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Abstract: Organic small-molecule semiconductor materials have attracted extensive attention because
of their excellent properties. Due to the randomness of crystal orientation and growth location,
however, the preparation of continuous and highly ordered organic small-molecule semiconductor
nanocrystal arrays still face more challenges. Compared to organic macromolecules, organic small
molecules exhibit better crystallinity, and therefore, they exhibit better semiconductor performance.
The formation of organic small-molecule crystals relies heavily on weak interactions such as hydrogen
bonds, van der Waals forces, and π–π interactions, which are very sensitive to external stimuli such as
mechanical forces, high temperatures, and organic solvents. Therefore, nanocrystal array engineering
is more flexible than that of the inorganic materials. In addition, nanocrystal array engineering is
a key step towards practical application. To resolve this problem, many conventional nanocrystal
array preparation methods have been developed, such as spin coating, etc. In this review, the typical
and recent progress of nanocrystal array engineering are summarized. It is the typical and recent
innovations that the array of nanocrystal array engineering can be patterned on the substrate through
top-down, bottom-up, self-assembly, and crystallization methods, and it can also be patterned
by constructing a series of microscopic structures. Finally, various multifunctional and emerging
applications based on organic small-molecule semiconductor nanocrystal arrays are introduced.

Keywords: organic small-molecule semiconductors; patterning; optoelectronic application;
nanocrystal arrays

1. Introduction

Since the organic light-emitting diode (OLED) has become a research hotspot in
academia and industry, organic small-molecule semiconductor materials have also come
into people’s view. On the one hand, organic small-molecule semiconductor materials
typically exhibit better semiconductor performance than polymer semiconductor materials
due to their better crystallization properties. On the other hand, compared to traditional
silicon-based semiconductor materials, organic small-molecule semiconductor materials
also have the characteristic of being solution processable. Therefore, they are more suitable
for the low energy consumption needs of future flexible electronic devices. In addition,
the preparation of high-quality and high-density crystal arrays is crucial for the practical
application of organic small-molecule semiconductor materials. Taking information dis-
play as an example, the density of an organic small-molecule crystal array determines the
pixel density. Therefore, research on the processing technology of organic small-molecule
semiconductors has always been a hotspot for organic electronics. However, organic
small-molecule semiconductors are often subject to uncontrolled nucleation and growth
during solution treatments, which results in poor reproducibility and performance of the
nanocrystal arrays, limiting their function in electronic devices. To overcome this obstacle,
considerable efforts have been put into adjusting the interface engineering conditions [1]
for molecule stacking and nanocrystal array manufacturing by improving deposition tech-
niques, solvent evaporation rates, liquid surface tension, heat treatment, and substrate
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surface energy. However, although considerable progress has been made in recent years,
the correlation between preparation conditions and final morphology is still insufficient to
explain the mechanism of solid solution treatment of organic small-molecule solutions [2,3].
Over the past few decades, various solution-based coating techniques [4] have been devel-
oped to control nanocrystal array crystallization, such as traditional spin coating [5]. At
present, there are various methods for preparing organic small molecule crystal arrays [6],
the main methods and means include the top-down method, bottom-up method [7,8],
self-assembly method, crystallization method, and patterning method [9,10]. Top-down
approaches often utilize micromachining methods [11] such as lithography. The bottom-up
strategy uses controlled self-assembly, directed growth, and templates to prepare organic
small-molecule semiconductor crystal arrays. Organic small-molecule semiconductors can
also be used with inorganic semiconductors for high-performance transistors. In this paper,
we will introduce the patterning of organic small-molecule semiconductor nanocrystal
arrays and photoelectric applications and provide ideas for the future development of
organic small-molecule semiconductor materials.

2. Methods

The methods of organic small-molecule semiconductor nanocrystal array are generally
divided into spin coating and blade coating. In recent years, new methods of top-down,
bottom-up, self-assembly, crystallization, and microstructure template have been developed,
which greatly improve the photoelectric performance of organic small-molecule nanocrystal
arrays, and can be improved on the basis of these methods by combining them with the
use of microstructure templates to control the size and orientation of crystal arrays. These
new methods can be used to prepare large scale organic small-molecule nanocrystal arrays
with simple operation.

2.1. Spin Coating

Spin coating [12] is the most widely used solution processing method [13] in the field
of organic electronics, which can be directly used in the preparation of organic field-effect
transistor (OFET). The rate of rotation determines the rate at which organic small molecules
crystallize and heal [14]. By slowing down the rotation rate of the substrate, this can
further slow solvent evaporation and improve carrier mobility by orders of magnitude. For
example, see the organic small-molecule semiconductor 6,13-bis(triisopropylsilylethynyl)
pentacene (TIPS-PEN). Figure 1a shows the spin coating of TIPS-PEN nanocrystal arrays.
Figure 1b shows the time evolution of Bragg slice strength (area under curve) at different
rotational speeds (001). In Figure 1c, the optical microscope (OM) images of TIPS-PEN at
different times can be seen. In Figure 1d, the relationship between film-forming time and
rotation velocity is given. The disadvantage of spin coatings is that TIPS-PEN nanocrystal
arrays contain many microcrystals with different orientations. Due to the action of centrifu-
gal force, the thickness of the prepared organic small-molecule semiconductor nanocrystal
arrays is not uniform.
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method. (b) Absorption strength of TIPS-PEN crystals at different rotational speeds [12]. Copy-
right© The Royal Society of Chemistry 2014. (c) Optical microscope (OM) images of TIPS-PEN crys-
tals at different times. (d) The relationship between growth time and rotation rate of crystal arrays 
[13]. Copyright© The Royal Society of Chemistry 2019. 
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then heat the bottom substrate. Using the shear force generated by the blade during scrap-
ing and coating, the continuous smooth organic small-molecule semiconductor nanocrys-
tal arrays can be quickly prepared over a large area. The surface of the scraper has a very 
smooth blade, and speed can be applied to move it across the substrate, so that the solution 
of organic small molecules is evenly spread on the substrate and the nanocrystal array is 
formed. The charge mobility of the Dif-TES-ADT nanocrystalline array with an organic 
field-effect transistor (OFET) is 5.54 cm2V−1S−1. The difference between the direct writing 
method, the groove coating method, and the scraper method is that a tank containing so-
lution is added above the blade, so that more organic small-molecule semiconductor nano-
crystal arrays can be prepared. Figure 2a shows Dif-TES-ADT nanocrystal arrays that 
were prepared using the scraper method [15]. Figure 2b shows the groove coating method 
[16]. Figure 2c shows how the direct writing method is used to guide meniscus. The 6,13-
bis(triisopropylsilylethynyl) tetraazapentacene (TIPS-TAP) casting is deposited in the 
scraper area [17]. In Figure 2d, when the micro-slot writer and the substrate move relative 
to each other, the 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-
C10) solution is deposited on the surface [18]. The nanocrystal arrays prepared by these 
methods have uniformly oriented crystal bands and are simple to operate. 

Figure 1. (a) The (001)-oriented TIPS-PEN nanocrystal array was obtained using the spin coating
method. (b) Absorption strength of TIPS-PEN crystals at different rotational speeds [12]. Copyright©
The Royal Society of Chemistry 2014. (c) Optical microscope (OM) images of TIPS-PEN crystals at
different times. (d) The relationship between growth time and rotation rate of crystal arrays [13].
Copyright© The Royal Society of Chemistry 2019.

2.2. Blade Coating

Nanocrystal arrays of organic small-molecule semiconductors, such as 2,8-difluoro-
5,11-bis(triethylsilylethynyl)anthradithiophene (Dif-TES-ADT) are prepared using scraper
coating technology and micro-groove writing devices. The scraper method is to place the
organic small-molecule solution in the upper blade of the micro-groove, and then heat
the bottom substrate. Using the shear force generated by the blade during scraping and
coating, the continuous smooth organic small-molecule semiconductor nanocrystal arrays
can be quickly prepared over a large area. The surface of the scraper has a very smooth
blade, and speed can be applied to move it across the substrate, so that the solution of
organic small molecules is evenly spread on the substrate and the nanocrystal array is
formed. The charge mobility of the Dif-TES-ADT nanocrystalline array with an organic
field-effect transistor (OFET) is 5.54 cm2V−1S−1. The difference between the direct writing
method, the groove coating method, and the scraper method is that a tank containing
solution is added above the blade, so that more organic small-molecule semiconductor
nanocrystal arrays can be prepared. Figure 2a shows Dif-TES-ADT nanocrystal arrays
that were prepared using the scraper method [15]. Figure 2b shows the groove coating
method [16]. Figure 2c shows how the direct writing method is used to guide meniscus. The
6,13-bis(triisopropylsilylethynyl) tetraazapentacene (TIPS-TAP) casting is deposited in the
scraper area [17]. In Figure 2d, when the micro-slot writer and the substrate move relative
to each other, the 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C10)
solution is deposited on the surface [18]. The nanocrystal arrays prepared by these methods
have uniformly oriented crystal bands and are simple to operate.
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Figure 2. (a) Scraper method [15]. Copyright© The Royal Society of Chemistry 2020. (b) TIPS-PEN
was prepared by trough coating [16]. Copyright© 2017 Elsevier B.V. All rights reserved. (c) Regional
casting deposition of TIPS-TAP solution [17]. Copyright© The Royal Society of Chemistry 2016.
(d) Micro-slot writing of Ph-BTBT-C10 solution [18]. Copyright© The Royal Society of Chemistry and
IChemE 2022.

