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Abstract: The ubiquitous presence of pharmaceutical pollution in the environment and its adverse im-
pacts on public health and aquatic ecosystems have recently attracted increasing attention. Graphene
oxide coated with magnetite (GO-Fe3O4) is effective at removing pharmaceuticals in water by adsorp-
tion. However, the myriad compositions in real water are known to adversely impact the adsorption
performance. One objective of this study was to investigate the influence of pore blockage by natural
organic matter (NOM) with different sizes on pharmaceutical adsorption onto GO-Fe3O4. Meanwhile,
the feasibility of pore dimension tuning of GO-Fe3O4 for selective adsorption of pharmaceuticals
with different structural characteristics was explored. It was shown in the batch experiments that
the adsorbed pharmaceutical concentrations onto GO-Fe3O4 were significantly affected (dropped
by 2–86%) by NOM that had size ranges similar to the pore dimensions of GO-Fe3O4, as the impact
was enhanced when the adsorption occurred at acidic pHs (e.g., pH 3). Specific surface areas, zeta
potentials, pore volumes, and pore-size distributions of GO-Fe3O4 were influenced by the Fe content
forming different-sized Fe3O4 between GO layers. Low Fe contents in GO-Fe3O4 increased the
formation of nano-sized pores (2.0–12.5 nm) that were efficient in the adsorption of pharmaceuticals
with low molecular weights (e.g., 129 kDa) or planar structures via size discrimination or inter-planar
π-π interaction, respectively. As excess larger-sized pores (e.g., >50 nm) were formed on the surface
of GO-Fe3O4 due to higher Fe contents, pharmaceuticals with larger molecular weights (e.g., 296
kDa) or those removed by electrostatic attraction between the adsorbate and adsorbent dominated
on the GO-Fe3O4 surface. Given these observations, the surface characteristics of GO-Fe3O4 were
alterable to selectively remove different pharmaceuticals in water by adsorption, and the critical
factors determining the adsorption performance were discussed. These findings provide useful
views on the feasibility of treating pharmaceutical wastewater, recycling valuable pharmaceuticals,
or removing those with risks to public health and ecosystems.

Keywords: graphene oxide; iron oxide; selective adsorption; pharmaceuticals; pore blockage; natural
organic matter

1. Introduction

Pharmaceuticals are one example of contaminants of emerging concern (CECs)m
referring to the chemicals which are not frequently monitored but are under examination for
future regulation. These chemicals have attracted increasing concern due to their ubiquitous
occurrences in the environment and potential adverse impacts on public health and aquatic
ecosystems [1]. Although certain pharmaceuticals are biodegradable and some are excreted
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from human bodies as degradation intermediates [2], the continuously increasing use
of pharmaceuticals has led to their pseudo-persistence in the environment [3]. In recent
decades, many studies have investigated pharmaceutical pollution in different water
environments. For example, Robert et al. analyzed the concentrations of 11 pharmaceuticals
in Australia’s largest inland sewage treatment plant and reported that the removal of most
pharmaceuticals in the plant was incomplete [4]. Certain pharmaceuticals are known to
form carcinogenic byproducts during disinfection [5,6]. A study that reviewed the current
research trends on pharmaceutical pollution suggested that these chemicals are limitedly
biodegradable, and integrated/hybrid technologies are recommended for their removal
from wastewater [7]. Concentrations of pharmaceuticals at trace levels from ng/L to mg/L
in various environmental compartments have been documented [8,9].

Pharmaceuticals include many compounds with different structural characteristics and
physicochemical properties. Metformin (MET) is a medication widely used in the treatment
of diabetes and has been the most-used pharmaceutical in Taiwan for many years (more
than 720 tons in 2019) [5]. Its absorption uptake rate in the human body is approximately
70%, as most of the remaining portion in excreted urine is typically unchanged [10]. MET
was observed in more than 90% of samples in a study that monitored the surface water
quality in North China [11]. MET was detected in the influents of wastewater treatment
plants in the US with high abundance, from several ng/L to less than a hundred mg/L [12].
Diclofenac (DCF) is another pharmaceutical that has a moderate absorption uptake rate
(65%) and commonly remains unchanged in excreted urine [13]. It is a widely used non-
steroid anti-inflammatory drug (NSAID) and has negative influences on aquatic life with
continuous exposure even at trace levels [14]. Although high DCF concentrations up to a
range of mg/L were reported in rivers and wastewater [13], it is photochemically active,
resulting in potential degradation in the environment [14]. Propranolol (PRO) is a beta-
blocker medication typically used in the treatment of hypertension and angina. Over 80%
of the intake dose can be excreted from the human body after metabolism [15]. As a result,
PRO is frequently detected in rivers [16,17] and estuaries [18] in concentrations of up to
142 ng/L.

