude of the orthogonal CP wave
through the MS is very high and the corresponding phase is varied linearly with a certain
interval by changing the α1 and α2. It means that the orthogonal reflection phase can realize
the full coverage from 0 to 2π by respectively changing the α1 and α2 from 0◦ to 180◦ at the
two independent frequency regions.
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Figure 3. The distributions of the induced (a,b) electric fields (|Ez|) and (c,d) surface current of the
proposed MS unit cell with photoconductive Si of conductivity σsi = 1.5 × 105 S/m for the normal
incident LCP wave at (a,c) 0.65 THz and (b,d) 1.37 THz.
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Figure 4. The reflection (a,b) amplitude and phase (c,d) of the orthogonal CP wave of the proposed
MS structure with different rotation angles (α1 and α2) with photoconductive Si of conductivity
σsi = 1.5 × 105 S/m.
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In the flowing section, we will study the THz beam deflection effect for the proposed
MS based on the PB phase principle under infrared illumination with different pumping
power. Here, as shown in Figure 5a, a supercell comprised of eight unit cells with different
α1 and α2 has been designed to guarantee that the linear phase gradient from 0 to 2π with
high efficiency can be achieved at two different frequency ranges. As shown in Figure 5b,c,
when the designed supercell is illuminated by the infrared with upper pumping power
(σsi = 1.5 × 105 S/m) at f L/f H = 0.65/1.37 THz, the rotating angles α1/α2 of eight unit cells
are 0◦/−0.9◦, 45◦/45◦, 90◦/90◦, 135◦/135◦, 178◦/179◦, −134◦/−136◦, −89◦/−89◦, and
−46◦/−44◦, respectively. Obviously, the designed MS supercell exhibits a discontinued
phase shift with nearly a step of 45◦ at 0.65 THz and 1.37 THz, respectively. In addition,
as illustrated in Figure 5b,c, all reflection amplitudes for the selected eight unit cells
of the designed supercell are about 0.8 and 0.65 on average at 0.65 THz and 1.37 THz,
respectively, which is favorable to achieve the highly efficient beam deflection effect. By
introducing a linear phase gradient, it is expected that the designed MS supercell can realize
a THz beam deflection effect with continuous tunable efficiency under different infrared
pumping power.
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Based on the generalized Snell’s law, the beam deflection effect can be illustrated
through the following equation [9,10]:

nr sin θr − ni sin θi =
λ

2π

dΦ(x)
dx

(2)

where the incident angle is denoted as θi, while the reflection angle is represented by θr.
The refraction indices of the medium in the incidence and reflection spaces are denoted as
ni and nr, respectively. The λ refers to the operation wavelength in free space, and dΦ(x)/dx
along the x direction signifies the phase gradient along the designed supercell interface.
Using Equation (2), it can be observed that the output direction of the THz wave primarily
depends on the discontinuous gradient phase of the designed supercell. When dΦ(x)/dx
equals zero, the designed supercell only generates normal reflection for the normal incident
THz wave. For practical simulation, the designed supercell is assumed to be in free space
(ni = nr = 1), and the source is the normal incident LCP wave (θi = 0). Thus, the reflection
angle can be obtained by simplifying Equation (2) as follow:

θr = sin−1
(

λg0

2πp

)
(3)

where g0 and p are the phase gradient along the x direction and the periodicity of the unit
cell, respectively. The theoretical value of the reflective deflection angle can be calculated
by easily employing the simplified form of the generalized Snell law from Equation (3).

To confirm the continuous tunability of the THz beam deflection, the MS supercell
is arranged with periodic boundary conditions in both the x and y-axis directions during
simulation. In our designed MS supercell, the g0 is 45◦, denoting the gradient phase.
According to Equation (3), the theoretically calculated reflective deflection angle is about
35.2◦ and −15.3◦ at 0.65 THz and 1.37 THz, respectively.