2.3. Microstructural Template Patterning Method
2.3.1. Selective Contact Evaporation Printing

The selective contact evaporation printing (SCEP) method [19] can accurately prepare a
variety of SC TIPS-PEN single-crystal arrays with the same molecular orientation, including
square, rectangular, and hexagonal. This top-down etching technique, in which the size of the
single crystal pattern can be controlled, uses the 6,13-bis(triisopropylsilylethynyl)pentacene
(TIPS-PEN) molecule to undergo selective thermal evaporation at the polydimethylsiloxane
(PDMS) interface of the elastomer, and then diffuses into the micro–nano structure of the
mold to form a clear SC TIPS-PEN etching microregion. Figure 3a shows that SC TIPS-PEN
was prepared using the SCEP method. Its switching current ratio and field-effect mobility
are approximately 106 and 0.36 cm2V−1S−1, respectively. A solution composed of small or-
ganic molecules flows outward under evaporation, transporting the solute to the edge of the
droplet and causing the crystals to grow unevenly over a given area. Submicron scale high-
fidelity 2,7-dioctyl[1]benzothieno[3,2-b] benzothiophene (C8-BTBT) single-crystal arrays
are realized using the capillary force driven molecular flow selective contact method [20].
Figure 3b shows organic small-molecule C8-BTBT patterned nanocrystal arrays. Due to
the vertical limitation of the deep channel mold, high-quality single crystal structure [21]
is retained in the organic small-molecule nanocrystal arrays. Figure 3c shows optical mi-
croscopic images of microchannel C8-BTBT crystals at different temperatures. Figure 3d
contains a scanning electron microscope (SEM) image of C8-BTBT crystal arrays. In this
way, many arrays of organic small-molecule semiconductor nanocrystal arrays can be
grown simultaneously. It can also control the crystal size by the size of the microstructure.
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Figure 3. (a) SCEP method [19]. Copyright© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
(b) C8-BTBT microstructured crystal array prepared using capillary force driven molecular flow [21].
(c) Optical microscopic images of microchannel C8-BTBT crystals at different temperatures. (d) SEM
image of C8-BTBT crystal arrays. Copyright© 2020 Elsevier Ltd. All rights reserved.

2.3.2. Template-Assisted Self-Assembly (TASA)

Template-assisted self-assembly (TASA) technology [22] uses directional geometry to
control the size and arrangement of nanostructures. It combines bottom-up self-assembly
with top-down lithography template. Organic small-molecule semiconductor crystal
materials can realize the ordered and regular arrangement of molecular structures in
a semi-closed system, and it can be used for the patterning of organic small-molecule
semiconductors [23]. Examples include C10-BTBT, TIPS-PEN, and TES-ADT. Figure 4a–d
shows the template-assisted self-assembly method. The PDMS patterned template was
impregnated with a 1,2-dichloroethane (DCE) solvent, then the template was placed on
triethylsilylethynyl anthradithiophene (TES-ADT) nanocrystal arrays, and the rectangular
pattern of TES-ADT nanocrystal arrays was obtained by separating the PDMS template [24].
This method can prepare organic small-molecule semiconductor crystal arrays with various
patterns and shapes. The top contact of OFET with TES-ADT crystals exhibits an excellent
field-effect mobility of about 0.3 cm2V−1S−1. Figure 4e–h shows the pre-template with
polydimethylsiloxane (PDMS). The self-aligning properties of 2,7-didecylbenzothieno[3,2-
b][1]benzothiophene (C10-BTBT) meso-crystalline liquid crystal phase enable it to be pro-
cessed and micropatterned without solvent. The microstructure of organic small-molecule
semiconductor crystal arrays can be regulated by controlling the evaporation of solvents
within the dry droplet. In Figure 4i–l, planar-oriented crystal arrays with well-defined
patterns and free surfaces can easily be obtained with the help of polyvinyl alcohol (PVA)
micro-templates by simply melting meso-organic liquid crystal semiconductors at isen-
tropic temperatures, cooling to a crystalline phase, and then sequentially removing the
PVA templates. Figure 4m–p shows a polarization microscope (POM) image of an organic
small-molecule semiconductor after removing the PVA template. The template-assisted
self-assembly method has the advantage that it can be used for the preparation of many
different kinds of organic small-molecule semiconductor nanocrystal arrays, the size of
nanocrystal arrays can be controlled by designing the size of template microstructure, and
it can also be applied on a large scale.
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organic small-molecule semiconductor crystal PVA template. (j) PVA template channels are added 
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and bent and flexible substrates. There is asymmetric wettability of the microstructures 
[26] of 2,7-dioctyl[1]benzothieno[3,2-b] benzothiophene (C8-BTBT) single-crystal arrays 
with large areas of fine graphics that have been prepared with the characteristics of being 
highly crystalline, with crystal orientation, regular arrangement, and uniform size. Figure 
5b shows that it has a hydrophobic side wall and a hydrophilic top, and uses the resulting 
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hydration of organic solution and ordered accumulation of molecules, thus regulating 
mass transfer, molecular accumulation, nucleation, and crystal growth. One-dimensional 
organic single-crystal arrays have pure (100) crystal orientation, are π–π stacked in the 

Figure 4. (a) The PDMS template is dipped into 1,2-dichloroethane (DCE) solvent. (b) The DCE wet
PDMS template is placed on the TES-ADT nanocrystal arrays. (c) The PDMS template is separated to
obtain the TES-AD crystal pattern. (d) The Au electrode and TES-ADT constitute the OFET device [23].
Copyright© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (e) The PDMS template begins
to contact the ITO substrate. (f) C10-BTBT powder is placed into the channel. (g) At a certain
temperature, the liquid C10-BTBT crystal material fills in the groove by capillary action, and after
separating the PDMS template the C10-BTBT crystal pattern is obtained. (h) C10-BTBT can be used
as a photoelectric device [24]. Copyright© 2016 Elsevier B.V. All rights reserved. (i) Planar-oriented
organic small-molecule semiconductor crystal PVA template. (j) PVA template channels are added to
organic small-molecule semiconductors. (k) The PVA template is separated from the crystal array.
(l) Preparation of organic small-molecule semiconductor devices. (m–p) Polarizing microscope im-
ages: C10-BTBT, C8-BTBT, C4-BTBT, TTP [22]. Copyright© 2017 The Japan Society of Applied Physics.

2.3.3. Soft Photolithography

Soft photolithography has the advantages of short operation time [25], high yield, and
multilayer stacking. It can reduce or increase the pattern of various nanocrystal arrays,
including organic small-molecule semiconductors, luminescent chromophores, and metals,
to produce complex and high-performance flexible electronic devices. Pattern pressure
sensitive tape is used as the impression material for pattern transmission. In Figure 5a,
by selectively separating or attaching a variety of organic small-molecule semiconductor
nanocrystal arrays, its adhesion and flexibility allows the pressure-sensitive tape to form
patterns on a variety of surfaces on organic polymer surfaces, inorganic surfaces, and
bent and flexible substrates. There is asymmetric wettability of the microstructures [26]
of 2,7-dioctyl[1]benzothieno[3,2-b] benzothiophene (C8-BTBT) single-crystal arrays with
large areas of fine graphics that have been prepared with the characteristics of being highly
crystalline, with crystal orientation, regular arrangement, and uniform size. Figure 5b
shows that it has a hydrophobic side wall and a hydrophilic top, and uses the resulting
capillary bridge to arrange microcolumns periodically so as to achieve unidirectional
dehydration of organic solution and ordered accumulation of molecules, thus regulating
mass transfer, molecular accumulation, nucleation, and crystal growth. One-dimensional
organic single-crystal arrays have pure (100) crystal orientation, are π–π stacked in the
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optimal carrier transport direction, and have a carrier mobility up to 8.7 cm2V−1S−1.
This method can improve the carrier mobility of organic small-molecule semiconductor
nanocrystal arrays.
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2.3.4. Evaporative Assembly Method

Controlling the width of the microwires by controlling the amount of insulating polymer
added can optimize the electrical properties of 6,13-bis(triisopropylsilylethynyl)pentacene
(TIPS-PEN) organic small-molecule semiconductors. Ordered inorganic and organic microwire
patterns are prepared using the top-down evaporation assembly method [27] for cross-stacking
p-n heterojunction diode arrays [28]. N-type inorganic indium gallium zinc oxide (IGZO)
microfilaments and P-type organic small-molecule TIPS-PEN microfilaments were treated
with solution. In Figure 6a, polymethyl methacrylate (PMMA) solution is injected between
the inclined metal blade and the IGZO substrate, trapping the solution through capillary
forces. In Figure 6b, the non-volatile PMMA in the solution flows along the edge and
migrates to the liquid–solid contact line driven by solvent evaporation. When the linear
translational lateral movement on the substrate exceeds the set distance, the meniscus is
stretched. When the contact line is moved to a new position, the contact angle returns to
its initial value, resulting in PMMA microwires on the IGZO substrate. Figure 6c shows
the top view of a cross-stacked p-n heterogeneous array junction diode. The width of the
microfilaments is controlled by changing the interval stop time. A large number of organic
small-molecule semiconductor nanocrystal arrays can be prepared using vaporization and
self-assembly of the scraper, which has the characteristics of uniform orientation, low cost,
and simple operation.
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2.3.5. Superhydrophobic Microcolumn Flow Coating Method

The superhydrophobic microcolumn flow coating (SMFC) method [29] allows the
stacking, thickness, and position of crystals to be controlled by adjusting the flow rate,
solvent hydrophobicity, and substrate hydrophobicity. It is also possible to control the
height arrangement of the solution coating patterns by printing microcolumn patterns
on the blades [30], increasing the size and spacing of the rectangular columns, thereby
increasing the crystal size and thus achieving higher crystal array mobility. The
6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN) single-crystal arrays can be pat-
terned using spatial constraints and field/force induction strategies. Its mobility is as
high as 6.8 cm2V−1S−1. Figure 7a shows the preparation of TIPS-PEN nanocrystal ar-
rays using the superhydrophobic microcolumn flow coating method. Figure 7b–e shows
superhydrophobic microcolumns at different speeds: (b) 0.5 mms−1, (c) 1 mms−1,
(d) 2 mms−1, and (e) 3 mms−1. There is an optical microscope image of prepared TIPS-PEN
single-crystal array and corresponding atomic force microscopy (AFM) image. The more
uniform oriented nanocrystal arrays are obtained by increasing the velocity, and the crystal
array area is about 2 cm2. The microcolumn structure changes the curvature and density of
the meniscus and can control the nucleation process. Figure 7f shows the solution shear
process of microstructure allylhybridpolycarbosilane (AHPCS) leaves. Figure 7g shows
a scanning electron microscope (SEM) image of the AHPCS microstructure shear blade.
Figure 7h–j shows tha curvature of meniscus line formed between the blade and substrate.
Figure 7l–p show cross-polarization optical micrographs (CPOMs) of TIPS-PEN nanocrystal
arrays in different sizes of 10 µm, 15 µm, 20 µm, 40 µm, and 60 µm. Figure 7k shows the re-
lationship between the mean crystal width of the tool tip and the microstructure size of the
shear blade. It is the best method to manufacture low cost, large area, lightweight organic
small-molecule semiconductor materials and field-effect transistor channel materials.
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(k) The relationship between the mean crystal width of the tool tip and the microstructure size of the
shear blade. Copyright© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