Graphene is a two-dimensional (2-D) allotrope of carbon which is an excellent ther-
mal and electrical conductor with fine mechanical strength [19]. Its hydrophobic nature
sometimes hinders the application of graphene in water and wastewater treatment. Oxi-
dation of graphene surface forms graphene oxide (GO) enriched with oxygen-containing
functional groups that retain the layered structures and are stably dispersed in water [20].
The hydrophilic GO has a large surface-area-to-volume ratio by being spread as layers of
hexagonal ring-bound carbon structure, causing all atoms in the sheets to be exposed in
water. These characteristics make this material a possible adsorbent for pollutant removal
in water. Previously, we synthesized GO coated with magnetite (GO-Fe3O4) that was
capable of removing pharmaceuticals in deionized water [21] and real wastewater [22].
Compared to GO, the GO-Fe3O4 composite is more readily removed from the water after
adsorption by using a magnetic force. The distance between GO layers and the associated
surface area was adjustable by controlling the mass ratio of Fe3O4 to GO in the synthesis of
the composite. It has been reported that Fe3O4 strengthened the van der Waals force and
π-π interaction between GO layers, preventing aggregation and thus increasing surface
area and adsorption capacity [21,23].

Studies have reported efficient adsorption of organic and inorganic pollutants in-
cluding pharmaceuticals onto GO-Fe3O4 for their removals from the water phase [24–26].
However, while adsorption represents a cost-effective option with high efficiency to remove
trace pollutants in water and wastewater [27], the myriad compositions in real water bodies
are expected to adversely impact the performance of this technology [28]. Our previous
study has observed that the natural organic matter (NOM) in municipal wastewaters re-
duced the adsorption of chlorpheniramine (CLP; an antihistamine medication that treats
upper respiratory infection and allergic conditions in human health) on GO-Fe3O4 by ap-
proximately 30% [29]. The major constituents in NOM are humic and fulvic acids that have
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carboxylic and phenolic groups and different molecular sizes [30]. As such, one objective
of this study was to extend our previous findings and to investigate whether the size of
NOM is important to affect the pharmaceutical adsorption onto GO-Fe3O4, discussing if
the impact stemmed from the competition for adsorption sites in the pores of GO-Fe3O4.
Additionally, as the pore volume and size distribution are adjustable by changing the Fe
content in the synthesis of GO-Fe3O4 [21,24], we further explored the feasibility of altering
the surface characteristics of GO-Fe3O4 to selectively remove different pharmaceuticals in
water by adsorption and the critical factors determining the adsorption performance.

2. Materials and Methods
2.1. Materials

Graphite powder (>99.95%; Acros Organics, Waltham, MA, USA), ferrous chloride
(FeCl2; Thermo Fischer Scientific, Waltham, MA, USA), and ferric chloride (FeCl3; Thermo
Fischer Scientific, Waltham, MA, USA) were used for the preparation of GO-Fe3O4. Stan-
dards of pharmaceuticals, including chlorpheniramine maleate, metformin hydrochloride,
diclofenac sodium, and propranolol hydrochloride, as well as hydrogen peroxide (H2O2),
hydrogen chlorite (HCl), and ammonium chloride (NH4Cl), were purchased from Sigma-
Aldrich (St. Louis, MO, USA). The Suwannee-River-derived NOM (SWNOM) standard
was obtained from the International Humic Substances Society (IHSS, Monterey Park, CA,
USA). The dialysis membrane (Cellu-Sep, Chicago, IL, USA) was used for the preparation
of GO. Potassium permanganate (KMnO4) and sodium nitrate (NaNO3) were obtained
from J.T. Baker (Phillipsburg, NJ, USA). Methanol (J.T. Baker, Phillipsburg, NJ, USA) and
acetone (Avantor, Radnor, PA, USA) were used as the solvents. The buffers included
sodium dihydrogen phosphate (NaH2PO4; Avantor, Radnor, PA, USA), sodium acetate
(CH3COONa; Sigma-Aldrich, St. Louis, MO, USA), sodium bicarbonate (NaHCO3; Sigma-
Aldrich, St. Louis, MO, USA), and sodium carbonate (Na2CO3; Sigma-Aldrich, St. Louis,
MO, USA). Sodium hydroxide (NaOH; Uniregion Biotech, Pomona, CA, USA) and sul-
furic acid (H2SO4; Sigma-Aldrich, St. Louis, MO, USA) were used to adjust the pH in
the experiments.

2.2. GO-Fe3O4 Synthesis

The GO-Fe3O4 synthesis was modified from our previously published studies [24,31].
The surface characteristics of the GO-Fe3O4 composites prepared in this and other studies
were similar, as discussed below, suggesting the reproducibility of the samples. Before
the synthesis of GO-Fe3O4, GO was prepared. Graphite (1 g) was mixed with NaNO3
(0.5 g) in H2SO4 (23 mL) for 15 min. KMnO4 (3 g) was slowly added for 60 min. The
temperature of the solution was controlled at 35–40 ◦C for 2 h, followed by the addition of
water (46 mL). After the color of the solution was changed from gray to brown, the solution
was heated to 85–90 ◦C for 15 min. When the solution was cooled again, H2O2 (30%; 10
mL) was added to turn the solution color yellow. The solid in the solution was filtered
and mixed with HCl (10% v/v). The solid in the solution was collected again and mixed
with HCl (12.5% v/v). The final solution was moved to the dialysis membrane (molecular
weight cutoff (MWCO): 6000–8000, Scientific Biotech Corp., Taipei, Taiwan) and placed in
deionized water. When the solution color in the membrane became black, the solution was
ultrasonicated for 30 min and centrifuged (2000 rpm) for 10 min to obtain GO.

