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Abstract: Low-cost and high-performance electrocatalysts are crucial for water-splitting reactions.
Some non-precious metal electrocatalysts are proved to be good replacements for noble metal due to
the unique electronic structure features and excellent performance. In this work, binary Ni-Co-based
layered double hydroxide nanoneedle arrays electrocatalysts are synthesized on Ni foam (NF) via
a hydrothermal process. The microstructure and the catalytic performance of the catalyst changes
significantly by regulating the molar ratio of Ni/Co. The theoretical analysis confirmed that the
as-prepared NiCo-LDH nanoneedle arrays reveal a potential behavior in oxygen evolution reaction
(OER) at a lower overpotential of 305 mV at 10.0 mA cm−2 and a Tafel slope of 110.38 mV dec−1. The
double-layer capacitance (Cdl) is 776 mF cm−2, which indicates that there are many active sites that
are exposed on the surface for the electrocatalytic reaction. The results provide an obvious reference
value to other types of LDH catalysts for the development of water electrolysis.

Keywords: nanoneedle; Ni-Co based; electrolysis; OER; electrocatalyst

1. Introduction

To solve the problems of global warming and environmental pollution, the develop-
ment and use of new energy is becoming more and more important. As the simplest form
of energy carrier, hydrogen is considered to be the most excellent candidate to replace fossil
fuels [1–3]. It has a high heat value and is convenient to transport and use, so it can be
used in hydrogen internal combustion engines or in fuel cells [1]. Because the proportion of
hydrogen in air is too little, the air separation is uneconomical [2]. Most of the hydrogen for
industrial purposes is produced from the decomposition of the organic fuel, which brings
huge energy consumption, enormous carbon emissions, and environmental pollution [3].
In this regard, the electrolysis of water is considered to be the most promising method
for hydrogen production. The water-splitting reaction includes two half-reactions, which
contain the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) [4,5].
As a sluggish kinetics process, OER is in a critical position in the reaction of water electroly-
sis [5–7]. Then, excellently designed OER catalysts become crucial in promoting the reaction
efficiency of the electrolysis of water. For a long time, the catalysts were based on precious
metals, for example, IrO2, Pt, and RuO2, which play a key role in raising the efficiency of
HER and OER [8,9]. This is attributed to their unique electron shell structure [9], which can
obviously lower the overpotential and accelerate the rate of electrolysis reaction. In practice,
however, that means large costs to industrialized promotion [10,11]. Thus, it is urgent
to research and synthesize excellent-performance OER electrocatalysts that are based on
non-noble metals or low-cost nonmetallic materials [12,13].
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Currently, abundant non-noble metal electrocatalysts have been synthesized, and
significant progress has been made [14–16]. Among these non-noble metals, nickel foam
has been widely used for the preparation of layered double hydroxide due to its high
conductivity [17], corrosion resistance [18], relatively cheap [19], and especially its electronic
orbit [20]. The oxides and hydroxide of many transition metals have been proved to
have considerable activities to be used as catalysts [17]. The activities of these oxide and
hydroxide are considered to have close relations with the number of 3d electrons of the
transition metals atom; the d electron orbitals of surface transition metal ions show a bond
to the anions on the metal surface [18,20]. This will affect the binding with the intermediates
that contain oxygen; the bond strength of the intermediates is considered to have a decisive
influence over the electrocatalytic activity. Understanding the correlation between the
catalytic activities and the structure of the electronic orbit will contribute to the discovery
of the mechanism of catalysts and the design of new cost-effective electrocatalysts for
OER [20].

Ni-based LDHs have exhibited a good electrochemical property in electrocatalytic
water splitting [17–19]. Firstly, this is attributed to the characteristic of the Ni atom or-
bit [20,21]. Jaramillo et al. found that the electronic structure of transition metal compounds
leads to their excellent electrocatalytic performance [20]. Secondly, it is due to the corrosion
resistance of nickel, which can remain stable upon prolonged exposure in oxidizing condi-
tions [22]. Moreover, during the electrolysis of water, the surface ions of the metal can give
a higher binding strength to the anion of the intermediates that offer the catalytic activity
in the reaction [20].