2.3.6. Electro-Fluid (EHD) Jet Printing

Printing is also a method for preparing patterned arrays of two-dimensional or-
ganic small-molecule semiconductor crystals, such as towed electrohydrodynamic jet
printing [31–33], roller pen writing [34], and direct writing [35]. Electrohydrodynamic
(EHD) injection technology directly writes organic semiconductor crystals for pattern-
ing, enabling the preparation of large area organic small-molecule semiconductor crystal
arrays without complicated processes. The drag mode provides favorable conditions
for crystal growth by effectively controlling the power supply voltage and the distance
from the nozzle to the substrate. It can produce a unidirectional array of nib crystals
along the printing direction. Figure 8a shows a towed electrohydrodynamic writing
6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN) crystal array. In Figure 8b, high-
performance and large area two-dimensional organic small-molecule semiconductor crystal
arrays printed electronic products can be prepared by using a roller pen to write two-
dimensional 2,7-dioctyl[1]benzothieno[3,2-b] benzothiophene (C8-BTBT) organic small-
molecule semiconductor crystals directly. The obtained crystals have high crystallinity,
good atomic finish, and large size. The average carrier mobility of the obtained OFET
is 3.1 cm2V−1S−1 and the maximum carrier mobility is 5.92 cm2V−1S−1. The pattern of
organic small-molecule semiconductor obtained by direct writing method is shown in
Figure 8c. It is highly crystalline and purely oriented, showing higher device performance
compared to the non-pure oriented crystal OFET. In Figure 8d, the TIPS-PEN solution
ejected from the nozzle is dewy on the linear polyurethane acrylate (PUA) pattern, but wet on
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the bis(benzocyclobutene) BCB surface and has a higher energy than the PUA. These crystals
are highly crystalline and favor uniform stacked structures for lateral charge transfer.
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Figure 8. (a) Electrohydraulic dynamic injection TIPS-PEN nanocrystal arrays [32].Copyright© 2017
American Chemical Society. (b) Preparation of C8-BTBT nanocrystal arrays using the pen rolling
technique [34]. Copyright© The Royal Society of Chemistry 2017. (c) Direct writing TIPS-PEN
nanocrystal arrays [35]. Copyright© 2022 Wiley-VCH GmbH. (d) Polarized optical microscopy (POM)
images of TIPS-PEN crystals prepared using the EHD method [31]. Copyright© 2022 Elsevier B.V. All
rights reserved.

2.3.7. Programmed Scraper Method

The programmed scraper coating technique [36] grows organic small-molecule semi-
conductor crystal patterns. Alternately defined low/high solution shear rates are program-
matically used. The nib crystals grow in the low-speed region and form patterns in the high-
speed region. Pattern crystal growth can be performed in the solvent wet/dehumidified
region [37]. Polyurethane acrylate was selected as the dehumidification material; it has
good hydrophobicity, and its pattern is easy to selectively grow on the precursor film. In
Figure 9a, a uniaxial arrangement of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN)
crystals was prepared using the programmed scraper coating method. Figure 9b shows
the chemical structure of TIPS-PEN and polystyrene (PS). Figure 9c shows polarizing op-
tical microscope (POM) images of TIPS-PEN crystal morphology at different shear rates.
Figure 9d shows an optical microscope image of TIPS-PEN crystals of different widths
growing on a PUA/SiO2 substrate. Figure 9e shows polarized optical microscopy (POM)
images of TIPS-PEN crystals of different widths. Figure 9f shows atomic force microscopy
(AFM) morphology of a TIPS-PEN crystal on polyurethane acrylate (PUA) substrate. In
Figure 9g, the height of the cross-section is distributed. The OFET array is prepared by the
method of programming control and crystal with different line spacing. By changing the
programming parameters, a variety of crystal patterns can be created simply, demonstrating
the wide availability of crystal patterns and printing techniques.
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Figure 9. (a) Programmed scraper coating method [36]. (b) Chemical structure of TIPS-PEN and
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shear rates. Copyright© 2019 American Chemical Society. TIPS-PEN nanocrystal arrays: (d) optical
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American Chemical Society.

2.3.8. Screen Printing

The screen printing method [38] can control the morphology and crystallinity of
organic small-molecule semiconductor nanocrystal arrays to achieve high-performance
organic optoelectronic devices, and it can prepare simple and effective channel-limited
organic small-molecule semiconductor nanocrystal arrays, which have good crystallinity
and preferred orientation. The printing process can be accomplished by dropping ink onto
the mesh and moving the scraper to fill the mesh with ink [39]. Ink can penetrate the mesh
and deposit on the substrate. Figure 10a shows the screen printing device. The crystals grow
from both sides, meet and stop in the middle of the pattern, so that the growth axes of the
organic small-molecule semiconductor crystal arrays are aligned with the coating direction.
Figure 10b shows the deposition pattern of Polyvinyl alcohol (PVA) resist. Figure 10c
shows the contact angle between water and PVA resist on 2,7-dioctyl[1]benzothieno[3,2-b]
benzothiophene (C8-BTBT). Figure 10d shows an optical microscope image of PVA array
with an area of 1 cm2 that is printed on C8-BTBT nanocrystal arrays. Figure 10e shows
an enlarged image of PVA array on C8-BTBT. The insulating polymer in the mixed ink
also helps to improve the crystallinity of the organic small-molecule semiconductor crystal
arrays. The PVA resist is then screen printed on top of the organic layer and wet-etched or
dry-etched to form the pattern, which results in the organic pattern being highly crystalline
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and having very similar crystal orientations. The screen scraping method [40] can improve
the resolution of organic small-molecule semiconductor crystal arrays.
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Figure 10. (a) Nanocrystal arrays created using screen printing [38]. Copyright© 2019 WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim. (b) PVA resist stencil pattern printing [39]. Copyright© The
Royal Society of Chemistry and the Chinese Chemical Society 2021. (c) Size of the contact angle of the
C8-BTBT crystal array in water and PVA resist solution. (d) Optical microscope images of a C8-BTBT
array with a 1 cm2 PVA template. (e) C8-BTBT array enlarged image.

2.3.9. Microchannel-Assisted Inkjet Printing (MA-IJP) Method

Microchannel-assisted inkjet printing (MA-IJP) [41] can be used to map arrays of
organic small-molecule semiconductors with ordered crystal orientation. The micrometer-
sized channel template can be used as a one-step method for capillary force to guide the
wetting process of organic ink, and can also limit the dehumidification behavior caused by
solution evaporation, so that the organic small-molecule semiconductor crystals can grow
orderly over long distances. The patterned 2,7-dioctyl[1]benzothieno[3,2-b] benzothiophene
(C8-BTBT) crystals exhibit a (010) crystal-oriented one-dimensional structure. The MA-IJP
method is suitable for soluble organic small-molecule semiconductor based on pentacene
derivatives, such as 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN). In Figure 11a,
C8-BTBT ink drops into the hydrophilic square area, under the action of capillary force
along the microchannel wetting. In Figure 11b, COMSOL software is used to simulate
the process of solution wetting. Figure 11c shows a cross-polarized optical microscope
(CPOM) image of C8-BTBT nanocrystal arrays. Figure 11d shows that the CPOM images
of C8-BTBT crystals in the same region all have polarization angles less than 45◦ and 0◦.
Figure 11e shows an atomic force microscopy (AFM) image of a C8-BTBT crystal in a
microchannel. Figure 11f,g shows a scanning electron microscope (SEM) image of C8-BTBT
nanocrystal arrays. The smooth cross-section of the crystal indicates good crystallinity. The
MA-IJP strategy can obtain high quality crystal arrays and promote the development of
integrated electronic devices. Microchannels can play a role in controlling wetting and
dehumidification dynamics.
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Figure 11. (a) Microchannel-assisted inkjet printing (MA-IJP) patterned C8-BTBT crystals. (b) COM-
SOL simulated solution wetting process. C8-BTBT crystal array: (c) Cross-polarization optical
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(e) AFM image. (f) SEM image [41]. Copyright© 2022 IOP Publishing Ltd. (g) SEM cross-section of
C8-BTBT crystal.

2.3.10. Double Blade Coating Printing Technology

The two-blade coating printing technology [42] can be used for the patterning growth
of organic small-molecule semiconductor nanocrystal arrays, which can limit the organic
small-molecule semiconductor crystal arrays to a specific region on the water surface of the
molecular plane, thus greatly reducing the number of nuclei, and it can control the water
amount in the wet region by adjusting the coating speed [43]. At high coating rates, the
viscous force exerted by the wet substrate dominates, which allows more water to adhere
to the substrate and fill the wet region, which results in a 2,7-dioctyl[1]benzothieno[3,2-b]
benzothiophene (C8-BTBT) mode with single crystal domains. The average mobility of a C8-
BTBT single crystal is 11.5 cm2V−1S−1, which is much higher than that of the single-crystal
film prepared using the conventional blade coating method. Figure 12a–c shows double-
knife coating technology for the preparation of C8-BTBT nanocrystal arrays. Figure 12d,e
shows cross-polarized optical microscope (CPOM) images of C8-BTBT nanocrystal arrays.
Figure 12f shows a C8-BTBT nanocrystal array atomic force microscopy (AFM) image. In
Figure 12g, one can count the number of crystal domains in each patterned region of the
histogram. In Figure 12h, the distribution of C8-BTBT nanocrystal arrays in a hybrid can
be observed by time-of-flight secondary ion mass spectrometry (TOF-SIMS). This can be
widely used in other soluble organic small-molecule semiconductor materials, and provides
a new idea for multi-component integrated electronic products.
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under the action of the directional capillary force generated on the surface of the crystal 
band, a crystal aggregate composed of multiple nematic crystals arranged side by side is 
formed. In Figure 13b, the TIPS-PEN crystal array strips are picked up directly. The direct 
shovel method is highly fluid, and it is an improvement on the Langmuir—Blodgett (LB) 
method, allowing for the assembly of highly ordered one-dimensional TIPS-PEN crystals. 
Direct scooping shortened the inter-crystal distance and can be easily transferred to other 
substrates. 