Before the synthesis of GO-Fe3O4, Fe3O4 was prepared by mixing FeCl3 and FeCl2
with a ratio of 2.6 on a weight basis (the molar ratio of Fe3+ to Fe2+ was 2). GO (40 mg;
dry weight) was added into different volumes of Fe3O4 to form GO-Fe3O4 with different
Fe3O4/GO mass ratios. The solution was heated to 85 ◦C, and NH4Cl (25%) was added to
adjust the solution pH to 10. The solution was then rapidly stirred for 45 min to ensure a
complete reaction. After the solution was cooled, the solids in the solution were collected
by centrifugation and washed with deionized water. The GO-Fe3O4 composite was then
obtained by drying the solids at 70 ◦C. The names of GO-Fe3O4, such as GO-Fe3O4-2.5, GO-
Fe3O4-18, and GO-Fe3O4-72, in the following discussion denote the composites prepared
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with FeCl3-to-GO ratios of 2.5, 18, and 72 on a weight basis, respectively. All GO-Fe3O4
composites used in the experiments were controlled at the 40 mesh size.

2.3. NOM Fractionation

Two NOM sources, the SWNOM standard provided by the IHSS and the influent of a
local wastewater treatment plant in southern Taiwan (LNOM), were used to investigate their
interferences on pharmaceutical adsorption onto GO-Fe3O4 in water. The fractionation
of the two NOM sources was modified from the published procedure [32]. The NOM
standards were dissolved in deionized water, followed by adjusting the pH to 7. The
solution was continuously stirred overnight and filtered to remove undissolved solids. A
series of Jumbosep centrifugal filters (Pall Corp., New York, NY, USA) with decreasing
MWCO of 60, 18, and 6 kDa were used for NOM fractionation. Before the fractionation,
the filter units were pre-rinsed with deionized water and centrifuged multiple times.
The NOM solutions were added to the filter units and centrifuged with 4500 rounds per
min (rpm) for 60 min. Sequential fractionation was conducted to acquire NOM fractions
with >60 kDa, (18–60) kDa, (6–18) kDa, and eventually <6kDa. Simply speaking, the
fractionation started by using the filters with an MWCO of 60 kDa. The filtrate from a
higher MWCO was used in the following stage of sequential filtration. The total organic
carbon (TOC) concentrations and ultraviolet absorbance at a wavelength of 254 nm (UV254)
of the retentates from different stages of sequential filtration were analyzed by using a
TOC analyzer (1030W, Aurora, CO, USA) and a UV-Visible scanning spectrophotometer
(DR6000; HACH, Loveland, CO, USA), respectively. The specific ultraviolet absorbance
(SUVA), which is the ratio of UV254 to TOC, was calculated to indicate the composition of
NOM concerning the hydrophobicity, molecular characteristics, and aromaticity [33]. All
NOM solutions after fractionation were stored in the dark at 4 ◦C.

2.4. Characterization

The surface morphology of the composites was analyzed with a scanning electron
microscope (Zeiss Supra 55, Jena, Germany). The crystalline structures were determined
by using an X-ray diffractometer (Bruker D8, Ettlingen, Germany) with monochromatic
Cu-Kα radiation (λ = 1.542 Å). The thermal behaviors of the composites were examined
by using Pyris 1 thermogravimetric analyzer (PerkinElmer, Waltham, MA, USA) at a
heating rate of 10 ◦C/min in a temperature range from 30 ◦C to 875 ◦C. The surface zeta
potentials at different pHs were investigated using the Zeta Potential measurement system
(Malvern Zetasizer Nano Range, Malvern, UK). The specific surface areas were calculated
by using the Brunauer–Emmett–Teller (BET) theory, and the pore size distributions and
pore volumes were calculated with the N2 adsorption–desorption isotherms based on
Barrett–Joyner–Halenda (BJH) theory using an adsorption analyzer (Micromeritics ASAP
2020, Norcross, GA, USA).

2.5. Adsorption Experiment

Batch experiments were conducted in 50 mL polyethylene centrifuge tubes. In the first
experiments, CLP (Figure 1) was used as the model adsorbate. The effects of two NOM
solutions with different sizes and different reaction pHs on CLP adsorption onto GO-Fe3O4
were investigated. In the next experiments, three different pharmaceuticals, MET, DCF, and
PRO, were selected as the target adsorbates (Figure 1) given their different molecular sizes
and structural characteristics. In all experiments, after the reactions were at equilibrium,
GO-Fe3O4 was removed from the water phase via centrifugation (4000 rpm for 15 min)
and magnetic separation. The pharmaceutical concentrations in water were sampled and
analyzed at least in duplicate and within 6 h to limit the influence of water quality variation
after the experiments. The pharmaceutical concentrations in water after the experiments
were used to calculate the adsorbed concentrations on the surface of GO-Fe3O4 (qe).
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2.6. Pharmaceutical Analysis

