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Abstract: Micro- and nanopatterns perform unique functions and have attracted attention in various
industrial fields, such as electronic devices, microfluidics, biotechnology, optics, sensors, and smart
and anti-adhesion surfaces. To put fine-patterned products to practical use, low-cost patterning
technology is necessary. Nanoimprint lithography (NIL) is a promising technique for high-throughput
nanopattern fabrication. In particular, thermal nanoimprint lithography (T-NIL) has the advantage of
employing flexible materials and eliminating chemicals and solvents. Moreover, T-NIL is particularly
suitable for compostable and recyclable materials, especially when applying biobased materials for
use in optics and electronics. These attributes make T-NIL an eco-friendly process. However, the
processing time of normal T-NIL is longer than that of ultraviolet (UV) NIL using a UV-curable
resin because the T-NIL process requires heating and cooling time. Therefore, many studies focus
on improving the throughput of T-NIL. Specifically, a T-NIL process based on a roll-to-roll web
system shows promise for next-generation nanopatterning techniques because it enables large-area
applications with the capability to process webs several meters in width. In this review, the T-NIL
process, roll mold fabrication techniques, and various materials are introduced. Moreover, metal
pattern transfer techniques using a combination of nanotransfer printing, T-NIL, and a reverse offset
are introduced.

Keywords: thermal nanoimprint; seamless roll mold; replica mold; roll-to-roll; compostable films

1. Introduction
1.1. Demand for Micro/Nanopatterning

Micro- and nanopatterned surfaces are highly useful as functional surfaces, as well
as in the fabrication of electronic devices. For example, to realize artificial intelligence
systems, improving the performance of the central and graphic processing units is essential.
Based on Moore’s law for semiconductor devices, the limit to the miniaturization of the
transistor size will soon be reached. To achieve advancements beyond Moore’s law, mono-
lithic three-dimensional (3D) integrated circuits are widely investigated [1]. Developing
nanopatterning techniques for large areas is essential to reduce the cost of nanopatterning
on a wafer scale [1].

Micro-total analysis systems (µ-TAS) [2] and biotechnology-like cell cultures [3] also
require micro- and nanopatterned surfaces. Nanopatterned surfaces are used to fabricate
a hydrophilic channel that easily transports liquids. In addition, a disposable package is
required for these applications. Hence, a low-cost fabrication technique is strongly desired.

Optical applications widely utilize micro- and nanopatterns. For example, micro-lens
arrays are essential for improving the performance of image sensors [4]. Anti-reflection
films with nanostructures reduce the reflection of light in display devices [5] and improve
the power generation efficiency of solar cells [6].
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Moreover, many sensor applications utilize micro- and nanopatterns, and fine metal
patterning is indispensable for these applications. Touch sensor panels, which can transmit
light emitted from a display device, consist of a micro-scale metal wire on a transparent
substrate [7]. To obtain a highly sensitive chemical sensor, surface-enhanced Raman
scattering (SERS) using a nanodot pattern made of metal is a promising technology [8].

Printable electronics have important applications in electricity generation, particularly in
organic solar cells [9] and thermoelectric devices [10] that require large-area micropatterns. In
printable thermoelectric devices, reducing electrical contact resistance [11] and precise aligning
techniques for p-n junctions are crucial, enabling scalable and cost-effective production.

Smart surfaces and anti-adhesion surfaces in facilities help reduce the cost of mainte-
nance such as cleaning, defrosting, and disinfection. For example, bacterial anti-adhesion
surfaces are needed to prevent biofilm formation [12]. A surface inspired by the nanostruc-
tures on insect wing surfaces is used for anti-bacterial and self-cleaning surfaces [13]. Frost
formation and its impact on the icephobic properties of superhydrophobic surfaces have
also been studied [14].

As noted above, micro- and nanopatterns are necessary for next-generation devices in
various fields. A high throughput patterning technique with design flexibility, including
3D patterns, is highly desired. Fine patterns can be obtained by cutting [15], laser beam
machining [16], electron beam lithography (EBL) [17], and focused ion beam (FIB) milling
techniques [18]. Photolithography using extreme ultraviolet (UV) light is the most powerful
technique for nanofabrication to date [19]. The interference lithography technique facilitates
regular nanopatterns over a large area with no reticle [20]. Self-assembled patterning
methods are expected to be low-cost means of nanofabrication because expensive machines
are not required. Table 1 shows the specifications of various fine patterning techniques.
Consequently, future fine patterning techniques are anticipated to offer low cost and high
throughput with design flexibility over a large area.