Figure 12. (a) C8-BTBT nanocrystals created using the double-blade coating technique [42]. Copy-
right© 2023 Wiley-VCH GmbH. (b) The back-end blue leaves the substrate wet with a small amount
of water, and then the front-end pink blade coats the substrate with a mixture of organic small-
molecule solution to grow the nanocrystal arrays. (c) Chemical structure of C8-BTBT. (d,e) C8-BTBT
nanocrystal arrays with different polarization angles images. (f) Atomic force microscopy (AFM)
image of C8-BTBT. (g) Statistical histogram showing the number of crystal domains. (h) Time-of-flight
secondary ion mass spectrometry of mixed membrane C8-BTBT (TOF-SIMS).

2.4. Bottom-Up Method
2.4.1. Straightforward Scooping-Up

The direct scooping (SU) method [44] was used to prepare compact and neatly ar-
ranged 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN) single-crystal arrays, and
its self-assembled large organic small-molecule semiconductor TIPS-PEN crystal array
layers could be quickly generated. Higher crystal density can provide efficient charge
transport in FET devices, with field-effect mobility up to 2.16 cm2V−1S−1. In Figure 13a,
under the action of the directional capillary force generated on the surface of the crystal
band, a crystal aggregate composed of multiple nematic crystals arranged side by side
is formed. In Figure 13b, the TIPS-PEN crystal array strips are picked up directly. The
direct shovel method is highly fluid, and it is an improvement on the Langmuir—Blodgett
(LB) method, allowing for the assembly of highly ordered one-dimensional TIPS-PEN
crystals. Direct scooping shortened the inter-crystal distance and can be easily transferred
to other substrates.
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obtain a self-stacking crystal band [44]. Copyright© 2016 American Chemical Society. 
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6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN), the nib crystal forms micro 
streaks with defined gap intervals on the substrate. Figure 14b shows an optical micro-
scope (OM) image and polarized optical microscope (POM) image of TIPS-PEN crystal. 
The patterned microchannel dip coating (PMDC) method [46] can control the growth po-
sition and direction of organic small-molecule semiconductor single-crystal arrays, which 
can realize the integration of high-performance organic circuits. It can solve the problem 
of the difficult-to-prepare crystal array patterns with high crystallinity and pure crystal 
orientation in traditional methods [47]. The PMDC method has good versatility and can 
be extended to a variety of soluble pentene materials, such as DIF-TES-ADT [48] and TIPS-
PEN. Figure 14c shows the patterned microchannel dip coating (PMDC) method. Figure 
14d shows a cross-polarized optical microscope (CPOM) image of a 2,8-difluoro-5,11-
bis(triethylsilylethynyl)anthradithiophene (DIF-TES-ADT) crystal in a patterned PR mi-
crochannel template board. In Figure 14e, in the enlarged cross-polarized optical micro-
scope (CPOM) image, DIF-TES-ADT crystals with free grain boundaries are highly ar-
ranged, covering the entire PR microchannel region. In Figure 14f, a scanning electron 
microscope (SEM) image of a DIF-TES-ADT strip crystal structure shows that it is well-
arranged. Figure 14g. DIF-TES-ADT crystal arrays have jagged edges, depending on the 
nature of the organic small-molecule semiconductor. Figure 14h shows an atomic force 
microscopy (AFM) image and corresponding height distribution map. 

Figure 13. (a) Straightforward scooping-up of the TIPS-PEN nanocrystal arrays. (b) The SiO2

substrate was placed into the TIPS-PEN nanocrystal array and pulled upward by capillary action to
obtain a self-stacking crystal band [44]. Copyright© 2016 American Chemical Society.

2.4.2. Patterned Microchannel Dip Coating (PMDC) Method

In the process of programmed impregnation, a crystal fringe array with controllable
fringe spacing was prepared by adjusting the pulping rate of the substrate with low boil-
ing point solvent [45]. It has a good molecular structure and high crystallinity, which
is conducive to efficient charge transport. In Figure 14a, using a programming impreg-
nated 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN), the nib crystal forms micro
streaks with defined gap intervals on the substrate. Figure 14b shows an optical microscope
(OM) image and polarized optical microscope (POM) image of TIPS-PEN crystal. The
patterned microchannel dip coating (PMDC) method [46] can control the growth posi-
tion and direction of organic small-molecule semiconductor single-crystal arrays, which
can realize the integration of high-performance organic circuits. It can solve the problem
of the difficult-to-prepare crystal array patterns with high crystallinity and pure crystal
orientation in traditional methods [47]. The PMDC method has good versatility and can
be extended to a variety of soluble pentene materials, such as DIF-TES-ADT [48] and
TIPS-PEN. Figure 14c shows the patterned microchannel dip coating (PMDC) method.
Figure 14d shows a cross-polarized optical microscope (CPOM) image of a 2,8-difluoro-
5,11-bis(triethylsilylethynyl)anthradithiophene (DIF-TES-ADT) crystal in a patterned PR
microchannel template board. In Figure 14e, in the enlarged cross-polarized optical mi-
croscope (CPOM) image, DIF-TES-ADT crystals with free grain boundaries are highly
arranged, covering the entire PR microchannel region. In Figure 14f, a scanning electron
microscope (SEM) image of a DIF-TES-ADT strip crystal structure shows that it is well-
arranged. Figure 14g. DIF-TES-ADT crystal arrays have jagged edges, depending on the
nature of the organic small-molecule semiconductor. Figure 14h shows an atomic force
microscopy (AFM) image and corresponding height distribution map.
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array: (c) Patterned microchannel dip coating (PMDC) method. (d) Continuous CPOM image. (e) 
scaled CPOM image and (f) SEM image. (g) SEM cross-section image. (h) AFM image and height 
distribution [46]. Copyright© The Royal Society of Chemistry 2021. 
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where the traditional solution method leads to the heterogeneous nucleation behavior and 
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to pattern the substrate at both micro- and nano-scales to constrain the meniscus [50–53], 
thereby reducing the size of the anterior meniscus. In Figure 15a, when the PR channel is 
immersed in organic solution, a meniscus contour contact line is formed between two ad-
jacent PR fringes. Figure 15 shows the C8-BTBT crystal array growth process in the chan-
nel-restricted meniscus. Figure 15c shows that the nucleation of organic small-molecule 
solutions along the leading edge of the meniscus is uniform. The 2,7-dioctyl[1]ben-
zothieno[3,2-b] benzothiophene (C8-BTBT) solution is dragged onto the surface of the 
poly(4-vinylphenol) (PVP) pattern [54]. A large amount of the solution is confined be-
tween the silicon blade and the substrate by exposing the curved liquid level at the front 
end. As the solvent evaporates, the molecules selectively nucleate and crystallize on the 
surface of the PVP pattern, forming highly ordered C8-BTBT crystal arrays in the PVP-
treated region. Figure 15d shows an atomic force microscopy (AFM) image of the C8-BTBT 
crystal surface after processing flat. Figure 15e shows that C8-BTBT crystal’s surface is 
clear, with high uniformity. Figure 15f is a cross-polarization optical microscope (CPOM) 
image. Microchannels can produce a channel-limiting effect, which can restrict the chan-
nel of the meniscus, so that the organic small-molecule semiconductor crystal is uniformly 
nucleated in the front of the meniscus. When the impregnated coating is pulled upward, 
the crystal growth direction can be consistent, thus giving the crystal better electrical prop-
erties. 

Figure 14. (a) Programmed dipping of TIPS-PEN nanocrystal arrays. (b) Optical microscope image
of the TIPS-PEN fringe [45]. Copyright© Royal Society of Chemistry 2018. DIF-TES-ADT crystal
array: (c) Patterned microchannel dip coating (PMDC) method. (d) Continuous CPOM image.
(e) scaled CPOM image and (f) SEM image. (g) SEM cross-section image. (h) AFM image and height
distribution [46]. Copyright© The Royal Society of Chemistry 2021.

2.4.3. Meniscus Coating Method

The channel-restricted meniscus self-assembly strategy [49] solves the problem where
the traditional solution method leads to the heterogeneous nucleation behavior and aggre-
gation of polycrystalline molecules during crystal growth. PR channels were used to pattern
the substrate at both micro- and nano-scales to constrain the meniscus [50–53], thereby
reducing the size of the anterior meniscus. In Figure 15a, when the PR channel is immersed
in organic solution, a meniscus contour contact line is formed between two adjacent PR
fringes. Figure 15 shows the C8-BTBT crystal array growth process in the channel-restricted
meniscus. Figure 15c shows that the nucleation of organic small-molecule solutions along
the leading edge of the meniscus is uniform. The 2,7-dioctyl[1]benzothieno[3,2-b] benzoth-
iophene (C8-BTBT) solution is dragged onto the surface of the poly(4-vinylphenol) (PVP)
pattern [54]. A large amount of the solution is confined between the silicon blade and the
substrate by exposing the curved liquid level at the front end. As the solvent evaporates,
the molecules selectively nucleate and crystallize on the surface of the PVP pattern, forming
highly ordered C8-BTBT crystal arrays in the PVP-treated region. Figure 15d shows an
atomic force microscopy (AFM) image of the C8-BTBT crystal surface after processing flat.
Figure 15e shows that C8-BTBT crystal’s surface is clear, with high uniformity. Figure 15f
is a cross-polarization optical microscope (CPOM) image. Microchannels can produce a
channel-limiting effect, which can restrict the channel of the meniscus, so that the organic
small-molecule semiconductor crystal is uniformly nucleated in the front of the menis-
cus. When the impregnated coating is pulled upward, the crystal growth direction can be
consistent, thus giving the crystal better electrical properties.
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Figure 15. (a) Crystal growth by dipping on the meniscus [49]. Copyright© 2018 Elsevier Ltd. (b) 
C8-BTBT crystal arrays growth process in a channel-restricted meniscus. All rights reserved. C8-
BTBT crystal array: (c) Blade coating on PVP surface [54]. Copyright© 2019 WILEY-VCH Verlag 
GmbH & Co. KGaA, Weinheim. (d) AFM image and height distribution. (e) SEM image. (f) CPOM 
images at different polarization angles: 0°, 30°, 45°, 60°, 70°, 90°.  
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form organic solutions. Inorganic solvents such as water can be used as liquid soft tem-
plates for the growth of organic small-molecule semiconductor crystal arrays. Organic 
solvents such as chlorobenzene are easily volatile, so they can grow in solid microstruc-
tural templates. This can be changed by changing the temperature to make the crystals 
grow faster, and can improve electrical performance. The microstructure template can 
control the shape and size of crystal growth, which is a new crystal growth method. 
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The antisolvent crystallization technology of inkjet printing [55] can be used to pre-