The pharmaceutical analysis was modified from our previously published stud-
ies [5,24]. The concentrations of pharmaceuticals in the experiments were pre-treated
by solid-phase extraction (SPE), followed by the analysis using ultra-high-pressure liq-
uid chromatography coupled with a tandem mass spectrometer (UPLC-MSMS) [29]. The
extraction cartridge (Oasis HLB, Waters Corp, Milford, MA, USA) used in SPE consists
of a polypropylene tube (3 mL) packed with hydrophilic polymer (60 mg). Before the
extraction, the column was pre-treated with ethyl acetate (3 mL), methanol (3 mL), and
deionized water (3 mL) in order with a flow rate of 3 mL/min. After the column was dried,
250 mL of water sample was introduced into the SPE column by vacuum. Next, 3 mL of
ethyl acetate was used to elute pharmaceuticals adsorbed in the column. 1-Hydroxypyren
(100 ng/L, 10 µL) (Sigma-Aldrich, St. Louis, MO, USA) was spiked as a surrogate into the
ethyl acetate extract. The UPLC (Agilent 1290 II, Santa Clara, CA, USA) was equipped
with a 4.6 mm × 150 mm Poroshell 120 EC-C18 column (2.7 µm particle size; Agilent, Santa
Clara, CA, USA), and 1 mL of the extract was injected. The mobile phase consisted of
acetonitrile (60%, v/v) and ultrapure water (40%, v/v/) with 0.1% formic acid added. The
flow rate was 0.5 mL/min. The column temperature was 40 ◦C. The MSMS (Agilent 5430,
Santa Clara, CA, USA) was performed in the multiple reaction monitoring mode (MRM)
with an ion source of electrospray ionization (ESI).

2.7. Adsorption Isotherm and Kinetics

Adsorption isotherm and kinetics are commonly used to fit the experimental ad-
sorption data of compounds in the water phase. Two isotherm models, the Langmuir
(Equation (1)) and Fruendlich isotherms (Equation (2)), were applied to determine the
isotherm parameters of different pharmaceutical adsorption onto GO-Fe3O4 as follows.

C
qe

=
1

KLqmax
+

C
qm

(1)

logqe = logKF + n × logC (2)

where C [mg/L] and qm [mg/g] represent the adsorbate concentrations in the water phase
and adsorbed on the surface of the adsorbent, respectively; qmax [mg/g] denotes the maxi-
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mum adsorbed concentration in the Langmuir model; KL [L/mg] and KF [(mg/g)/(mg/L)n]
represent the Langmuir constant and Freundlich capacity factor, respectively; and n de-
notes the Freundlich exponent. The kinetics of different pharmaceutical adsorption onto
GO-Fe3O4 was studied as well. By fitting different kinetic models, the pseudo-second-order
model, which is expressed as follows, yielded the best fit for the observation.

t
qt

=
1

kqe
2 +

t
qe

where k represents the second-order rate constant [g/mg-min]; and qt and qe denote the
adsorbed concentrations onto GO-Fe3O4 at the time t and equilibrium [mg/g], respectively.

3. Results and Discussion
3.1. Surface Characterization of GO-Fe3O4

The morphologies of Fe3O4, GO, and GO-Fe3O4 in side view were investigated by
scanning electron microscopy (SEM), as shown in Figure 2A–C. While Figure 2A reveals
the complex Fe3O4 crystalline aggregates, single or multiple layers of tightly stacked GO
are shown in Figure 2B. As shown in Figure 2C, as micro-sized aggregates of Fe3O4 were
dispersed and anchored between the GO layers, the distances between the GO curtains
were increased. The morphology of GO-Fe3O4 still showed a laminated state but became
hybrid. Figure 2D–F show the images of GO-Fe3O4 prepared with different Fe3O4/GO
ratios in the front view. When the Fe fraction in the composite was increased, larger-sized
Fe3O4 aggregates caused the phenomenon of the layer-stacking GO-Fe3O4 structure to
become more obscure [21,24]. Figure 2G shows the X-ray diffraction (XRD) results. The
crystalline characteristics of GO-Fe3O4-2.5, GO-Fe3O4-18, and GO-Fe3O4-72 at 2θ peaks of
30.34◦, 35.73◦, 43.24◦, 54.01◦, 57.40◦, and 62.97◦ were assigned to the lattice planes of (220),
(311), (400), (422), (511), and (440) (JCPDS No. 89-3854), respectively [25]. These peaks
were intensified by increasing the Fe fraction in the composite. A peak at 2θ 10.30◦ was
found in the result of GO-Fe3O4 due to the interplanar spacing of GO [21]. A peak at 2θ
27.73◦ representing the occurrence of FeO(OH) was observed in the profile of GO-Fe3O4
and increased when the Fe3O4 fraction was increased.