Figures 6 and 7 present the deflected electric field (|E|) distributions and correspond-
ing normalized intensity of the orthogonal CP wave of the proposed MS supercell with
different conductivity of photoconductive Si (σsi = 1 S/m, 5 × 103 S/m, 1 × 104 S/m,
2 × 104 S/m, 4.5 × 104 S/m, 1.5 × 105 S/m) at 0.65 THz and 1.37 THz, respectively.
The electric conductivity of photoconductive Si can be adjusted easily by changing the
infrared pumping illumination power [49–53]. It is evident that the spatial deflection of
the electric field results in the same reflective deflection angle at the same frequency but
the corresponding normalized intensity decreases gradually when the electric conductiv-
ity of photoconductive Si decreases. As shown in Figure 6a, at 0.65 THz, when the MS
with photoconductive Si has electric conductivity σsi = 1 S/m without infrared pumping
illumination, the very weak electric field is directly reflected along the vertical direction
without deflection. This is because the photoconductive Si is in an isolation state in the case
without infrared pumping illumination, and the whole MS functioned as a mirror reflector.
As illustrated in Figure 6b–f, when σsi = 1 S/m, 5 × 103 S/m, 1 × 104 S/m, 2 × 104 S/m,
4.5 × 104 S/m and 1.5 × 105 S/m, the photoconductive Si is gradually changed from the
isolation to metal state, the reflective deflected electric field distributions will become more
and more obvious, and the deflection angle is always kept at about 35◦, very close to the
theoretical predication value of 35.2◦. As depicted in Figure 6g, the normalized intensity of
the deflected orthogonal CP wave beam will gradually increase with the increase of the
electric conductivity of photoconductive Si. When σsi = 1 S/m without infrared pumping
illumination, the normalized intensity of the deflected beam is near zero, which is con-
sistent well with the electric-field distribution. When σsi increases from 5 × 103 S/m to
1.5 × 105 S/m, the normalized intensity of the deflected beam is increased from 0.1 to 1.
This means that the efficiency of the deflected beam is highly dependent on the variation of
the infrared pumping illumination power.
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Figure 6. (a–f) The deflected electric field (|E|) distributions and (g) normalized intensity of the
deflected orthogonal CP beam for the proposed MS supercell with different conductivity of photo-
conductive Si (from σsi = 1 S/m to σsi = 1.5 × 105 S/m) at the lower frequency of 0.65 THz.

As shown in Figure 7, the similar electric field (|E|) distributions and normalized
intensity of the deflected orthogonal CP beam can also be observed at the higher frequency
of 1.37 THz. As depicted in Figure 7a–f, when σsi is changed from 1 S/m to 1.5 × 105 S/m,
the strength of the reflective deflected electric-field distributions will increasingly intensify,
while the deflection angle remains consistently around −15◦, closely approximating the
theoretical value of −15.2◦. As shown in Figure 7g, with the increase of the electric
conductivity of photoconductive Si, the normalized intensity of the deflected orthogonal CP
wave beam will gradually increase too. When the σsi is raised from 1 S/m to 1.5 × 105 S/m,
the normalized intensity of the deflected beam rises from 0.1 to 1, also indicating a strong
reliance of the intensity of the deflected beam on changes of infrared pumping illumination
power at the higher frequency of 1.37 THz.

To further illustrate the tunable reflection deflection effect of the designed MS, as
shown in Figure 8, we present the simulated and theoretically calculated (dash line) reflec-
tion amplitude of the deflected orthogonal CP wave beam as functions of frequency and
deflection angles for the designed MS with photoconductive Si of σsi = 1 S/m, 2 × 104 S/m
and 1.5 × 105 S/m at the lower and higher frequency regions, respectively. From Figure 8,
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it is seen that the ordinary reflection (θr = 0◦) is practically zero at the lower and higher
frequency regions of 0.4–0.9 THz and 1–1.6 THz, and only the deflection CP wave beams
are reflected with wide angle ranges of 17◦–71◦ and 13◦–23◦, respectively, according to the
generalized Snell law. Note that the theoretical calculation frequency deflection angles are
the same when the designed MS with the photoconductive Si has a different electric con-
ductivity at the same frequency range. It is evident that the frequency-dependent reflection
deflection angle calculated using Equation (3) aligns well with the simulation results. From
Figure 8a–f, it further confirms that the strength of the reflective deflected electric field will
increasingly intensify when the electric conductivity of the photoconductive Si increases at
both lower and higher frequency regions.
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Nanomaterials 2023, 13, 1846 12 of 15Nanomaterials 2023, 13, x FOR PEER REVIEW 12 of 15 
 

 

 

Figure 8. The simulated and theoretical calculated (dash line) reflection amplitude of the deflected 

orthogonal CP beam as functions of frequency and deflection angles for the designed MS with pho-

toconductive Si of (a,d) σsi= 1 S/m, (b,e) σsi = 2 × 104 S/m and (c,f) σsi = 1.5 × 105 S/m at (a–c) the lower 

and (d–f) the higher frequency regions. 