pare highly crystalline organic small-molecule semiconductor nanocrystal arrays [56]. It 
can also can control the growth of uniform single-crystal or polycrystal crystal arrays at 
the liquid–vapor interface, and obtain thin crystal arrays with an average carrier mobility 
of 16.4 cm2V−1S−1. Antisolvent crystallization is the best method to achieve controllable and 
expandable curing. The ink used is mixed with the antisolvent, and the ink can be printed 
individually at any location, forming a micro-liquid mixture between the inks on top of 
the substrate. It can solve the problem of uneven film thickness distribution caused by the 
traditional inkjet printing process, and it is an extension of double-head inkjet printing 
[57,58] for the preparation of organic small-molecule semiconductor nanocrystal arrays 
[59]. Figure 16a,b shows the process of preparing C8-BTBT crystal arrays using solvent-
resistant ink crystal printing. Figure 16c shows an orthogonal Nichols polarizing optical 
micrograph of nanocrystal arrays. In Figure 16d is the magnification of the microscopic 
streaks of the crystal arrays. Figure 16e shows an atomic force microscopy (AFM) image 
and height profile. This printing technology is an important step toward high-perfor-
mance single-crystal semiconductor devices for large-area and flexible electronic applica-
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Figure 15. (a) Crystal growth by dipping on the meniscus [49]. Copyright© 2018 Elsevier Ltd.
(b) C8-BTBT crystal arrays growth process in a channel-restricted meniscus. All rights reserved.
C8-BTBT crystal array: (c) Blade coating on PVP surface [54]. Copyright© 2019 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim. (d) AFM image and height distribution. (e) SEM image. (f) CPOM
images at different polarization angles: 0◦, 30◦, 45◦, 60◦, 70◦, 90◦.

2.5. Crystallization Dynamic Control

Organic small-molecule semiconductors are generally insoluble in inorganic solvents
such as water, but easily soluble in organic solvents such as toluene and chlorobenzene
to form organic solutions. Inorganic solvents such as water can be used as liquid soft
templates for the growth of organic small-molecule semiconductor crystal arrays. Organic
solvents such as chlorobenzene are easily volatile, so they can grow in solid microstructural
templates. This can be changed by changing the temperature to make the crystals grow
faster, and can improve electrical performance. The microstructure template can control
the shape and size of crystal growth, which is a new crystal growth method.

2.5.1. Solvent Crystallization Resistance Technology

The antisolvent crystallization technology of inkjet printing [55] can be used to prepare
highly crystalline organic small-molecule semiconductor nanocrystal arrays [56]. It can
also can control the growth of uniform single-crystal or polycrystal crystal arrays at the
liquid–vapor interface, and obtain thin crystal arrays with an average carrier mobility of
16.4 cm2V−1S−1. Antisolvent crystallization is the best method to achieve controllable
and expandable curing. The ink used is mixed with the antisolvent, and the ink can be
printed individually at any location, forming a micro-liquid mixture between the inks
on top of the substrate. It can solve the problem of uneven film thickness distribution
caused by the traditional inkjet printing process, and it is an extension of double-head inkjet
printing [57,58] for the preparation of organic small-molecule semiconductor nanocrystal
arrays [59]. Figure 16a,b shows the process of preparing C8-BTBT crystal arrays using
solvent-resistant ink crystal printing. Figure 16c shows an orthogonal Nichols polarizing op-
tical micrograph of nanocrystal arrays. In Figure 16d is the magnification of the microscopic
streaks of the crystal arrays. Figure 16e shows an atomic force microscopy (AFM) image
and height profile. This printing technology is an important step toward high-performance
single-crystal semiconductor devices for large-area and flexible electronic applications.
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completely (Step 4), the C8-BTBT crystal array grows at the interface (Step 3). (b) Image of C8-BTBT 
array for antisolvent crystallization. (c) Orthogonal Nichols polarizing optical micrograph of nano-
crystal arrays. (d) Magnified micrograph of the nanocrystal arrays (e) AFM image of organic small-
molecule nanocrystal arrays [55]. Copyright© 2011Macmillan Publishers Limited. All rights re-
served. 

2.5.2. Temperature Gradient Technique 
The organic small-molecule semiconductor nanocrystal arrays grown using the drip 

casting method have random orientation and a poor coverage area, which will lead to 
poor performance between organic field-effect transistor (OFET) devices, when using, for 
example, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN), etc. Temperature gra-
dient technology [60] can solve these problems [61]. The hole mobility of a TIPS-PEN or-
ganic field-effect transistor (OFET) was improved by the addition of poly(a-methyl sty-
rene) PαMS polymer and the combination of a temperature gradient technique [62]. Fig-
ure 17a–d shows that when the solution reaches supersaturation, TIPS-PEN crystals begin 
to grow from the cold zone to the warm zone. The addition of the PαMS polymer elimi-
nates the hot cracking phenomenon in the crystal arrays, and it makes the homogeneity 
orientation of the crystal more regular. In the digital image in Figure 17e, PαMS/TIPS-PEN 
nanocrystal arrays without thermal cracks were prepared using the temperature gradient 
method, which overcame the disadvantage of small coverage area of random orientation. 
Compared with the polymer without PαMS, the decrease in crystal width and the pres-
ence of PαMS polymer matrix can effectively relieve the thermal stress during the crystal-
lization process and prevent the formation of thermal cracks. 

Figure 16. (a) Antisolvent ink (A) (step 1) is then sequentially overprinted with solution ink
(B) to form a mixture of droplets confined to a predetermined area (step 2). Before the solvent
evaporates completely (Step 4), the C8-BTBT crystal array grows at the interface (Step 3). (b) Image
of C8-BTBT array for antisolvent crystallization. (c) Orthogonal Nichols polarizing optical micro-
graph of nanocrystal arrays. (d) Magnified micrograph of the nanocrystal arrays (e) AFM image of
organic small-molecule nanocrystal arrays [55]. Copyright© 2011Macmillan Publishers Limited. All
rights reserved.

2.5.2. Temperature Gradient Technique

The organic small-molecule semiconductor nanocrystal arrays grown using the drip
casting method have random orientation and a poor coverage area, which will lead to
poor performance between organic field-effect transistor (OFET) devices, when using,
for example, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN), etc. Temperature
gradient technology [60] can solve these problems [61]. The hole mobility of a TIPS-PEN
organic field-effect transistor (OFET) was improved by the addition of poly(a-methyl
styrene) PαMS polymer and the combination of a temperature gradient technique [62].
Figure 17a–d shows that when the solution reaches supersaturation, TIPS-PEN crystals
begin to grow from the cold zone to the warm zone. The addition of the PαMS polymer
eliminates the hot cracking phenomenon in the crystal arrays, and it makes the homogeneity
orientation of the crystal more regular. In the digital image in Figure 17e, PαMS/TIPS-PEN
nanocrystal arrays without thermal cracks were prepared using the temperature gradient
method, which overcame the disadvantage of small coverage area of random orientation.
Compared with the polymer without PαMS, the decrease in crystal width and the presence
of PαMS polymer matrix can effectively relieve the thermal stress during the crystallization
process and prevent the formation of thermal cracks.
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Figure 17. (a) Crystal growth device using the temperature gradient technique. (b) Crystal growth 
originates at the low temperature region. (c) Crystal growth continues towards the high temperature 
end. (d) Highly uniform crystal alignment from the low to high temperature end. (e) Images of TIPS-
pentaphene crystals [61]. Copyright© 2016 Elsevier B.V. All rights reserved. 
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with a certain in-plane orientation, which is similar to the type I phase lattice structure 
and in-plane lattice orientation arrangement. Figure 18a shows a PDMS-assisted crystal 
growth TIPS-PEN crystal array. Figure 18b–e shows polarization optical microscope 
(POM) images of a TIPS-PEN crystal array. The adjacent blue and yellow crystals in Figure 
18f–i show double crystals with (010) faces as double borders. In the nucleation stage of 
TIPS-PEN crystals, the A-axis of adjacent crystals can be aligned along the growth direc-
tion, but the B-axis direction cannot be adjusted. If the TIPS-PEN nucleation area is treated 
with a hydrophilic surface treatment, the formation of the twin boundary can be reduced. 
In Figure 18j, the TIPS-PEN crystals are arranged roughly along the top right and bottom 
left directions. In order to obtain higher charge mobility, the PDMS-assisted crystalliza-
tion method arranges the crystals in a plane direction to reduce defects [63]. If a solvent 
with a high boiling temperature is used, the out-of-plane orientation of the TIPS-PEN mol-
ecules shows consistent growth [64], and it reduces the production of low angle grain 
boundaries (LAGBs). The improved out-of-plane lattice arrangement can make the per-
formance of the device more stable. 

Figure 17. (a) Crystal growth device using the temperature gradient technique. (b) Crystal growth
originates at the low temperature region. (c) Crystal growth continues towards the high temperature
end. (d) Highly uniform crystal alignment from the low to high temperature end. (e) Images of
TIPS-pentaphene crystals [61]. Copyright© 2016 Elsevier B.V. All rights reserved.