Figure 2H shows the thermogravimetric analysis (TGA) results generated on
GO-Fe3O4-2.5, GO-Fe3O4-18, and GOFe3O4-72. The percent loss in mass of GO-Fe3O4
as a function of temperature was illustrated. The curves showed that maximum oxidation
of carbon took place between 600 ◦C and 650 ◦C. Studies have reported similar tempera-
ture ranges for carbon oxidation [34,35]. The residual weights were associated with the
metal contents of the composites. More mass losses were found as the GO content of the
GO-Fe3O4 composites was increased. The total mass losses of 40%, 28%, 23%, and 15%
were found and corresponded with the GO contents of the composites prepared with dif-
ferent Fe3O4/GO ratios, respectively. The zeta potential variations of GO-Fe3O4 prepared
with different Fe fractions were analyzed and are shown in Figure 2H. The zeta potential
of GO-Fe3O4-2.5 ranged from −35 to 0 mV. It was reported that the colloidal dispersion
became stable if the zeta potential was above +30 mV or below −30 mV [36], such as in
the cases of GO-Fe3O4-2.5 and GO-Fe3O4-18 at high pH values. The pH of zero charges
(pHzvc) that showed the maximum coagulation and flocculation occurred at pH 2 in the
cases of GO-Fe3O4-2.5 and GO-Fe3O4-18, suggesting these composites resisted aggregation
at neutral and higher pHs. A high Fe fraction (GO-Fe3O4-72) neutralized the negative
zeta potential and reduced the electrostatic repulsion between GO layers (~0 mV from
pH 2 to 11). These observations suggest that GO-Fe3O4-72 could be aggregated at differ-
ent pHs for easier separation from the water after adsorption, whereas GO-Fe3O4-2.5 and
GO-Fe3O4-18 were well dispersed for potentially better adsorption at neutral and high pHs.
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Figure 2. (A) SEM images of the side views of GO, (B) Fe3O4, and (C) GO-Fe3O4-2.5; (D) front views of
GO-Fe3O4-2.5, (E) GO-Fe3O4-18, and (F) GO-Fe3O4-72; (G) XRD patterns; (H) TGA results; (I) surface
charge variations of GO-Fe3O4 at different pHs; and (J) low-temperature N2 adsorption/desorption
isotherms of GO, (K) Fe3O4, and (L) GO-Fe3O4-2.5.

Table 1 lists the specific surface areas and pore volume distributions of GO-Fe3O4
prepared with different Fe3O4/GO ratios analyzed by the Brunauer–Emmett–Teller (BET)
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theory. The results revealed that the pore sizes of the GO-Fe3O4 composites were mostly
below 50 nm and the total pore volume decreased from 1.09 (GO-Fe3O4-72) to 0.21 cm3/g
(GO-Fe3O4-2.5). Nevertheless, as the Fe fraction was reduced, the total specific surface
area was increased by 34.7% from 302 (GO-Fe3O4-72) to 407 m2/g (GO-Fe3O4-2.5). The
internal surface area was more significantly increased by 585.7% from 14 (GO-Fe3O4-72)
to 96 m2/g (GO-Fe3O4-2.5). Zhao et al. reported the surface area (84.091 m2/g) and pore
volume (0.246 cm3/g) of Fe3O4 nanoparticles [37]. Alizadeh et al. observed a pore volume
of 0.0763 cm3/g for Fe3O4 through the N2 adsorption–desorption measurement [38]. The
higher surface area and the dominance of micro-/mesopores could improve the capture
and removal of compounds in water by size discrimination or capillary force. Figure 3
shows the particle size distribution analyses of the composites, indicating that most of the
pore sizes were below 50 nm, and ~90% of the pore sizes of GO-Fe3O4-2.5 ranged from 1 to
7 nm.

Table 1. Specific surface areas, pore volumes, and pore size distributions of GO-Fe3O4 prepared with
different Fe3O4/GO ratios.

Composite
Specific Surface Area (m2/g) Pore Volume

Total Micro External Total (cm3/g) <2 nm (%) 1 2–50 nm (%) 1 >50 nm (%) 1

GO-Fe3O4-2.5 407 96 311 0.21 25 74 1
GO-Fe3O4-18 331 31 300 0.30 22 77 1
GO-Fe3O4-72 302 14 288 1.09 7 92 1

1 The results listed for <2, 2–50, and >50 nm denote the volumes of micro-, meso-, and macropores in proportion
to the total pore volumes of GO-Fe3O4.
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Figure 3. Pore size distributions of (A) GO-Fe3O4-2.5, (B) GO-Fe3O4-18, and (C) GO-Fe3O4-72.

3.2. Pore Blockage Effect of NOM

The successful sequential fractionation of SRNOM and LNOM to produce distinct
molecular weight (MW) fractions was confirmed by TOC analysis, as shown in Figure 4A.
The NOM recoveries based on the cumulative TOC concentrations through the entire
sequential fractionation ranged from 77% to 95%. In Figure 4A, the fractions of SRNOM
<6 kDa, (6–18) kDa, (18–60) kDa, and >60 kDa are 6%, 3%, 3%, and 89%, respectively. The
fractions of LNOM < 6 kDa, (6–18) kDa, (18–60) kDa, and >60 kDa were 28%, 29%, 16%,
and 28%, respectively. The larger-sized OM (>60 kDa) dominated the SRNOM, whereas
the sizes of OM in the LNOM were more equally distributed. Given this observation, the
SRNOM fractions >60 and <60 kDa were separated and used to investigate their impacts
on the adsorption performance of GO-Fe3O4.
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Figure 4. (A) TOC analyses of SWNOM and LNOM, pore blockage effects by (B) SWNOM and
(C) LNOM on CLP adsorption onto GO-Fe3O4 at different pHs, and (D) SUVA analyses of SWNOM
and LNOM. The CLP and GO-Fe3O4 concentrations were 20 and 400 mg/L, respectively. The reaction
time was 24 h.