Compared with most nanostructure catalysts, the large number of active sites and
high specific surface area of LDH can be beneficial to the performance [23]. The high
specific surface area may provide many charge-transfer paths to the reaction of water
decomposition [24]. Nowadays, large kinds of LDHs are being designed, such as NiFe-
LDH [25,26], NixMg3−xAl-LDH/rGO [27], NiV-LDH [28], CoFe-LDH [29,30], and so on.
Liu et al. designed a new strategy of high-entropy configuration to improve the activity
and the stability of NiFe-LDH since these were decreased due to the Gibbs free energy and
the Mg-O interfacial bond. These could keep the crystal structure more stable effectively
and reduce the phase separation obviously; then, the LDH can give a dramatically stability
with no activity decline at 300 mA cm−2 over 60 h [25]. Yu et al. designed NixMg3−xAl-
LDH/rGO catalysts with Au nanoclusters as precursors. The nanosheet array showed a
crossover vertically on the side of rGO with Au nanoclusters dispersed on the edge. They
found that the activity of the catalysts was connected to the Au clusters’ size and the ratio
of Ni/Mg. The special nanostructure can improve the ion diffusion and transport during
the reaction, which may give a new strategy for designing LDHs with a high performance
for catalytic applications [27]. Chavan et al. prepared a NiV-LDH via the chemical bath
deposition method. The electrocatalytic activity of this material was estimated both ex-
perimentally and theoretically. They found that the binding sites of the active O to the
bands around the Fermi level improve the OER, leading to a good conductivity of the
LDH. By doping V, the material structure could be regulated, and the ∆G of the O binding
could be reduced. The hydrogen desorption energy of this LDH was low, and there was
a large number of O catalytically active sites [28]. Badreldin et al. synthesized a series
CoFe-based oxyhydroxides via a simple chemical method, and the ternary oxyhydroxides
showed excellent performance and stability in alkaline, near-neutral, and neutral saline
electrolytes [29].

Herein, we synthesized a NiCo-LDH nanoneedle on nickel foam via the hydrothermal
method for the hydrolysis of water. This method is low-cost, and it is easy to regulate
the microstructure even to the properties of the electrocatalyst. The special nanoneedle
microstructure can give more active sites for the hydrolysis process. By controlling the ratio
of Ni/Co, we adjusted the microstructure of the electrocatalyst. The correlation between
the microstructure and the OER performance of the electrocatalyst was also investigated.
The NiCo-LDH shows not only highly active but also long-term stability during the OER; a
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305 mV overpotential under 10 mA cm−2 and a high Cdl of 776 mF cm−2 were obtained in
1 M KOH.

2. Materials and Methods
2.1. Materials

Co(NO3)2·6H2O, Ni(NO3)2·6H2O, and Ni foam (NF) were purchased from Aladdin.
CO(NH2)2 and KOH were acquired from Sinopharm Group.

2.2. Electrocatalyst Synthesis

The Ni foams (1 cm × 2 cm) were treated by ultrasound in 1 M HCl for 20 min. They
were then washed with ethyl alcohol and deionized water, in turn, three times to ensure
that the surface oxides were removed. After that, the clean Ni foams were dried in a
vacuum-drying chamber. Then NiCo-LDH nanoneedle arrays were synthesized on it via
the hydrothermal method. A solution of Co(NO3)2·6H2O, CO(NH2)2, and Ni(NO3)2·6H2O
was mixed into 60 mL ultrapure water under continuous stirring. The added molar ratio
of the Ni:Co ion varied from 4:2 to 4:4 to 4:6 to 4:8. The urea was always 10 mmol. After
stirring for 15 min, the pretreated Ni foam and the mixed liquids were moved to a 100 mL
polytetrafluoroethylene reactor with steel casing and kept under 150 ◦C for 6 h. After the
temperature dropped down to room temperature naturally, the obtained samples were
washed with ethyl alcohol and ultrapure water, in turn, three times and were vacuum-dried
under 60 ◦C overnight.

After controlling the molar ratio of Ni:Co to optimize the OER performance of the
electrocatalyst, the as-obtained specimens were marked as Ni4Co2-LDH, Ni4Co4-LDH,
Ni4Co6-LDH, and Ni4Co8-LDH.