Table 1. Fine patterning techniques.

Method Pattern
Size

Pattern
Flexibility

Equipment
Cost Area Size

Aligning
Possibility
/Accuracy

Multilayering
Possibility Throughput

Mechanical Cutting Sub-µm Very high Medium Medium Sub-micron Difficult Low
Direct writing (Laser) Sub-µm Very high High Small Sub-micron High Low

Direct writing (EB and IB) >nm Very high High Small Nanoscale Possible (IB
deposition) Low

Photo lithography >10 nm High Extremely
High Large Nanoscale Difficult High

Self-assembled
patterning >10 nm Low Very low Very large Difficult No High

Future desired technique >nm Very high Very low Very large Nanoscale High Very high

1.2. Basis of Nanoimprint Lithography

To meet the demand for next-generation fine patterning techniques, NIL was devel-
oped in 1995 by Chou et al. [21]. Here, a nanopatterned mold was prepared by EBL. Using
the mold, a poly(methyl methacrylate) layer was imprinted on a silicon substrate. The
principle of NIL is similar to the conventional method of hot embossing. However, because
pattern sizes as small as 25 nm can be obtained using the NIL process, it has received much
attention to date. The concept of NIL combines a high-resolution technique, such as EBL,
with a high-throughput pattern transfer process. In 1996, Haisma et al. developed the
ultraviolet NIL (UV-NIL) process [22], which uses a photo-curable resin. The high-speed
curing time of the UV-NIL process allows for very high throughput. Moreover, the viscosity
of UV-NIL resin is comparatively low. Thus, it can be used to fill a very fine mold, with
patterns as small as 10 nm [23]. However, UV-NIL resins are typically expensive because
they contain a highly designed monomer, photoacid generator, and solvent to reduce
viscosity. Moreover, these chemicals must be handled with care, and equipment for volatile
organic compound (VOC) treatment is necessary. Importantly, the substrate must tolerate
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UV exposure. The differences between the conventional patterning and NIL processes are
shown in Table 2.

Table 2. Differences between the conventional patterning process and the NIL process.

Hot Emboss Injection Molding T-NIL UV-NIL

Pattern size >Sub-µm >Sub-µm >nm >nm

Applicability Thermosetting/
Thermoplastic resin

Thermosetting/
Thermoplastic resin

Thermosetting/
Thermoplastic resin UV-curable resin

Material cost Low Low Low High

Area Depends on the heated
mold size

Depends on the heated
mold size

Depends on the heated
mold size

Restricted by the size of
the UV exposure field

Mold Typically hard Typically hard Hard/tractile/flexible Hard/soft/flexible

Throughput Low High Low
(Planar process) Very High

Theory
Technological base Based on continuum mechanics Based on molecular dynamics [24], like an

intermolecular force, surface tension.

The original NIL process is commonly referred to as thermal nanoimprint (T-NIL)
because it uses a thermoplastic resin. In principle, the throughput of T-NIL is lower than
that of UV-NIL because T-NIL requires time for heating to reach a low viscosity and
cooling. However, T-NIL offers the advantages of lower material cost compared with
UV-NIL, and an eco-friendly process that does not require VOC chemicals. Therefore, in
this review, recent progress regarding T-NIL in the development of the process (Section 2),
mold fabrication including roll molds (Section 3), and materials (Section 4) are discussed to
outline possible future directions of T-NIL.