Figure 4B reveals the pore blockage of SRNOM with different sizes (20 mg/L) on CLP
adsorption onto GO-Fe3O4. The adsorbed concentration was estimated by calculating the
CLP concentration adsorbed onto GO-Fe3O4. In the results, the pH effect seemed to be
more critical than the NOM size for influencing the adsorption performance. Given the
pKa values of CLP (3.7 and 9.2) [21] and zeta potential of GO-Fe3O4 (Figure 2I), neutral or
high pHs resulted in stronger electrostatic attraction between positive CLP and negative
GO-Fe3O4, increasing the adsorption efficiency. Compared with the result of the control
experiment, the adsorbed concentration dropped by up to 48% in the presence of NOM.
Humic acid and fulvic acid, two common species of NOM, typically exhibit negative
surface charges at neutral and high pHs [39,40], and are expected to have a lower degree of
interference on CLP adsorption onto GO-Fe3O4 due to the electrostatic repulsion. However,
the repulsion force decreased at low pHs, increasing the pore blockage effect of NOM. At a
low pH (e.g., pH 3 in Figure 4B), evident competitive adsorption between CLP and NOM,
notably those with MW > 60 kDa, onto GO-Fe3O4 was observed.

Figure 4C shows the pore blockage of LNOM with different sizes (20 mg/L) on CLP
adsorption onto GO-Fe3O4. Like the observation using SRNOM, the adsorbed concentration
was significantly reduced at low pHs in the absence and presence of NOM with different
sizes (the qe was dropped by 2–86% from pH 11 to 3). However, besides the pH effect, it
was found that the NOM between (6–18) kDa exhibited higher impacts on the adsorption
at neutral and high pHs, as the influence of NOM between (6–18) kDa and (18–60) kDa
became more evident at pH 3 (the adsorbed concentration was dropped by 66% and 86%,
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respectively). Using an equation of Rmin = (3V/4)1/3 (where Rmin and V represent the size
in nm and MW in Da, respectively) for the NOM size prediction [41], the size ranges of
NOM between (6–18) kDa and (18–60) kDa were (1.2–1.7) and (1.7–2.6) nm, respectively.
Our BET analysis indicated that ~90% of the pore sizes of GO-Fe3O4-2.5 ranged from 1 to
7 nm (Figure 3A). Given the similar findings between the pore size estimation and BET
analysis, the adsorbed concentration was significantly affected by the presence of NOM
that had size ranges close to the pore dimensions of GO-Fe3O4, especially when adsorption
occurred at low pHs. Similar pore blockage effects of NOM or minerals on the adsorption of
different compounds have also been reported [42,43]. Figure 4D shows the SUVA analyses
of SWNOM and LNOM. The SUVA values of SWNOM < 60 and > 60 kDa were 0.57 and
3.14 L mg-C−1 m−1, respectively. The SUVA values of LNOM fractions < 6, (6–18), (18–60),
and >60 kDa were 0.07, 0.13, 0.14, and 0.67 mg-C−1 m−1, respectively. Although the
SWNOM, notably the fraction > 60 kDa, exhibited higher hydrophobicity and aromaticity,
given the observations above, the pore size effect of NOM appeared to be more critical in
interfering with the CLP adsorption onto GO-Fe3O4.

3.3. Selective Adsorption by Pore Size Tuning: Isotherm

While pore blocking that occurred when NOM exhibited size distributions similar
to those of GO-Fe3O4-influenced CLP adsorption, the feasibility of tuning the pore size
dimension of GO-Fe3O4 for selective pharmaceutical adsorption was investigated. The
specific surface area, pore volume, and pore size distribution of GO-Fe3O4 were adjusted
by changing the Fe3O4/GO ratio in the synthesis procedure (Table 1). Figure 5A–C reveal
the adsorption of MET, PRO, and DCF onto these GO-Fe3O4 composites. The adsorbed
concentrations of pharmaceuticals quickly increased and reached apparent plateaus. In
the result of the GO-Fe3O4-S2.5 experiment, the maximum adsorption capacities among
three pharmaceuticals were decreased in the order: PRO > DCF > MET. A similar order
was found in the experiment using GO-Fe3O4-18. However, when GO-Fe3O4-72 was added
to the experiment, the DCF adsorption dominated and the adsorbed concentrations of the
other two pharmaceuticals were negligible.
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Figure 5. Pharmaceuticals adsorptions onto (A) GO-Fe3O4-2.5, (B) GO-Fe3O4-18, and (C) GO-Fe3O4-72.
The solid and dashed lines denote the Langmuir and Freundlich fits of the observed data, respectively.
The initial pharmaceutical concentration ranged from 10 to 90 mg/L. The experimental pH was 6 and
the contact time was 24 h. The fitting was not conducted for certain results that showed negligible
adsorbed concentrations.