4. Conclusions 

In conclusion, we have numerically demonstrated a photo-excited MS based on the 

hybrid pa�erned photoconductive Si structures in the THz region, which can inde-

pendently realize the tunable reflective CP conversion and beam-deflection effect at two 

different frequencies. Numerical simulations show that the reflective CP conversion for 

the lower frequency region is controlled by the CDSR structure photoconductive Si of the 

designed MS, while the one of the higher frequency region is determined by the ESP struc-

ture. The electric conductivity of the structurally photoconductive Si can be modulated by 

changing the external infrared-beam pumping power. When the structurally photocon-

ductive Si is in a metal state, the designed MS can convert the incident CP wave into its 

orthogonal components at two independent frequency regions. By increasing the electric 

conductivity of the structural photoconductive Si, the designed MS can realize a reflective 

CP conversion efficiency from 0 to 96.6% at 0.65 THz, and from 0 to 89.3% at 1.37 THz, 

respectively, and the corresponding modulation depth is up to 96.6% and 89.3%, respec-

tively. Furthermore, the 2π phase shift also can be achieved by respectively rotating the 

oriented angle (αi) of the ESP and CDSR at two independent frequency regions. Finally, 

an MS supercell is constructed by carefully arranging the ESP and CDSR structures to 

achieve a reflective deflection effect, and the efficiency is tuned continuously from 0 to 

99% at the two independent frequencies. The proposed MS in this study has a remarkable 

photo-excited response, which indicates its promising potential for deployment in active 

functional THz wavefront devices, including modulators, switches, and deflectors. 

Author Contributions: Y.C. conceived the idea and set up the model; Z.X. performed the calcula-

tions and composed the first draft of the manuscript; C.N. and L.D. refined the model, and provided 

helpful discussions; Y.C. and L.W. coordinated the work. All authors have contributed to writing 

the manuscript. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the innovation project for university students in Hubei Prov-

ince (Grant No. S202210488038). 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 8. The simulated and theoretical calculated (dash line) reflection amplitude of the deflected
orthogonal CP beam as functions of frequency and deflection angles for the designed MS with
photoconductive Si of (a,d) σsi= 1 S/m, (b,e) σsi = 2 × 104 S/m and (c,f) σsi = 1.5 × 105 S/m at
(a–c) the lower and (d–f) the higher frequency regions.

4. Conclusions

In conclusion, we have numerically demonstrated a photo-excited MS based on the
hybrid patterned photoconductive Si structures in the THz region, which can independently
realize the tunable reflective CP conversion and beam-deflection effect at two different
frequencies. Numerical simulations show that the reflective CP conversion for the lower
frequency region is controlled by the CDSR structure photoconductive Si of the designed
MS, while the one of the higher frequency region is determined by the ESP structure. The
electric conductivity of the structurally photoconductive Si can be modulated by changing
the external infrared-beam pumping power. When the structurally photoconductive Si is
in a metal state, the designed MS can convert the incident CP wave into its orthogonal
components at two independent frequency regions. By increasing the electric conductivity
of the structural photoconductive Si, the designed MS can realize a reflective CP conversion
efficiency from 0 to 96.6% at 0.65 THz, and from 0 to 89.3% at 1.37 THz, respectively, and the
corresponding modulation depth is up to 96.6% and 89.3%, respectively. Furthermore, the
2π phase shift also can be achieved by respectively rotating the oriented angle (αi) of the ESP
and CDSR at two independent frequency regions. Finally, an MS supercell is constructed
by carefully arranging the ESP and CDSR structures to achieve a reflective deflection effect,
and the efficiency is tuned continuously from 0 to 99% at the two independent frequencies.
The proposed MS in this study has a remarkable photo-excited response, which indicates its
promising potential for deployment in active functional THz wavefront devices, including
modulators, switches, and deflectors.
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