2. Various T-NIL Processes
2.1. Planar T-NIL

Figure 1 depicts the T-NIL process using a planar mold [25]. The mold was fabricated
by EBL and made of silicon wafers. First, a thermoplastic layer was formed on a Si
substrate by spin-coating. Second, a mold was placed on the substrate. The mold was
pressed against the substrate while being heated to its glass transition temperature (Tg),
and the thermoplastic layer was deformed according to the mold pattern. Then, the mold
and substrate were cooled to less than Tg. Finally, the mold was released from the substrate.
Typically, there is a residual layer under the transferred pattern, which must be removed by
a plasma etching process to perform the lift-off and an etching process for the substrate. For
example, 25 nm diameter and 120 nm period metal dots were fabricated by planar T-NIL
and a lift-off process.
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In the double-sided process, the substrate is replaced by another mold, as shown in
Figure 2. In this process, although the thermoplastic film should provide enough thickness
for handling, the transferred patterns are obtained on both sides of the film [26]. Only the
surface of the film can be heated to or near its Tg. Heating the entire film above or close to
Tg would cause deformation or stretching. The double-sided patterned film is particularly
valuable for optical applications. This process can also be applied to thermosetting plastics.
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To enhance the throughput of T-NIL, a roll-to-roll web system [27] can be employed,
as depicted in Figure 3. The conventional silicon wafer process requires the use of a very
expensive wafer transfer robot because silicon wafers are currently incompatible with a
web system. By contrast, thermoplastic films are flexible and compatible with the web
system. This process allows for the easy combination of T-NIL with the web system.
Although planar molds are readily available, the throughput of this system is limited
by the time required for heating and cooling during the T-NIL process. Nevertheless,
detailed inspection of transferred patterns using cameras is possible. In addition, web
tension-related issues are irrelevant in this process as the web is easier to heat stabilize.
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2.2. Roller T-NIL

Obtaining planar NIL molds using a conventional lithography process with EBL or
photolithography is easy. However, these molds are typically made of silicon wafers or
quartz, which are hard materials. A roller T-NIL process using a roll mold [28] is suitable for
overcoming the bottleneck of the heating and cooling times in T-NIL processes (Figure 4).
Because the roll mold is difficult to fabricate, a replica mold made by nickel electroplating
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is widely used for roller T-NIL. Here, nickel foil, used for its flexibility, is attached to a roll
substrate, and the nickel replica mold has sufficient temperature durability for the T-NIL
process. Therefore, the mold pattern can be transferred to the thermoplastic layer coated on
a planar substrate, eliminating the need for prolonged heating and cooling. The transferred
thermoplastic layer can be fabricated by spin-coating, allowing for sub-µm layer thickness,
which can be easily removed by etching after the lift-off process. In this case, tension control
for web feeding is not necessary. A softer backing roll helps to increase the contact time
between the roll mold and the thermoplastic layer. However, precise temperature, speed,
and pressure control are necessary because cooling is achieved naturally and without
cooling equipment. In some instances, the pattern can be achieved through the plastic
deformation of the thermoplastic layer.
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2.3. Roll-to-Roll T-NIL

To further improve the throughput and transferred pattern quality, belt-type T-NIL
processes have been proposed [29,30]. These processes require a belt-type flexible mold. A
replica mold is widely used for this purpose. Figure 5 shows the schematics of the belt-type
T-NIL process using a thermosetting resin such as polydimethylsiloxane (PDMS). A plate
heater is used to cure the thermosetting resin. The heater does not require contact with
the base film because the tension of the base film facilitates the contact force between the
belt mold and the base film. For example, when PDMS is used for thermosetting resin, the
curing time is 2–3 min at 130 ◦C. In this case, a flexible polyurethane acrylate mold is used.
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Figure 6 shows the schematics of the belt-type T-NIL process using a thermoplastic
film. In this process, the cooling process is crucial to improve the throughput. If the
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imprinted pattern is released from the mold at a temperature above Tg, the pattern collapses
immediately. Thus, cooling rollers or additional cooling equipment are essential for high
throughput. In Ogino, et al., dots with a diameter of 200 nm and a height of 240 nm were
formed on a 15-meter-long polystyrene sheet within 27 min [30].
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Figure 7 illustrates the roll-to-roll T-NIL process using a thermoplastic film [31]. As in
other processes using a roll mold, nickel replica molds are attached to rolls equipped with
internal heaters. In this process, a thermoplastic film is directly fed into the gap between
the roll molds. Alternatively, a pre-heating system is applied before the film is fed into
the gap. Because there is no cooling equipment, the system configuration is very simple,
resulting in a low unit cost. The mechanism of pattern transfer is mainly based on plastic
deformation. Thus, precise temperature control with appropriate pressure is important for
obtaining transferred patterns. The contact length in roll-to-roll NIL can be varied by the
use of softer backing rolls, providing a longer contact time. For example, a thermoplastic
film measuring 95 mm in thickness and 50 mm in width was structured using this method.
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2.4. Nanotransfer Printing (nTP)