Our previous study has estimated the crystalline sizes of Fe3O4 (e.g., 5.60–6.22 nm in
GO-Fe3O4-2.5) using the Scherrer equation and the XRD data, suggesting that the crystalline
sizes corresponded to the pore size distributions of GO-Fe3O4 [21]. As GO-Fe3O4-2.5 exhib-
ited a relatively higher specific surface area and smaller pore size (Table 1 and Figure 4A), a
higher Fe3O4/GO ratio potentially increased the interplanar spacing and larger-sized pore
formation (e.g., GO-Fe3O4-18 or GO-Fe3O4-72 in Figure 5B,C, respectively). The MWs of
MET, PRO, and DCF were 129, 259, and 296 Da, respectively. Although PRO did not have
the lowest MW between the three pharmaceuticals, the fused-ring aromatic (C10H7O) struc-
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ture possibly engendered its better adsorption onto GO-Fe3O4 that was mainly comprised
of 2-D GO via size discrimination and/or p-p coupling with benzene rings on the surface
of GO layers. In the experiments using GO-Fe3O4-18 that had a lower specific surface
area, the adsorbed concentration of all pharmaceuticals dropped. When the pore size was
significantly increased in the case of GO-Fe3O4-72, DCF that had a larger MW was more
easily adsorbed onto GO-Fe3O4 and dominated the adsorption (Figure 5C).

The Langmuir and Freundlich isotherms were employed to fit the observed data for
investigating the adsorption of three pharmaceuticals onto GO-Fe3O4 (Table 2). The results
of MET in the GO-Fe3O4-18 and GO-Fe3O4-72 experiments as well as that of PRO in the
GO-Fe3O4-72 experiment were not analyzed, since their adsorbed concentrations were
negligible. In the results, the Langmuir model exhibited better fits for all data, indicating
monolayer coverage of adsorbed pharmaceuticals on the surface of GO-Fe3O4 layers [44].
Note that the majority of the surface area was on the GO surface. Adjusting the Fe3O4/GO
ratio changed the interplanar spacing, affecting the ease of reaching the surface area. The
decreasing CLP adsorption observed above was attributable to the pore blockage when
GO-Fe3O4 had a pore (or interplanar) size similar to that of NOM.

Table 2. Adsorption isotherm models used to fit the observed sorption data.

Langmuir Freundlich

qmax
(mg/g)

KL
(L/mg) R2 n KF

((mg/g)/(mg/L)n) R2

GO-Fe3O4-2.5
PRO 144.93 0.54 0.99 0.23 59.99 0.92
DCF 51.28 0.11 0.98 0.28 13.95 0.94
MET 36.76 0.07 0.99 0.36 6.55 0.98

GO-Fe3O4-18 PRO 66.67 0.12 0.98 0.19 25.69 0.95
DCF 45.05 0.07 0.89 0.19 16.14 0.65

GO-Fe3O4-72 DCF 106.38 0.18 0.98 0.10 61.62 0.77

In Figure 5, PRO and MET showed the highest (144.9 mg/g) and lowest qmax (36.8 mg/g)
in the GO-Fe3O4-2.5 experiment. Because of the pKa values of MET (2.8 and 11.5) [45,46]
and PRO (9.5) [47,48], their surfaces had positive charges at pH 6 in the experiments [49].
DCF had a negative surface charge at pH 6 due to its pKa value of 4.2 [47,50,51]. Given
the negative surface charges of GO-Fe3O4 (Figure 2I), DCF seemed to be less effectively
adsorbed. However, in the experiment using GO-Fe3O4-72 that had a neutral surface
charge because of high Fe content, DCF became the dominant species. The discussion
here suggested that, besides the surface area, the structural dimensions (e.g., pore sizes
of GO-Fe3O4 and planarity of PRO) and surface charges of adsorbent and adsorbate were
critical and could be tuned for selective adsorption onto GO-Fe3O4.

3.4. Selective Adsorption by Pore Size Tuning: Kinetics

Figure 6A–C show the experimental data with linear equations of the pseudo-second-
order kinetic models obtained by using the linear method for the sorption of three phar-
maceuticals under study onto GO-Fe3O4 prepared with different Fe3O4/GO ratios. The
initial pharmaceutical concentrations were 90 mg/L and the reaction pH was 6. Table 3
lists the values of the pseudo-second-order kinetic model constants (k) and the amount of
the pharmaceuticals adsorbed at equilibrium (qe). The regression values suggested that
there was strong positive evidence that the pharmaceutical adsorption onto GO-Fe3O4 fol-
lowed the pseudo-second-order kinetic expression. A pseudo-second-order kinetic model
suggested the chemical adsorption of these pharmaceuticals onto GO-Fe3O4 [52,53]. The
initial sorption rates (k × qe

2) [g/mg-min] of three pharmaceuticals onto GO-Fe3O4 pre-
pared with different Fe3O4/GO ratios, when t approached zero, were calculated (Table 3).
Similar to the trends in Figure 5, the initial adsorption rates of MET (from 8.56 mg/g-min
in Figure 6A to negligible in Figure 6B,C) and PRO (from 30.09 in Figure 6A and 3.19 mg/g-
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min in Figure 6B to 1.21 mg/g-min in Figure 6C) were reduced, as the specific surface
area and pore size of GO-Fe3O4 were decreased and increased, respectively. Note that
PRO had a much higher initial adsorption rate (30.09 mg/g min) in the experiment using
GO-Fe3O4-2.5, potentially attributable to its structural planarity enhancing the adsorption
onto 2-D GO layers. The increasing initial adsorption rate of DCF (from 2.66 mg/g-min
in Figure 6A to 4.47 mg/g-min in Figure 6C) also corresponded well to its more efficient
adsorption when GO-Fe3O4-72 that had larger pore sizes was used (Figures 5C and 6C).
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Table 3. Adsorption kinetic models used to fit the observed sorption data.