2.5.3. PDMS-Assisted Crystallization Method

Using the polydimethylsiloxane (PDMS)-assisted crystallization method, it is possible
to make the 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN) crystal arrays with
a certain in-plane orientation, which is similar to the type I phase lattice structure and
in-plane lattice orientation arrangement. Figure 18a shows a PDMS-assisted crystal growth
TIPS-PEN crystal array. Figure 18b–e shows polarization optical microscope (POM) images
of a TIPS-PEN crystal array. The adjacent blue and yellow crystals in Figure 18f–i show
double crystals with (010) faces as double borders. In the nucleation stage of TIPS-PEN
crystals, the A-axis of adjacent crystals can be aligned along the growth direction, but
the B-axis direction cannot be adjusted. If the TIPS-PEN nucleation area is treated with
a hydrophilic surface treatment, the formation of the twin boundary can be reduced. In
Figure 18j, the TIPS-PEN crystals are arranged roughly along the top right and bottom left
directions. In order to obtain higher charge mobility, the PDMS-assisted crystallization
method arranges the crystals in a plane direction to reduce defects [63]. If a solvent with a
high boiling temperature is used, the out-of-plane orientation of the TIPS-PEN molecules
shows consistent growth [64], and it reduces the production of low angle grain boundaries
(LAGBs). The improved out-of-plane lattice arrangement can make the performance of the
device more stable.
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method. (b–e) Polarization optical microscope (POM) image of TIPS-PEN nanocrystal array with 
delay plate [64]. (f–i) POM image of a delay-free plate of a TIPS-PEN nanocrystal array. (j) Molecular 
orientation of TIPS-PEN nanocrystal arrays in blue and orange regions. Copyright© 2016 American 
Chemical Society. 
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Heat-induced self-assembly technology can be used for ultra-thin organic small-mol-

ecule semiconductor crystal arrays with a certain number of layers and millimeter-level 
coverage [65]. It is a basic method of molecular layer coating precisely defined by interfa-
cial interactions, and it can produce complex, high-performance, and large area organic 
electronic devices. Monolayers are used as templates for the epitaxy of highly uniform N-
type semiconductor, resulting in heterojunctions with significant bipolar charge transfer 
behavior. The annealing temperature can be increased to precisely control the accumula-
tion of molecules at the interface [66], forming a large area of regular two-dimensional 
layered molecular crystal arrays instead of equilibrium rod-like crystal arrays, which will 
facilitate the precise control of 2,7-dioctyl[1]benzothieno[3,2-b] benzothiophene (C8-
BTBT) nanocrystal arrays as bilayer (2L) or single-layer (1L) molecular nanocrystal arrays 
[67]. Figure 19a shows heat-induced self-assembled C8-BTBT nanocrystal arrays. Figure 
19b–e shows the atomic force microscopy (AFM) and HRAFM images of double-layer and 
single-layer C8-BTBT nanocrystal arrays. In Figure 19f–h, when the single-layer diameter 
(D1L) is 1.6 mm, the coverage is maximal. In Figure 19i, the escaped molecules are self-
assembled to flip over to a minimum of 1L. Figure 19j shows the adhesion curves of 1L 
C8-BTBT nanocrystal arrays and SiO2, 2L C8-BTBT, and 1L C8-BTBT. In Figure 19k, the 
assembly length of C8-BTBT nanocrystal arrays varies with substrate temperature, and 
three layers (3L) and thicker layers are difficult to obtain by adjusting the annealing tem-
perature. 

Figure 18. (a) Growth of TIPS-PEN nanocrystal array using the PDMS-assisted crystallization
method. (b–e) Polarization optical microscope (POM) image of TIPS-PEN nanocrystal array with
delay plate [64]. (f–i) POM image of a delay-free plate of a TIPS-PEN nanocrystal array. (j) Molecular
orientation of TIPS-PEN nanocrystal arrays in blue and orange regions. Copyright© 2016 American
Chemical Society.

2.5.4. Heat-Induced Self-Assembly Method

Heat-induced self-assembly technology can be used for ultra-thin organic small-
molecule semiconductor crystal arrays with a certain number of layers and millimeter-level
coverage [65]. It is a basic method of molecular layer coating precisely defined by interfa-
cial interactions, and it can produce complex, high-performance, and large area organic
electronic devices. Monolayers are used as templates for the epitaxy of highly uniform
N-type semiconductor, resulting in heterojunctions with significant bipolar charge transfer
behavior. The annealing temperature can be increased to precisely control the accumulation
of molecules at the interface [66], forming a large area of regular two-dimensional layered
molecular crystal arrays instead of equilibrium rod-like crystal arrays, which will facilitate
the precise control of 2,7-dioctyl[1]benzothieno[3,2-b] benzothiophene (C8-BTBT) nanocrys-
tal arrays as bilayer (2L) or single-layer (1L) molecular nanocrystal arrays [67]. Figure 19a
shows heat-induced self-assembled C8-BTBT nanocrystal arrays. Figure 19b–e shows the
atomic force microscopy (AFM) and HRAFM images of double-layer and single-layer
C8-BTBT nanocrystal arrays. In Figure 19f–h, when the single-layer diameter (D1L) is
1.6 mm, the coverage is maximal. In Figure 19i, the escaped molecules are self-assembled
to flip over to a minimum of 1L. Figure 19j shows the adhesion curves of 1L C8-BTBT
nanocrystal arrays and SiO2, 2L C8-BTBT, and 1L C8-BTBT. In Figure 19k, the assembly
length of C8-BTBT nanocrystal arrays varies with substrate temperature, and three layers
(3L) and thicker layers are difficult to obtain by adjusting the annealing temperature.
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Figure 19. (a) Heat-induced self-assembly of C8-BTBT single crystal process [65]. Copyright© 2018 
American Chemical Society. (b) AFM image of double-layer (2L) C8-BTBT crystal. (c) AFM images 
of single-layer (1L) C8-BTBT crystals. Scale: 1 µm. (d) HRAFM images of double-layer (2L) C8-BTBT 
crystal array on SiO2 substrate. (e) HRAFM images of single-layer (1L) C8-BTBT crystal array on 
SiO2 substrate. Scale: 1 nm. (f) Optical microscopy (OM) image of the initial crystal of C8-BTBT. (g) 
OM images of double-layer (2L) and single-layer (1L) C8-BTBT crystals annealed at 122 °C for 10 
min. (h) OM image of C8-BTBT monolayer at 132 °C after annealing for 5 min. (i) The growth process 
from polycrystalline form to bilayer and monolayer C8-BTBT crystal arrays. (j) Molecular arrange-
ment packing orientation between 1L C8-BTBT and SiO2, and between 2L C8-BTBT and 1L C8-BTBT. 
(k) The assembly length of 1L and 2L C8-BTBT crystals varies with substrate temperature (T).  

2.5.5. Two-Step Crystallization Process 
A high-quality single-crystal p−n heterojunction (SCHJ) was prepared using orthog-

onal solvent two-step crystallization [68], which is an interfacial solution crystallization 
process [69]. In Figure 20a, a second layer of single crystals is formed at the interface of 
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Figure 19. (a) Heat-induced self-assembly of C8-BTBT single crystal process [65]. Copyright© 2018
American Chemical Society. (b) AFM image of double-layer (2L) C8-BTBT crystal. (c) AFM images of
single-layer (1L) C8-BTBT crystals. Scale: 1 µm. (d) HRAFM images of double-layer (2L) C8-BTBT
crystal array on SiO2 substrate. (e) HRAFM images of single-layer (1L) C8-BTBT crystal array on
SiO2 substrate. Scale: 1 nm. (f) Optical microscopy (OM) image of the initial crystal of C8-BTBT.
(g) OM images of double-layer (2L) and single-layer (1L) C8-BTBT crystals annealed at 122 ◦C for
10 min. (h) OM image of C8-BTBT monolayer at 132 ◦C after annealing for 5 min. (i) The growth
process from polycrystalline form to bilayer and monolayer C8-BTBT crystal arrays. (j) Molecular
arrangement packing orientation between 1L C8-BTBT and SiO2, and between 2L C8-BTBT and 1L
C8-BTBT. (k) The assembly length of 1L and 2L C8-BTBT crystals varies with substrate temperature (T).

2.5.5. Two-Step Crystallization Process

A high-quality single-crystal p−n heterojunction (SCHJ) was prepared using orthog-
onal solvent two-step crystallization [68], which is an interfacial solution crystallization
process [69]. In Figure 20a, a second layer of single crystals is formed at the interface
of the first layer of single crystals. During the crystallization of the second layer, the
first layer is destroyed, which is the problem to be solved in the second stage. A single
6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN) crystal can grow without dissolving
the first layer by choosing 4-methyl-2-pentone, which can dissolve TIPS-PEN effectively
but cannot dissolve C60 as a solvent [70], and the substrate can be annealed under vacuum
to remove the residual solvent. Figure 20b shows a scanning electron microscope (SEM)
image of the TIPS-PEN nanocrystal array. Figure 20c shows energy dispersive spectroscopy
(EDS)-related element mapping. Figure 20d shows the energy dispersion spectrum of the
crystals. In Figure 20e, the thickness of the overlapping SCHJ was studied using atomic
force microscopy (AFM). In Figure 20f, the samples were screened using transmission
electron microscopy (TEM). Figure 20g shows how the crystallographic analysis of the
bilayer material was carried out by select area electron diffraction (SAED). The double-layer



Nanomaterials 2023, 13, 2087 22 of 37

SAED shows two sets of diffraction points (blue and yellow circles), representing two
different single crystals. This method is beneficial to the preparation of a heterojunction.
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Figure 20. (a) Schematic diagram of a TIPS-PEN/C60 single-crystal heterojunction. (b) SEM image
of an SCHJ. (c) Energy dispersive spectroscopy (EDS)-related element mapping. (d) EDS images.
(e) AFM image. (f) TEM images of SCHJ. (g) Correlation electron diffraction pattern [68]. Copyright©
2018 American Chemical Society.

2.5.6. Micro-Spacing Air Sublimation Method

The micro-spacing air sublimation method [71] can pattern small organic molecule
single crystals, and the method of air sublimation can assist the solid substrate surface
to perform wettability treatment [72], which can precisely control the growth position
of an organic small-molecule semiconductor, so that the interconnected single crystal
patterns have uniform crystal orientation, and higher crystallinities. Using, for example,
2,7-dioctyl[1]benzothieno[3,2-b] benzothiophene (C8-BTBT), this method can be used to
prepare single crystal patterns of different shapes and sizes with uniform orientation. Its
mobility is 6.28 cm2V−1S−1. This method overcomes the uncontrolled growth of isolated
crystal patterns on non-epitaxial substrates and enables the arrangement of anisotropic
electron single crystals to be integrated in large-scale devices. Figure 21a ahows the
photolithography patterning of wettable substrates. Figure 21b shows optical microscope
(OM) and scanning electron microscope (SEM) images of C8-BTBT crystals of different
shapes and sizes. The pattern has regular shapes and sharp edges. The isotropic C8-BTBT
melt crystallizes continuously from the intermediate liquid crystal state, and a uniform
oriented patterned crystal array can be obtained [73].
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Figure 21. (a) Micro-spacing air sublimation grown C8-BTBT crystal arrays. (b) Optical microscope
(OM) image (top) and scanning electron microscope (SEM) image (bottom) of a C8-BTBT single
crystal with different sizes and shapes [72]. Copyright© 2023 Wiley-VCH GmbH.