The above T-NIL processes focus on the fabrication of plastic or resin patterns. How-
ever, some sensors, such as SERS sensors, require metal nanopatterns on a plastic substrate.
Nanotransfer printing (nTP) [32] is a promising technology for fabricating metal patterns on
plastic substrates. The original nTP process is shown in Figure 8a–e. First, a mold is coated
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with a transferred metal. Next, the coated mold and a plastic substrate are pressed against
each other under heating. The plastic substrate is not deformed by the pressure, and only the
metal layer on top of the mold is in contact with the plastic substrate. Using the difference in
surface tension, the top metal layer is transferred to the plastic substrate. When the mold is
pressed against the plastic substrate at high pressure, all metal layers are transferred.
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Two-tone nTP has been proposed as an alternative nTP method [33] (Figure 8f–h).
Here, after the normal nTP process (positive-tone pattern), the metal layer in the bottom
of the mold is transferred using a thermosetting resin (negative-tone pattern). After the
nTP process, the mold can be utilized repeatedly. The combination of nTP and roll-to-roll
T-NIL realizes eco-friendly metal nanopatterning with high throughput because it does not
require solvents and chemicals for lift-off and metal etching.

2.5. Reverse Offset Technology

nTP typically uses a metal layer deposited by physical vapor deposition, which
requires a long time to prepare a vacuum condition. As a result, obtaining the metal
layer on a large area is difficult. By contrast, reverse offset (RO) technology [34] provides
high throughput and high resolution (1 µm) using conductive nanoparticle inks (Figure 9).
Furthermore, a roll-to-roll process for RO has been achieved. In this method, control of the
surface energy is crucial for the ink pattern transfer.
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3. Seamless Roll Mold Fabrication Technique

In principle, the size of the transferred patterns obtained by T-NIL processes depends
on the features of the mold. Therefore, the fabrication technique for NIL molds is crucial.
Planar NIL molds are typically obtained by photolithography or EBL. However, increasing
the throughput of planar T-NIL processes is challenging. Consequently, roll mold fabrica-
tion techniques are essential for next-generation T-NIL processes. In particular, seamless
roll molds increase the product yield by eliminating wasted space on the transferred sub-
strate caused by seams. In this section, various fabrication techniques for the seamless roll
mold are described.

3.1. Advanced Machining Technology

Machining processes have a long history and are the most common technique for micro-
and nanopatterning. Single-point diamond turning is a promising method for obtaining a
desired pattern on a roll. The diameter of the diamond tip determines the obtained pattern
size. Sun et al. applied a focused ion beam to sharpen diamond tips [35]. The mouth width of
the machined pattern with the sharpened tip was 447 nm, while its depth was 607 nm. An
indenting method using a diamond die was reported by Cates et al. [36]. However, using
nanoscale tips or dies for long periods is challenging. Electrical discharge machining (EDM) is
an efficient method for micro- and nanopatterning in which the wear of tools is not a concern.
For example, wire EDM was performed to fabricate roll molds [37]. However, because the wire
diameter was 250 µm, the main pattern width was not nanoscale. On the other hand, EDM can
also produce a surface with multi-scale roughness that is applicable as a superhydrophobic
surface. Laser beam machining [38], which needs no fine tools or wire, is also useful for
obtaining micro-patterns with surface treatment.

3.2. Direct Laser Beam Writing

Direct laser beam writing (DLW) techniques have attracted much attention for obtain-
ing a fine roll mold in air [39]. The difference between direct laser machining and DLW
is the latter’s utilization of photoresists. Two-photon direct-laser-writing is a powerful
method for sub-nm focusing [40]. The two-photon technique enables the fabrication of
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three-dimensional (3D) patterns in a single process. Furthermore, stimulated emission
depletion DLW results in a pattern line width of 65 nm [41]. Although these methods use a
point beam to delineate a designed pattern, laser interference lithography [42] can expose
light over a larger area. While the design of interference patterns is difficult, this approach
helps improve the writing speed of regular patterns, such as line and space patterns.