GO-Fe3O4-2.5 GO-Fe3O4-18 GO-Fe3O4-72

MET PRO DCF PRO DCF PRO DCF

k (g/mg min) 7.55 × 10−3 3.91 × 10−3 1.02×10−3 1.01 × 10−3 4.56 × 10−3 5.1 × 10−4 7.9 × 10−3

qe (mg/g) 33.67 87.72 51.02 56.18 25.58 48.78 75.19
k × qe

2 (g/mg-min) 8.56 30.09 2.66 3.19 2.98 1.21 4.47
R2 0.99 0.99 0.78 0.98 0.99 0.97 0.99

3.5. Discussion

Correlation analysis was undertaken to investigate the relationships between the ad-
sorbed concentrations of different pharmaceuticals and surface characteristics of GO-Fe3O4,
as listed in Table 4. A strong negative correlation (r = −0.85) was observed between the Fe
content and the specific surface area of GO-Fe3O4, whereas a higher Fe content increased
the surface zeta potential (r = 0.99) and pore volume (r = 0.99). More importantly, the results
showed that a lower Fe content in GO-Fe3O4 increased the adsorption of MET (r = −0.67)
and PRO (r = −0.94).

Table 4. Correlation coefficients between the surface characteristics of GO-Fe3O4 and pharmaceutical
adsorption. The numbers marked in bold indicate a strong linear relationship (the coefficient is larger
than 0.75 or smaller than −0.75).

GO-Fe3O4 Adsorbed Concentration

Fe Content SA ZP PV MET PRO DCF

Fe content 1 −0.67 −0.94 0.95
SA −0.85 1 0.96 0.98 −0.65
ZP 0.99 −0.87 1 −0.70 −0.95 0.94
PV 0.99 −0.80 0.99 1 −0.61 −0.90 0.98

In summary, trace Fe content creating nano-sized Fe3O4 crystals that prevented GO
layer stacking helped form nanopores between Fe3O4 crystals and GO layers and short
interplanar spacing. Smaller compounds, such as MET, or those with 2-D planar structures,
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such as PRO, that contain nonpolar fused rings at one end of the molecule attached to a
chiral side chain could be more efficiently adsorbed onto GO layers under this circumstance
by inter-planar π-π interactions or van der Waals forces [54,55]. Increasing the Fe contents
enhanced the larger-size pore formation (r = 0.99 in Table 4), attributable to larger sizes
of Fe3O4 crystals and interplanar spacing of GO layers, and increased the surface zeta
potential (r = 0.99). Under these circumstances, DCF that had a larger MW (r = 0.98)
and a negative surface charge at neutral pHs (r = 0.94) became more effectively adsorbed
as observed in the experiments using GO-Fe3O4-72. The amounts of pharmaceuticals
were accommodated in a single molecular layer on the surface of GO-Fe3O4. The initial
chemisorption rates of the pharmaceuticals with structural planarity and those with larger
molecular weights were enhanced on the surfaces of GO-Fe3O4 that were prepared with
low and high Fe contents, respectively.

4. Conclusions

With the effect of the Fe content on the pore size dimensions of GO-Fe3O4 and the
negative influence of NOM on pharmaceutical adsorption on GO-Fe3O4, this study de-
termined that the adsorbed pharmaceutical concentrations on the surface of GO-Fe3O4
were significantly affected by NOM that had size ranges close to the pore dimensions of
GO-Fe3O4. The influence of NOM was further enhanced when the adsorption reaction
occurred at low pHs. The pore size dimensions of GO-Fe3O4 were tunable by changing
the Fe content in the synthesis to form the GO-Fe3O4 composites that had different specific
surface areas, zeta potentials, pore volumes, and pore size distributions. As low Fe contents
in the synthesis increased the nano-sized pore formation in the GO-Fe3O4 composite, the
adsorption of pharmaceuticals that had smaller sizes (e.g., MET) or planar structural charac-
teristics (e.g., PRO) was enhanced via size discrimination and inter-planar π-π interactions.
Increasing the Fe content resulted in excess larger-sized pore formation in the GO-Fe3O4
composite. In this case, the electrostatic attraction based on the surface charges of adsorbate
and GO-Fe3O4 was critical and the pharmaceuticals with larger MWs became dominant on
the surface of the composite.

In conclusion, the presence of pharmaceuticals in wastewater is known as a challenge
environmentally, notably due to their unknown impacts on human health and aquatic
ecosystems. The findings in this study provided insight into pore blockage by NOM and the
potential of tuning the pore dimensions on the surface of GO-Fe3O4 for selective pharma-
ceutical adsorption. Although more information on producing and optimizing composites
such as GO-Fe3O4 for real wastewater treatment is needed, the discussion here provided
useful views on the feasibility of this technology for treating pharmaceutical wastewater.
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