2.3. Structural Characterization

An XRD diffractometer (D8 Advance, Bruker, Kyoto, Japan) with CuKα radiation was
used to detect the phase of the as-obtained specimens. The scanning speed of the XRD
diffractometer was 6◦/min, and the 2θ range was 5–80 degrees. The morphology and EDS
of the specimens were detected through a field emission scanning electron microscope,
model JSM-7800F (JEOL Ltd., Tokyo, Japan), and a transmission electron microscopy, model
TECNAI G2 F20 (FEI, New York, NY, USA). The specific surface areas of the samples were
evaluated by a Brunauer–Emmett–Teller (BET) N2 adsorption–desorption solution model
Micromeritics ASAP2460 (Norcross, GA, USA). The elemental composition and atomic
states of the specimens were further examined by an X-ray photoelectron spectroscopy,
model Thermo Scientific K-Alpha (Shanghai, China).

2.4. Electrochemical Characterization

A three-electrode setup which was connected to a CHI660D electrochemical work-
station (Tesco, Shanghai, China) was utilized for the electrochemical experiments under
room temperature. A platinum electrode was used as a counter electrode, and an Ag/AgCl
electrode was used as the reference electrode. The series of as-obtained electrocatalysts was
used as the working electrode. The electrolyte was 1 M KOH. In this work, the working elec-
trode potentials were converted to reversible hydrogen electrodes (RHEs) according to the
following formula: ERHE = EAg/AgCl + 0.1989 + 0.0591 × pH. The linear sweep voltammetry
(LSV) curves were obtained under the scan rate of 2 mVs−1, and iR compensation was
adopted for it. The calculation of overpotentials was performed according to the formula
η(V) = ERHE − 1.23. Electrochemical impedance spectroscopy (EIS) was tested under the
sweep frequency between 0.01 and 104 Hz. Cycle voltammetry (CV) was performed with
a scanning speed ranging from 1.0 to 5.0 mV/s. Tafel slopes were tested under the same
electrolyte. The electrochemical double-layer capacitance (Cdl) of the specimens was tested
through cycle voltammetry. A stability test was performed in virtue of chronoamperometry
under 10 mA cm−2 and lasted for 24 h.
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3. Results and Discussion
Structural Analysis

The Ni-Co LDH nanoneedle arrays have a considerable specific area, as shown in
Table 1. The specific areas of Ni4Co2-LDH/NF, Ni4Co4-LDH/NF, Ni4Co6-LDH/NF, and
Ni4Co8-LDH/NF are 8.6960 m2/g, 10.1848 m2/g, 11.9787 m2/g, and 7.3907 m2/g, re-
spectively. The pore volumes of Ni4Co2-LDH/NF, Ni4Co4-LDH/NF, Ni4Co6-LDH/NF,
and Ni4Co8-LDH/NF are 0.009751 cm3/g, 0.011258 cm3/g, 0.013901 cm3/g, and 0.008607
cm3/g. Thus, when the Ni/Co ratio is appropriately improved, the specific area and pore
volume of NiCo-LDH/NF is increased obviously, thus helping to provide more active sites
for OER and increase the catalytic efficiency.

Table 1. Specific area and pore volume of the samples (the superior and inferior are the errors).

Sample SBET (m2/g) Vtotal (cm3/g)