3.3. Direct Electron Beam Writing

The minimum pattern width of normal DLW is determined by the diffraction limit.
Electron beam (EB) lithography is a promising technique that can potentially obtain a
sub-10 nm pattern. Taniguchi et al. presented a rotating stage to write a designed pattern
onto a roll substrate [43]. Similar to the conventional EBL process with a planar substrate,
metal lift-off is possible with a roll substrate [44]. However, EBL suffers from a slow writing
speed and requires vacuum conditions. Therefore, fabricating a large roll mold by direct
EB writing in a vacuum chamber is challenging. To overcome this, an enlargement process
from a small roll to a large roll mold was investigated [45].

3.4. Self-Assembled Patterns

Self-assembled patterning using anodic aluminum oxide (AAO) [46] and block copoly-
mers [47] is a low-cost nanofabrication technique because it does not require expensive
machines. In particular, nanopatterns obtained by AAO facilitate anti-reflection patterns of
visible light [48]. Furthermore, the AAO process is adaptable to large-roll molds. Therefore,
anti-reflection films can be obtained by roll-to-roll nanoimprints with AAO roll molds. An-
other method using a self-assembled process is to utilize etching. For example, nanopore-type
black silicon is fabricated by one-step silver-assisted chemical etching [49]. Oxygen-plasma
etching processes with a glassy carbon substrate [50] present a simpler method because this
process does not require rare metals and chemicals. Additionally, a 1.5 m long glassy carbon
roll mold with a moth-eye structure was achieved [51]. This large-scale roll mold is useful for
continuously producing anti-reflection films via the roll-to-roll process.

4. Key Technology for T-NIL
4.1. Viscoelastic Behavior (N-Curve)

Roll-to-roll T-NIL with roll molds requires the surface temperature of the mold to be
less than Tg. This is because higher temperatures cause the web film to stretch after the
nip rollers, resulting in the breakage of the thermoplastic film. Therefore, the transferred
pattern is obtained by plastic deformation. Notably, self-relaxation of the transferred
pattern is observed when the temperature is significantly lower than Tg [52]. Moreover, at
temperatures close to Tg, the viscoelastic property of the thermoplastic film is dominant,
causing failure of the mold filling [53]. This phenomenon is commonly referred to as
the N-curve of the transferred pattern (Figure 10). Ultimately, to achieve the roll-to-roll
T-NIL process using roll molds, precise temperature control of the mold (within the target
temperature ±5–10 ◦C) is essential.

4.2. High-Speed Heating and Cooling Method

The heating and cooling times limit the throughput in the T-NIL process. In particular,
the heating method is critical to improving the throughput. Hence, a fast T-NIL employing
an integrated heater [54], with a total process time of 10 s, was proposed. Laser-heated
rolling T-NIL with a roll-to-roll system was demonstrated [55]. Additionally, induction
heating was used to heat a nickel mold containing nanohole arrays [56]. The processing
time for a 4-inch diameter scale was less than 5 min, and these heating processes aim to
reduce thermal capacity. To overcome the thermal cycle time in T-NIL, assisted heating for
ultrasonic nanoimprints [57] were also proposed.
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4.3. Replica Mold for High-Temperature Durability

As described above, nickel electroplating is widely used to obtain replica molds for
roll-to-roll T-NIL. However, electroplating requires a significant amount of time, resulting
in a high cost. In addition, treatment of the waste solutions of nickel plating is troublesome.
Consequently, replica molds with high-temperature durability and release properties
suitable for the T-NIL process are required. PDMS is typically used for replica molds in
T-NIL. However, it is a thermosetting resin and thus requires a long time to cure. Hence,
organic-inorganic hybrid resins [58] using a release agent were proposed. Because these
resins can be cured by UV light, their duplication time is typically shorter than that of
PDMS. However, it requires a release agent to prevent the sticking of the transferred pattern.
A UV-curable resin used for replica molds with no release agent [59,60] was also studied.
Moreover, the roll-to-roll T-NIL process was demonstrated with the replica mold [61].

4.4. Film Preparation and Web System in Roll-to-Roll T-NIL

In roll-to-roll T-NIL processing, film quality plays a crucial role. Common thermo-
plastic polymers are used, and various parameters such as softening temperature, melting
temperature, glass transition temperature, the viscosity of the melted polymer, stringing
coefficient, surface energy, bendability, and film thickness affect the replication quality.

The thermoplastic properties of the film determine the maximum temperature that can
be used; however, increasing the film thickness makes it possible to achieve temperatures
close to Tg if the processing time is kept sufficiently short.