2.5.7. Vapor-Induced Coating Method

Organic small-molecule semiconductor 2,7-dioctyl[1]benzothieno[3,2-b] benzothio-
phene (C8-BTBT) striped single crystals with good orientation were prepared using vapor-
induced coating [74,75]. The coating rate and solution concentration can control the mor-
phology of the striated crystals, thereby changing the wetting behavior of the three-phase
contact line and thereby altering the mass transport of the meniscus. The lack of a so-
lute supply leads to the formation of dendritic crystals. Figure 22a shows uniformly
striped crystals of C8-BTBT. Vapor molecules diffuse from the vapor source into the air
in a concentration gradient, forming a Marangoni flow that guides the solution through
dehumidification. In Figure 22b, the morphology of C8-BTBT nanocrystal arrays was
obtained under different surface tensions and substrate wettability. Figure 22c shows
layer-controlled C8-BTBT coating. The figure shows the change h/d of the steam source
system. Figure 22d shows each stage of steam-induced coating process. Figure 22e shows
the simulation results of vapor molecular distribution, velocity distribution, and solute
concentration in the meniscus during the coating process. Different crystal array heights
and solute concentrations determine the total solution mass at the crystallization point [76],
which make it possible to control the formation process of molecular scale crystal arrays
from single layer to multilayer.
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cive to the complete separation and transfer of the crystal array from the substrate. The 
initial phase of epitaxy depends on the combination of the van der Waals forces between 
the molecule and the substrate, which include the flatness of the substrate [79]. The carrier 
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Figure 22. (a) Vapor-induced coating method of C8-BTBT crystals [74]. Copyright© 2023 Springer
Nature Switzerland AG. Part of Springer Nature. (b) COMSOL simulates the process of vapor
deposition of C8-BTBT crystals. (c) Single-crystal C8-BTBT created using a vapor coating device [75].
Copyright© 2023 Wiley-VCH GmbH. (d) Different stages of vapor-induced coating. (e) COMSOL
simulated C8-BTBT vapor molecular distribution, velocity distribution, and solute concentration in
the meniscus.

2.6. Self-Assembly Method
2.6.1. Van Der Waals Force Epitaxial Growth

The van der Waals epitaxy method [77] can be used to grow single or multilayer
organic small-molecule semiconductor single-crystal arrays on graphene or boron nitride
(BN) substrates on a large scale, which can precisely control the morphology of two-
dimensional layered organic small-molecule semiconductor materials [78]. The weak van
der Waals interaction makes the surface of the crystal layer very smooth, which is conducive
to the complete separation and transfer of the crystal array from the substrate. The initial
phase of epitaxy depends on the combination of the van der Waals forces between the
molecule and the substrate, which include the flatness of the substrate [79]. The carrier
mobility of a single-layer C8-BTBT organic small-molecule semiconductor FET can reach
10 cm2V−1S−1. This new type of two-dimensional molecular material plays an important
role in the field of optoelectronics. Figure 23a shows the structural arrangement of C8-
BTBT. Figure 23b–e shows atomic force microscope (AFM) images of a C8-BTBT crystal at
different growth stages. Figure 23f–k shows the epitaxial growth of C8-BTBT molecular
crystals on graphene, with an initial two layers (interfacial layer IL and first layer 1L). In
each crystal layer, growth begins at the nucleation position and proceeds in an isotropic,
tightly packed fashion. Figure 23l–o shows optical microscopy and cross-polarized light
microscopy of C8-BTBT nanocrystal arrays. Two-dimensional molecular crystals are widely
used in layered materials and heterogeneous structures. The C8-BTBT molecular crystal
epitaxial growth method has strong processability and application value.
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semiconductor disperses too quickly in water without enough time for C10-BTBT 2DOSCs 
to grow continuously, with only a few sheets scattered randomly on the water surface. If 
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to the growth of a large area of 2DOSCs. 

Figure 23. (a) Structural arrangement of C8-BTBT. (b–e) Atomic force microscope (AFM) images of
C8-BTBT crystal at different growth stages. (f) Histogram of layer thickness of multiple samples of
C8-BTBT crystal. (g) Atomic force microscope (AFM) image of C8-BTBT crystal array. (h) Raman
mapping. (i,j) Cross-polarization optical micrograph of C8-BTBT crystal array. (k) Normalized
strength of C8-BTBT crystal as a function of rotation angle. (l,m) Optical microscope image of C8-
BTBT crystal growth pattern. (n,o) Cross-polarization optical micrograph of C8-BTBT growing at
different polarization angles in the same region [77]. Copyright©2014 Macmillan Publishers Limited.
All rights reserved.

2.6.2. External Force Driven Solution Epitaxy (EFDSE) Method

The solution epitaxy driven by external force can grow high-quality and
high-performance [80] two-dimensional organic small-molecule semiconductor nanocrystal
2DOSC at the air/water interface [81], using, for example, 2,7-didecylbenzothienobenzothio-
phene (C10-BTBT). The surface flow generated by the external force can maintain the stable
diffusion of the organic solution, so as to ensure the directional two-dimensional struc-
ture of continuous epitaxial growth of crystal and achieve the best charge transfer. In
Figure 24a, C10-BTBT solution can be diffused and grown by the external force generated
when an octadecyltrichlorosilane (OTS)-modified slider is inserted into water. S repre-
sents the diffusion capacity of the solution on the water surface, as shown in Figure 24b.
S = γ1 − γ2 − γ12 (γ1 and γ2 are the surface tension of the water and the solution respec-
tively, and γ12 is the surface tension of the interface between the two solutions). When
S > 0, the solution diffuses on the water surface, forming a highly arranged and large area
of the 2DOSC growth mechanism [82]. If the surface tension of the solvent is much less than
the surface tension of water (such as ethyl acetate), the solution of organic small-molecule
semiconductor disperses too quickly in water without enough time for C10-BTBT 2DOSCs
to grow continuously, with only a few sheets scattered randomly on the water surface. If
S < 0, the solution will remain at the interface and will not disperse (chlorobenzene). The
insertion of the slide must control the steady motion of the contact line, which is conducive
to the growth of a large area of 2DOSCs.
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Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.
(b) Growth mechanism of high—arranged large area 2DOSC. The 2DOSC C10-BTBT crystal array is
subject to the combined action of three surface tensions.

2.6.3. Self-Assembly Induced by Graphene Quantum Dots (GQDs)

The solution-induced graphene quantum dots (GQDs) self-assembly strategy [83] can
solve the problem of heterogeneous diffusion of organic solution on water’s surface and the
interaction between organic small-molecule semiconductors to grow a single layer of highly
crystalline C10-BTBT nanocrystal arrays on water’s surface. It combines the advantages of
solution self-assembly and graphene-induced epitaxial growth, using GQD solutions to
enhance the diffusion ability of organic solutions over water. In Figure 25a–c, adjusting
the pH value of GQD solution can reasonably control the diffusion area and promote the
growth of monolayer organic crystals. In Figure 25d,e, the π–π stacking interaction between
GQDs [84] and organic molecules can significantly reduce the interaction force of organic
molecules and make it easier for organic small-molecule semiconductor crystal arrays to
join together, which allows monolayers to grow over a large area, which opens up a new
method for the preparation of large area organic monolayers.
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Figure 25. (a) pH = 3, C8-BTBT crystals can be stacked in a single layer in graphene quantum dot
solution. (b) pH = 7, C8-BTBT crystals can be stacked in graphene quantum dot solution from 1 to
7 layers. (c) pH = 12, C8-BTBT crystals can be stacked in graphene quantum dot solution from 1 to
12 layers. (d,e) Quantum dots can reduce the intermolecular force of crystals and promote large area
monolayer crystal aggregation [83]. Copyright© 2020 Wiley-VCH GmbH.
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2.6.4. Soft Template Assisted Self-Assembly

The soft template assisted self-assembly (STAS) strategy [85] uses liquid substrate
as soft template to grow 2D organic small-molecule semiconductor crystals (2DMCs)
with different structures in solvents with different surface tension, which provides a new
method for the growth of high-performance organic small-molecule semiconductor crystals.
Adding a solvent with high surface tension in water can achieve uniform diffusion of
a good organic small-molecule solution, and 2DMCs can be quickly transferred layer
by layer. The surfactant potassium perfluorooctane sulfonate C8F17KO3S was added to
the aqueous phase to form a molecular layer as a soft template. Amphiphilic surfactant
molecules spontaneously aggregate at the air/water interface to form hydrophilic groups
and hydrophobic groups, which can be used as the soft molecular layer interface layer.
This is conducive to the continuous diffusion of thin solution layers on the water’s surface,
which can form a large two-dimensional molecular crystal layer. In Figure 26a–i, C6-DPA
toluene solution grows two-dimensional organic single-crystal arrays on the surface of
different concentrations of surfactants. The solvent with low surface tension or high surface
tension can be continuously diffused in water without splitting, which is conducive to the
spreading of ultra-thin large area 2DMC arrays.
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Figure 26. The growth of two-dimensional molecular crystals of C6-DPA at different concentrations
of surfactant: (a) 0 mg mL−1, (b) 0.001 mg mL−1, (c) 0.005 mg mL−1, (d) 0.02 mg mL−1. (e–h) Optical
microscope image of C10-BTBT crystal array grown with different concentrations of surfactants.
(i) Soft template self-assembled C6-DPA grows two-dimensional organic single-crystal arrays [85].
Copyright© The Royal Society of Chemistry 2022.