Ni4Co2-LDH/NF 8.6960
+0.0047
−0.0034 0.009751

+0.000131
−0.001074

Ni4Co4-LDH/NF 10.1848
+0.0152
−0.0179 0.011258

+0.001038
−0.000495

Ni4Co6-LDH/NF 11.9787
+0.0114
−0.0093 0.013901

+0.000350
−0.002471

Ni4Co8-LDH/NF 7.3907
+0.0083
−0.0146 0.008607

+0.001670
−0.000930

The macro-morphology of the NF surface both before and after the synthesis is shown
in Figure 1. It can be seen that, after the hydrothermal reaction, the Ni-Co LDH catalyst
nanoneedle arrays grew uniformly on the three-dimensional network of NF substrate.
The macroscopic porous structure of NF and the porous nanostructure of the specimens
contributed to increasing the active surface area of the electrocatalyst significantly.
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Figure 1. Low magnification of (a,b) NF before hydrothermal reaction and (c,d) Ni4Co4-LDH/NF
after hydrothermal reaction.
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Figure 2 shows the XRD patterns of the specimens. As shown in the patterns, there are
three sharp peaks at 44.4◦, 51.7◦, and 76.3◦; these correspond to NF(JCPDF No. 04-0850).
The peaks located at 33.67, 35.19, and 59.60 belong to the (110), (111), and (300) lattice
planes of 3Ni(OH)2·2H2O according to the PDF card JCPDF22-0444. Diffraction peaks at
34.95, 37.65, 39.40, and 62.44 represent the lattice planes (012), (104), (015), and (113) of
Ni0.75Co0.25(CO3)0.125(OH)2·0.38H2O, according to the PDF card JCPDF40-0216.
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Figure 2. XRD patterns of as-prepared specimens.

The peaks at 17.51, 33.82, 35.48, 36.53, 39.53, 59.90, and 62.21 correspond to Co(CO3)0.5
OH·0.11H2O of (020), (221), (040), (301), (231), (412), and (450), respectively, according to the
PDF card JCPDF48-0083. As can be seen in Table 2, the FWHM value of Ni4Co2-LDH/NF
is 0.306, and the crystallite size is 29 nm. Moreover, when the content of Co is increased,
the FWHM value of Ni4Co8-LDH/NF reduces to 0.137, and the crystallite size increases to
89 nm, so the degree of crystallization is improved significantly. The binary layered double
hydroxide was successfully synthesized onto the NF substrate.

Table 2. FWHM and crystallite size of the samples.

Sample FWHM Crystallite Size (nm)

Ni4Co2-LDH/NF 0.306 29
Ni4Co4-LDH/NF 0.220 43
Ni4Co6-LDH/NF 0.187 68
Ni4Co8-LDH/NF 0.137 89

The macro-morphology of the specimens was observed by FESEM (Figure 3). As can
be seen, the Ni-Co LDH presents nanoarrays. With a higher content of Co, the pores first
decrease and then increase significantly. From the high-magnification morphologies of
the samples in Figure 4, it can be seen that the as-prepared Ni-Co LDH electrocatalysts
present nanoneedle arrays. Moreover, with the increasing amount of Co, the length of
the nanoneedles increase obviously. Meanwhile, the porosity increases firstly and then
decreases with the increasing Co, which corresponds to the pore volume information of
Table 1. This may be in favor of improving the active surface area of the catalytic reaction,
which contributes to the transfer of the charges between the catalysts and the electrolyte
during OER [30] and is conducive to enhancing the properties of the electrocatalysts.
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Figure 5 shows the TEM analysis of the Ni4Co4-LDH/NF. As can be seen in the
figure, the nanoneedle morphology is clearly under the low-magnification TEM (Figure 5a).
Figure 5b is the high-resolution picture of the microstructure of Ni4Co4-LDH/NF, in which
the lattice fringes with distances of 0.219, and 0.223 nm correspond to the (103) crystal face
of 3Ni(OH)2·2H2O and the (015) crystal plane of Ni0.75Co0.25(CO3)0.125(OH)2·0.38H2O. The
corresponding SAED pattern (Figure 5c) shows the (110) crystal plane of 3Ni(OH)2·2H2O
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and the (006) crystal plane of Ni0.75Co0.25(CO3)0.125(OH)2·0.38H2O according to the JCPDF
of X-ray diffraction (XRD).
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The chemical compositions and the atomic oxidation states of the material surface in
the binary layered double hydroxide were investigated through X-ray photoelectron spec-
troscopy. Figure 6 is the XPS spectrum of Ni4Co4-LDH/NF, which reveals the distribution
of the Ni and Co elements in the nanoneedle arrays’ surface. The peaks at 857.3 eV and
784.6 eV represent Ni 2p3/2 and Co 2p3/2 respectively, suggesting the +2 and +3 valence
states of Ni and Co [31].
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Figure 7 shows the energy disperse spectroscopy of Ni4Co4-LDH/NF nanoneedle. As
shown in the figure, the uniform distribution of Ni, Co, and O in the nanoarrays of the
specimens confirms that the elements’ composition on the surface of Ni4Co4-LDH/NF is
homogeneous; this contributes to the stability of the hydrolysis performance [32].
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The electrochemical characterization of the NiCo LDH series was investigated when
it used as the working electrodes. The OER performances of the materials were studied
in 1.0 M KOH. Figure 8 shows the electrochemical characterization of the NiCo LDH
series electrocatalysts. Figure 8a displays the LSV polarization curve of the Ni-Co-based
LDH. Ni4Co4-LDH/NF performs an overpotential of about 305 mV at 10 mAcm−2; this is
lower than Ni4Co2-LDH/NF (324 mV), Ni4Co6-LDH/NF (318 mV), and Ni4Co8-LDH/NF
(323 mV). To the interest of commercial water electrolysis, a higher current density is always
required to keep for a considerable time to obtain commercial benefits. Therefore, it is
important that a certified electrocatalyst can attain a demanded higher current density [29].
From the iR-corrected LSV polarization curve (Figure 8a), we can see that, to achieve the
current density of 200 mAcm−2, the overpotentials of Ni4Co2-LDH/NF, Ni4Co4-LDH/NF,
Ni4Co6-LDH/NF, and Ni4Co8-LDH/NF should be about 520 mV, 440 mV, 460 mV, and
467 mV. Thus, to achieve a higher current density, Ni4Co4-LDH/NF needs the lowest
overpotential. Clearly, an appropriate Ni/Co elements ratio may decrease the overpotential
significantly, which contributes to improving the catalytic behavior of the Ni-Co-based
LDH [25,26].
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Figure 7b shows the attained Tafel slopes tested in 1.0 M KOH. The series of NiCo-
based LDHs shows relatively low Tafel slopes from 106.77 to 123.06 mVdec−1. Thus, the
OER kinetics can be improved by the series of as-prepared NiCo-based LDHs. The double-
layer capacitance (Cdl) can be calculated from the CV scans [33]. Figure 8c shows the Cdl of
the specimens. Ni4Co4-LDH/NF possesses a remarkably larger Cdl value (776 mF/cm2)
than that of Ni4Co2-LDH/NF (650 mF/cm2), Ni4Co6-LDH/NF (561 mF/cm2), and Ni4Co8-
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LDH/NF (730 mF/cm2). This is attributable to the intrinsic activity and the exposure of
more active reaction sites in the nanoneedle arrays of Ni4Co4-LDH/NF, which can enhance
the OER behavior of the materials significantly [33,34].