In some cases, the surface energy of the thermoplastic material may be insufficient
because of the “flow in capillarity” forces caused by the film itself. From a successful
process perspective, the film must be flexible enough to be guided from one roll to another.
High thermal expansion of the film may potentially impact the desired size of the pattern;
however, this can be accounted for in the design of the mold.

One interesting category of future materials is recyclable or even compostable films.
For example, novel films made of nanocellulose have unique features such as high trans-
parency, high-temperature tolerance, and, surprisingly, nanoimprintability. These wood
fiber-based materials consist of selected nanometer-scale fibers whose film properties can be
tuned to improve foldability or printability. In the case of films made of cellulose nanofiber
(CNF), the printed structure remains intact even when the moisture content of the film
increases, unlike conventional paper. CNF films can be thermally nanoimprinted [62] or
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imprinted with the assistance of moisture [63]. The increase in moisture content softens the
film’s surface, making it easier to form patterns during the imprinting process.

As previously mentioned, web tension and aligning methods are essential in high-
speed roll-to-roll T-NIL. In the printing industry, many feedback methods are used. These
methods consider web tension and optimize it in situ. Tension is critical for avoiding web
stretching or misalignment and ensuring accurate and reliable patterning.

5. Materials for the T-NIL Process

The most significant advantage of T-NIL is the flexibility of the transferred material
and its environmental properties in practical use: temperature durability, transparency,
chemical durability, and mechanical strength (Table 3). In this section, materials for T-
NIL and the process conditions are surveyed. Two types of materials were mainly used:
thermosetting resin and thermoplastic resin. Super engineering plastics attract considerable
attention as well, because of their high temperature and mechanical durability.

Table 3. Materials for T-NIL and process conditions.

Material
Name T-NIL Type Process

Temperature (◦C)
Pressure

(MPa)
Force
(N) Process Time Ref.

PMMA Planar 200 10 3 min [64]
PS Planar 160 10 3 min [64]

PS Belt-type RTR 120–150 1.2 0.57 m/min
Press time 1 s [30]

PEN Planar 290 2.5 10 min [65]
PE Planar 140 2.7 N/A [66]

PP Planar 165–225 5.0 5 min for melting,
30 min for press [67]

PET Planar 75, 150 2.0 300 s [68]
COC Roller 70–110 0.55 0.5 m/min [69]

COC Planar 160 0.62
5 min for thermal

equilibrium
30 s for press

[70]

COC Planar 150 5 300 s [71]
PEEK Planar 180–280 20 k 10 min [72]
PEEK Planar 365 25 k 1 min [73]

PC Planar 160 5 300 s [74]
PC Planar 180 10 10 min [75]

Epoxy Planar 95 1.2 10 min [76]
PI Planar 200 3 2 min [77]

CNF RTR 155 8.3 0.3 m/min (imprint time 1 s) [62]
FEP Planar 270 0.18 5 min [78]

ETFE Planar 250 1.38
3.10

10 s
1 min [79]

PEI Planar 285 1.0 3 min [80]
CA RTR 115 13.6 0.2 m/min [81]
PSU RTR 155 300 N/mm 2.1 m/min [82]
PES RTR 166 300 N/mm 2.1 m/min [82]
PVC Planar <120 <1 N/A [83]

PMMA, Poly(methyl) methacrylate; PS, Polystyrene; PEN, Polyethylene naphthalate; PE, Polyethylene; PP,
Polypropylene; PET, Polyethylene terephthalate; COC, Cyclic olefin copolymer; PEEK, Polyether ether ketone; PC,
Polycarbonate; PI, polyimide; CNF, Cellulose nano fiber; FEP, Fluorinated Ethylene Propylene; ETFE, Ethylene
tetrafluoroethylene; PEI, Polyetherimide; CA, Cellulose Acetate; PSU, Polysulfone; PES, Polyethersulphone; PVC,
Polyvinyl chloride.