2.6.5. DOSC Two-Step Strategy

In a two-step growth strategy for two-dimensional organic small-molecule semi-
conductor crystal arrays (2DOSCs) in patterned high-resolution layers, large-scale two-
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dimensional organic small-molecule semiconductor crystal arrays with controllable molec-
ular layers are first prepared on a glycerol substrate and transferred to the target sub-
strate [86]. The high-resolution laminated 2DOSC array was obtained using the selective
contact evaporation printing (SCEP) technique with the help of the PDMS template, which
can realize the highly integrated two-dimensional organic small-molecule semiconductor
crystal array using, for example, 2,6-bis(4-hexylphenyl)anthracene (C6-DPA). In Figure 27a,
the two-step strategy of the 2DOSC array starts by controlling the concentration of C6-
DPA solution [87,88] on the glycerol substrate, which can obtain C6-DPA from mono-
layer (1L) to multilayer crystal arrays. There is selective etching of C6-DPA 2DOSCs at
the PDMS/2DOSC interface using the thermal evaporation method. As can be seen in
Figure 27b,c, this strategy can obtain a large area C6-DPA 2DOSC array image. It can
prepare 2DOSC patterned crystals on a large scale with simple operation and low cost.
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Figure 27. (a) Patterned layered 2DOSC array. (b) Large area C6-DPA 2DOSC and high-resolution
optical microscope (OM) images; scale: 100 µm. (c) OM images of C6-DPA crystal arrays; scale:
200 µm [86]. Copyright© 2021 Wiley-VCH GmbH.

3. Photoelectric Application
3.1. Artificial Neural Network Synapses

The dielectric surface of the organic small-molecule semiconductor C8-BTBT photo-
transistor depends on the broad band optical response behavior. The recognition rate using
SiO2-based OPT to simulate photoelectric artificial synapses [89] is over 95%, while the
CYTOP-based OPT has a recognition rate of 0% when using the same semiconductor. The
optical reaction in the 400–1000 nm region depends on the optical gating effect on the surface
of the medium, which is a band with less energy than the 2,7-didecylbenzothienobenzothi-
ophene (C8-BTBT) band gap. At 400 nm, the Vturn shift of SiO2-based OPTs is up to 43 V,
the sensitivity >1.74 × 104A·A−1, and the detection rate >2.40 × 1012 Jones. Artificial
synapses [90–93] are simulated to realize face pattern recognition [94]. In OPT based on
hydrophilic media, artificial synapses can recognize an ultra-wide optical range from ultra-
violet (UV) to near-infrared (NIR). Figure 28a shows signal transmission between input and
output neurons. In Figure 28b–d, in the simulation of synaptic neuro-morphism, a fully
connected bilayer neural network consisting of 32 × 32 input neurons, 20 intermediate
layer neurons, and 3 output neurons was designed. Figure 28e–g shows enhancement
and inhibition (P–D) curves of OPT based on SiO2. Figure 28h–j shows the OPT enhanced
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inhibition (P–D) curve based on CYTOP. Based on these results, organic small-molecule
semiconductor crystal arrays can be applied to artificial neural networks (ANNs) for pat-
tern recognition, and the photogating effect has a strong photoelectric performance in
neuromorphic computing systems. The organic small-molecule phototransistor has good
visual recognition performance and strong practicability.
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Figure 28. (a) A synaptic phototransistor composed of C8-BTBT nanocrystal array and dielectric layer
and its cross-sectional SEM images. (b) A biological synapse composed of neurons, neurotransmitters,
and postsynaptic neurons. (c) An artificial synapse composed of an organic small molecule C10-BTBT
nanocrystal array. (d) Nine 32 × 32 pixel trained face image samples extracted from the face database.
OPT based on C8-BTBT crystal array SiO2: (e) Current curve and recognition accuracy curve of
artificial synaptic simulated face recognition. (f) Relationship between face recognition and training
in artificial synaptic network. (g) Face recognition rate after training. OPT of crystal array CYTOP
based on C8-BTBT: (h) Current curve and recognition accuracy curve of artificial synaptic simulated
face recognition. (i) Relationship between face recognition and training in artificial synaptic network.
(j) Face recognition rate after training [89]. Copyright© 2020 Elsevier Ltd. All rights reserved.

3.2. Organic Photodetector

Organic photodetectors have high application value in environmental health moni-
toring, quantum communication [95], chemical/biomedical sensors, image sensors, and
other fields. Organic phototransistor (OPT) channel carriers are composed of electrons
and photons, and they have higher photosensitivity and lower noise than ordinary diode
photodetectors [96]. We analyzed a high-performance dual-band phototransistor with
CH3NH3PbI3 nanoparticles (NPs) coated with C8-BTBT single-crystal array hybrid struc-
ture. Compared with the absorption of C8-BTBT and CH3NH3PbI3 in ultraviolet (UV)
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and visible (vis) regions, the hybrid structure of C8-BTBT and CH3NH3PbI3 shows the
absorption covering the whole UV–visible range and has the best photoelectric detection
performance. Hybrid CH3NH3PbI3/C8-BTBT single-crystal array integrated phototran-
sistor circuits are widely used in high security communication. Figure 29a–g shows the
detection capability, transmission characteristics, optical responsiveness, and energy level
characteristics of a hybrid photodetector composed of a C8-BTBT single-crystal array.
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LED [97], and the DPA SC with high mobility and strong luminescence characteristics is 
used as the active emission layer to improve the transmission performance of injected car-
riers. This promotes the radiation coupling of excitons. It overcomes the common problem 
of the short circuiting of upper and lower electrodes in traditional devices, as well as the 
problem of cracking of the upper electrode caused by an ultrathick SC. LP-LED of DPA 
SC shows excellent luminous performance. Its maximum brightness and EQE are 2427 
cdm−2 and 3.38%, respectively. The highly polarized light emission of an organic small-
molecule semiconductor single-crystal LP-LED is caused by the generation of excitons be-
tween anisotropic molecules and different resonances along the crystal axis. High-effi-
ciency LP-LED is a new type of polarized light communication system between chips. It 
surpasses traditional materials and methods in high-performance organic SC LP-LED 

Figure 29. (a) Phototransistor composed of C8-BTBT single-crystal array. (b) Transmission character-
istics of C8-BTBT phototransistors at dark and 550 nm illumination (10 µW/cm2). (c) Variation of
photoresponse characteristics of perovskite NPs/C8-BTBT phototransistor with Vg. (d) Transmission
characteristics of NPs/C8-BTBT hybrid transistors at dark and different wavelengths [95]. (e) Op-
tical responsiveness as a function of optical wavelength [96]. Copyright©2019 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim. (f) Structure diagram of UV-triggered HL-OPT and photoelectric
detection diagram of C8-BTBT crystal array. (g) Energy level diagram of HL-OPT device under
ultraviolet irradiation.

3.3. DPA SC Polarized Light Communication System

The bridge LIB strategy between the organic small-molecule semiconductor single-
crystal emitter and liquid insulator of DPA SC results in highly efficient structured LP-
LED [97], and the DPA SC with high mobility and strong luminescence characteristics
is used as the active emission layer to improve the transmission performance of injected
carriers. This promotes the radiation coupling of excitons. It overcomes the common
problem of the short circuiting of upper and lower electrodes in traditional devices, as
well as the problem of cracking of the upper electrode caused by an ultrathick SC. LP-
LED of DPA SC shows excellent luminous performance. Its maximum brightness and
EQE are 2427 cdm−2 and 3.38%, respectively. The highly polarized light emission of
an organic small-molecule semiconductor single-crystal LP-LED is caused by the gen-
eration of excitons between anisotropic molecules and different resonances along the
crystal axis. High-efficiency LP-LED is a new type of polarized light communication sys-
tem between chips. It surpasses traditional materials and methods in high-performance
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organic SC LP-LED polarizing and optoelectronic device applications. The system can
detect the anisotropy of multi-dimensional information and detect the polarization signal.
Figure 30a–e shows the polarized optical communication system between DPA SC chips
and working parameters.
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Figure 30. (a) DPA SC inter-chip polarized optical communication system. (b) Operating mechanism
of LP-LED and LP-PD devices and integrated systems. (c) Normalized polarization depends on the
output signal strength and the input signal period of the isogram. (d) Repeatable optical response
signals of LP-PD at 0◦, 45◦, and 90◦ polarization angles. The blue shade indicates the time of the
polarized light. (e) Polaroid diagram of photocurrent and polarization angle and fitting curve [97].
Copyright© 2023 Wiley-VCH GmbH.

3.4. Photoelectric Storage

High photosensitive organic small-molecule semiconductors can produce photoelectric
LIM units with multiple layers of storage [98]. The biggest advantage of photoelectric
memory is the security of data storage [99]. In conventional memory, data are mainly
recovered by applying a bias voltage. Optical control storage information can only be
obtained by applying specific wavelength/intensity optical signal, thus ensuring its security.
Organic small-molecule semiconductor C8-BTBT nanocrystal arrays are highly responsive
to ultraviolet (UV) optical signals, while PhC2H4-benzo[de]isoquinolino[1,8-gh]quinolone
diimide (PhC2-BQQDI) transistors are photo-responsive to visible light. Figure 31a–f
shows the operating principle of ternary photoelectric storage. The optical response of
C8-BTBT and PHC2-BQQDI organic small-molecule semiconductor transistors enables
visible-induced programming and UV-induced erasure operations. Using a p-type C8-BTBT
transistor and n-type PhC2-BQQDI transistor, the binary storage inverter is realized. The
organic MVL’s LIM unit achieves high data integration, photoelectric storage operation,
and multilevel storage [100]. Memory logic (LIM) integrates logic and memory operations
into a single device architecture to achieve the functionality of a ternary LIM.
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4. Conclusions

Processable organic small-molecule semiconductors are promising candidates for FET
channel materials of low cost, large area, and light weight, with flexible electronic applica-
tions. In order to control the formation of organic small-molecule nanocrystals, a variety
of solution-based coating technologies have been developed. At present, new methods
such as top-down, bottom-up, self-assembly, crystallization, and visualization have been
developed to solve the preparation of organic small-molecule semiconductor crystal arrays.
During solution treatment, organic small-molecule semiconductors are often subject to
uncontrolled nucleation and growth, which results in poor reproducibility and performance
of the crystal arrays, limiting their function in electronic devices. Many efforts have been
made to overcome this obstacle by improving and adjusting the molecular stacking condi-
tions or through interface engineering. Constructing a variety of microstructure patterns
to grow organic small-molecule semiconductor nanocrystal arrays is a new solution. The
size of organic small-molecule semiconductor crystal arrays is usually 1–10 cm2, which
greatly improves the photoelectric performance of organic small-molecule semiconductor
nanocrystal arrays and can play an important role in photodetectors, artificial synapses,
and photoelectric storage.
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