EIS is tested to study the interfacial properties of the electrocatalysts electrodes [35]. It
can be seen in Figure 8d that the equivalent circuit is simulated according to the Nyquist
plots, in which Rct represents the charge transfer resistance of the electrolytic system, Rs
represents the solution resistance of the electrolytic system, and CPE is the constant phase
angle elements of the electrolytic system. According to the EIS results, the Rct of Ni4Co4-
LDH/NF (1.983 Ω) is lower than that of Ni4Co2-LDH/NF (2.16 Ω) and Ni4Co6-LDH/NF
(2.09 Ω) and nearly equal to that of Ni4Co8-LDH/NF (1.933 Ω). Thus, all the series of
electrocatalysts display small resistances of 1.80–2.2 at 1.56 V vs. RHE, which may benefit
from the high conductivity of the nickel foam skeleton [36]. This indicates the excellent
electron transport kinetics of the series of NiCo LDHs [34–36].

As is well-known, a good OER performance (higher double-layered capacitance and
lower charge transfer kinetics) is attributed to the defect that induced into the electronic
structure and interface coordination associated with local charge distribution of the elec-
trocatalysts. This was reached by doping Co. The Ni/Co ratio plays a critical role in
determining the morphology of the Ni4Co4-LDH because the incorporation of Co atoms
changes the growth kinetics [25,27,28]. Compared with Ni, Co has a relatively lower atomic
weight in the precursor solution, so the reaction rate will be affected, and different surface
morphologies will be obtained. It has been proved that electron transfer can be facilitated
by the oxygen functional groups, which may hinder charge transfer between the electrolyte
and electrode surface [28]. Therefore, when doping excess Co, the resistance to the charge
transfer will be increased because there are increased oxidation states in the Co in the mate-
rials. Thus, the abundant oxidation states caused by doping excess Co and the increased
number of active sites have a common influence on the OER activity of NiCo-LDHs [28].