Poly(methyl) methacrylate (PMMA) is commonly used in optical applications be-
cause of its high transparency. However, its Tg is relatively low, typically below 100 ◦C.
Polystyrene is known for its radiation resistance, making it suitable for applications such as
Petri dishes and food containers. On one hand, polyethylene terephthalate (PET) is trans-
parent and offers excellent gas barrier properties but has limited resistance to acids, alkalis,
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and chemicals. On the other hand, polyethylene naphthalate shares similar properties with
PET but exhibits higher thermal durability and hydrolysis resistance. Polyethylene (PE)
is known for its high chemical durability and low density compared with other plastics.
PE also has a low brittle temperature (around −40 ◦C). Polypropylene (PP) also exhibits
high chemical durability and has a higher hardness than PE. However, PP is prone to
turning white when exposed to sunlight, indicating poor weather resistance. Cyclic olefin
copolymer is valued for its transparency and high refractive index (>1.5), making it suitable
for optical lenses. Polycarbonate is known for its excellent impact resistance and self-
extinguishing properties. Polyether ether ketone is well known for its exceptional thermal
durability (>250 ◦C) and mechanical properties. It is also suitable for use in water and
steam conditions. Polyimide (PI) and polyetherimide (PEI) exhibit high thermal resistance
(>300 ◦C for PI and >170 ◦C for PEI). However, PEI is more cost-effective compared with
PI. Both PI and PEI are transparent materials, although they tend to have a yellowish
color. Fluorinated ethylene propylene (FEP) and ethylene tetrafluoroethylene (ETFE) are
thermoplastic resins used in various applications. Compared with polytetrafluoroethylene
(PTFE), which has excellent chemical durability and low surface tension, the viscosity of
melted FEP and ETFE is low. Therefore, FEP and ETFE are available for molding, while
PTFE requires a cutting process. Cellulose acetate (CA) is a transparent and biodegradable
material. In addition, the UV light resistance of CA is high. Polysulfone and polyethersul-
fone are commonly employed in medical applications such as dialysis membranes because
of their excellent mechanical properties and thermal durability, allowing for autoclave
sterilization. Polyvinyl chloride is known for its good weather resistance but has relatively
low impact resistance. Furthermore, eco-friendly transparent materials such as CA and
CNF are essential for sustainable development.

6. Conclusions and Overview of the Next-Generation T-NIL Process

Various T-NIL processes are introduced, and seamless roll mold fabrication techniques
are reviewed. Planar T-NIL is suitable for silicon- or quartz-based processes because of
the rigid nature of these materials. By contrast, roller or roll-to-roll type T-NIL is very
compatible with fabricating nanopatterns of plastic substrates. In particular, using a T-die
extrusion system facilitates continuous nanopatterned production. Because the belt-type
roll-to-roll system contains many rolls, it enables easier film temperature control. However,
more rolls increase the equipment cost. To date, various fabrication techniques for seamless
roll molds have been investigated (as shown in this review). Seamless roll molds are readily
available. Flexible replica molds are a suitable choice when the presence of a seam is not
an issue in the final products, such as when using a µ-TAS sheet as an individual package.
These molds can be easily attached to a roll substrate, offering the advantage of lower
mold costs. Consequently, roll-to-roll T-NIL with roll molds is suitable for mass production
because of its low equipment cost.

Although the N-curve of the transferred pattern is of concern, precision temperature
control of the roll mold can address this issue. To achieve a stable temperature on the
curved surface of a roll mold, it is crucial to develop a reliable temperature measurement
method. As noted above, flexible nickel or resin replica mold is typically used; however,
forming an emissivity coating layer on the replica mold for radiation thermometers is
challenging. Therefore, calibration techniques for the measured temperature on a roll mold
are required to ensure accurate temperature monitoring.

In the future, a higher throughput roll-to-roll T-NIL process will be needed. Not
only local heating methods but also a local active cooling method should be developed.
In particular, for non-uniform patterns in large mold areas (e.g., mixed patterns with
dense and sparse areas), a new local temperature control method is required to regulate
temperature distribution effectively.

In the roll-to-roll T-NIL process, the significant difference in the thermal conductivity
between metal roll molds and thermoplastic films helps to generate a temperature gradient
in the film, thus preventing deformation. However, polymer replica molds have similar
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thermal properties to thermoplastic films. Consequently, a new replica mold made of a
polymer with a high thermal conductivity should be investigated to reduce mold cost and
increase the throughput in roll-to-roll T-NIL. A high-temperature release agent is required
for applications involving increased aspect ratios of transferred nanopatterns.

Moreover, to facilitate future sustainable development, such as smart-built environ-
ments and wearable systems [84], the T-NIL process for biodegradable plastics must be
investigated further.
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