The catalytic activity of electrocatalysts is always evaluated through the turnover
frequency (TOF). The calculation of the TOF is always performed according to the following
formula: TOF = (AJ)/(4 mF), in which A represents the active area of the electrode materials,
J represents the current density under 300 mV of overpotential, m represents the active
sites number that estimated from the CV curves, and F is the Faradic constant [37,38].
According to Figure 9, the Ni4Co4-LDH/NF electrocatalyst presents a TOF value of 0.2445
S−1; this obviously exceeds that of Ni4Co2-LDH/NF (0.1841 S−1), Ni4Co6-LDH/NF (0.1531
S−1), and Ni4Co8-LDH/NF (0.2156 S−1). Therefore, Ni4Co4-LDH/NF has the best intrinsic
catalytic activity when compared with the others, and this also means that the appreciable
charge transfer efficiency contributed to the excellent performance of the OER [39].
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The OER of the electrocatalyst is supposed to be composed of multistep reactions.
Firstly, water molecules are adsorbed to the active sites on the catalysts, where the water
molecules convert to some [OH] intermediate. After that, the intermediates will be oxidized
and transformed to [O]. In the next step, [OOH] intermediate will be produced by the
reaction between the [O] and H2O molecule. Finally, [OOH] will release O2. These interme-
diates have abundant oxygen vacancy sites on the electrocatalysts. Thus, the performance
of OER is closely related to the amount of the active catalytic sites and the adsorption
capacity between the intermediates and H2O [40].

For the application of the electrocatalysts, the long-time stability is a critical factor.
The chronoamperometry is used to evaluate the long-time stability of the as-prepared
electrocatalysts. The stability of Ni4Co4-LDH/NF was tested at a constant 10 mAcm−2

in the 1 M KOH. Figure 10 is the V-T curve of the 24 h stability test of Ni4Co4-LDH/NF.
The potential of Ni4Co4-LDH/NF is stable and is kept for 24 h just with only a minor
decrease from 0.62 to 0.59 V, suggesting a negligible activity loss of the catalyst after 24 h
of testing [32]. This indicates that Ni4Co4-LDH/NF has excellent OER stability as an
electrocatalyst.
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The OER performances of the electrocatalysts synthesized in this paper and other
reported Ni-based or Co-based LDH, electrocatalysts which show obvious advantages,
are shown in Table 3. According to the references in the table, the reported Ni-based or
Co-based LDH electrocatalysts are normally synthesized through a multi-step process and
are costly in energy and time [41–46]. Meanwhile, in this work, the Ni-Co-based LDH
electrocatalysts can be obtained by the one-step hydrothermal method, which is low in
cost and easier to operate. Moreover, the overpotential at 10 mAcm−2 in this paper is
superior to the works listed in the table, and this may be attribute to the nanoneedle arrays
of the Ni-Co-based LDH. The abundant active sites can significantly promote the electron
transport rate between the electrocatalysts and electrolyte, which contribute to the excellent
OER behavior [44–46].
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Table 3. OER performances of other NiCo-LDH electrocatalytic materials reported.

Catalyst Current Density
(mA cm−2)

Overpotential
(mV) Reference

Ni(OH)2 10 595 [41]
NiCo hydroxide 10 460 [39]

Co(OH)2/NF 10 280 [42]
NiCo-LDH 10 367 [43]
NiCo-NS 10 334 [44]
Co(OH)2 10 360 [45]

ZIF-67/CoNiAl-LDH/NF 10 303 [46]
Ni-Co-based LDH arrays 10 305 This work

4. Conclusions

NiCo LDH nanoneedle arrays were synthesized on Ni foam through the hydrothermal
method. The obtained NiCo-LDH nanoneedle arrays displayed long-time stability, in
addition to an excellent catalytic property for OER. A lower overpotential of 305 mV and
a Tafel slope of 110.38 mVdec−1 were obtained when Ni4Co4-LDH/NF was used in the
electrolysis of water at 10 mAcm−2.

A remarkably larger Cdl value of 776 mF/cm2 and TOF values of 0.2445 S−1 were also
obtained. This is better than most of the other Ni-based or Co-based LDH electrocatalysts
that have been reported. The good behavior of the as-prepared specimen is owed to
the microstructure of the materials. We believe that the method in this work can be
further extended to other types of LDH catalysts for application in fields of energy storage
and conversion.
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