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Abstract: Copper (Cu) and tungsten (W) possess exceptional electrical and thermal conductivity
properties, making them suitable candidates for applications such as interconnects and thermal con-
ductivity enhancements. Solution-based additive manufacturing (SBAM) offers unique advantages,
including patterning capabilities, cost-effectiveness, and scalability among the various methods for
manufacturing Cu and W-based films and structures. In particular, SBAM material jetting tech-
niques, such as inkjet printing (IJP), direct ink writing (DIW), and aerosol jet printing (AJP), present a
promising approach for design freedom, low material wastes, and versatility as either stand-alone
printers or integrated with powder bed-based metal additive manufacturing (MAM). Thus, this
review summarizes recent advancements in solution-processed Cu and W, focusing on IJP, DIW, and
AJP techniques. The discussion encompasses general aspects, current status, challenges, and recent
research highlights. Furthermore, this paper addresses integrating material jetting techniques with
powder bed-based MAM to fabricate functional alloys and multi-material structures. Finally, the
factors influencing large-scale fabrication and potential prospects in this area are explored.

Keywords: inkjet printing; direct ink writing; aerosol jet printing; additive manufacturing; ink
formulations; copper; tungsten; scalability

1. Introduction

Copper (Cu) and tungsten (W) transition metals have many fascinating properties. Cu
has high electrical conductivity and thermal conductivity, making it a suitable candidate for
printed electronics [1–5], catalysis [6–12], sensors [13–15], two-phase heat transfer [16],
current collectors for batteries [17], solar cells [18–22], photo-detectors [23], and heat
sinks [24–26]. Likewise, W also has good electrical and thermal conductivities [27], a
low coefficient of thermal expansion [27], good chemical and corrosion resistance [27,28],
high-temperature stability [27], and hardness, making it suitable for interconnects [29],
diffusion barriers [29], solar applications [30–32], catalysis [33–36], armors [37,38], nuclear
applications [39], and other high-temperature applications [40,41].

Due to their exceptional electrical and thermal properties, Cu and W are the primary
materials of choice as interconnects, electrodes, and thermal spreaders [42–50]. Such
applications necessitate the deposition of thin films, thick coatings, and patterning, as well
as the doping of Cu or W nanomaterials into other metal matrices to produce functional
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composite alloys and 3D structures of Cu and W. For instance, patterned thin films of Cu/W
can be utilized as gate electrodes in thin-film transistors [51–55] or as metal interconnects
in semiconductor devices when applied as thick films [43]. Moreover, free-standing 3D
structures can serve as current collectors [56] or heat sinks [57], while doping Cu or W
phases into a primary metal matrix can enhance thermal properties [47,48]. Several additive
and subtractive manufacturing methods, such as photolithography, plasma etching, wet
etching, dry reactive etching, ion beam lithography, machining, physical vapor deposition,
chemical vapor deposition, powder metallurgy, laser melting, and combinations of these
methods have been used to fabricate these two transition metals or dope these materials
into another material [38,48,58–65].

In addition to these methods, researchers have gained interest in solution-based addi-
tive manufacturing (SBAM) techniques for depositing thin films, coatings, patterning, and
3D free-form structures for various applications [66,67]. These manufacturing processes
are classified as contact-based or non-contact-based, distinguished by how ink is dispensed
onto the surface of choice (Figure 1). Factors such as rheological properties of ink, appli-
cation type, and surface characteristics are crucial in choosing the appropriate technique
for achieving good print quality [66,68,69]. Several of these methods, such as screen print-
ing [66,70,71], transfer printing [66,72], flexographic printing [66], gravure printing [66],
doctor blade coating [73], spin coating [66,74], slot-die coating, spray coating [66], inkjet
printing (IJP) [66,67,75–77], E-jet printing (EHD) [66,78,79], aerosol jet printing (AJP) [66,80],
and direct ink writing (DIW) [81,82] have been widely investigated for a diverse range
of applications. The potential for scaling these processes into roll-to-roll manufacturing
makes them attractive for commercialization.

This review paper focuses on non-contact printing methods, specifically material
jetting technologies such as IJP, DIW, and AJP, which have the potential for integration with
powder bed-based MAM. While contact-based printing methods offer some advantages,
their integration with powder bed-based MAM is challenging due to the requirement for
mechanical components to contact the powder bed and the difficulty of removing excess
ink. In contrast, non-contact printing techniques, particularly IJP, DIW, and AJP, can be
compatible with the powder bed mechanism, providing high resolution, maskless pattern-
ing, and the capability to produce thin films or three-dimensional structures. Consequently,
these material jetting techniques can function as stand-alone printers for Cu and W or be
integrated with powder bed-based MAM technologies, enabling voxel-level ink control.
This integration facilitates the design and development of multi-material three-dimensional
structures. Therefore, this review explores the progress and challenges associated with
printing Cu and W using IJP, DIW, and AJP by organizing as follows: Section 2 provides
a brief overview of the three material jetting printing techniques and the current research
and development of these methods for various materials and applications. Section 3 offers
a detailed overview of the recent progress and the challenges of Cu and W ink formulations
and printing for multiple applications.

Additionally, Section 4 introduces innovative research on integrating material jetting
methods with powder bed-based MAM to fabricate functional alloys and multi-material
structures. Furthermore, Section 5 discusses factors that influence large-scale fabrication. Fi-
nally, the last section summarizes the article and discusses the future perspectives of SBAM
and SBAM material jetting within powder bed-based MAM for Cu and W-based materials.
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Figure 1. Contact and non-contact solution-based additive manufacturing techniques (schematics
of printing methods adapted or reproduced with permission from [66,83–88]: copyright 2021, Else-
vier Ltd.; copyright 2018, Royal Society of Chemistry; copyright 2020, Royal Society of Chemistry;
Copyright 2010, American Chemical Society; copyright 2019, MDPI; copyright 2018, IOP Publishing;
copyright 2016, Nature Publishing Group).

2. Material Jetting Techniques

As previously mentioned, this review concentrates on IJP, DIW, and AJP. This section
briefly overviews these three printing methods and their applications.
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2.1. Inkjet Printing (IJP)

IJP is a non-contact, additive digital printing technique used for printing patterns,
sensors, electronic devices, solar cells, coatings, and 3D structures for various applica-
tions [84,89]. Since its development in the 1950s, numerous printheads have been com-
mercialized for research and industrial purposes [90]. In this method, the materials to
be printed (e.g., metal, metal oxide, organic materials) are either dissolved (precursors)
or dispersed (nanomaterials) in a solvent with additives to form stable inks. Once the
inks are prepared, they are filled into cartridges and printed onto the desired surface.
Droplets are created by applying a voltage to piezoelectric crystals or heating thin film
resistors, depending on whether a piezoelectric or thermal printhead is used, as illustrated
in Figure 2a, respectively [84]. Droplet creation and stability depend on the properties
(surface tension, viscosity, and density) of the inks and the printable zone, which is based on
the dimensionless numbers calculated from the rheological properties depicted in Figure 2a.

2.2. Direct Ink Writing (DIW)

DIW is a developing AM technique used to print various materials for diverse appli-
cations [91,92]. In this robotic dispensing method, shear-thinning inks are dispensed using
pneumatic, piston, or screw techniques, as illustrated in Figure 2b [93–96].

2.3. Aerosol Jet Printing (AJP)

AJP is an AM process that has gained significant attention due to its versatility; a rela-
tively new technique emerged in the research field around 2001–2002 [97,98]. A collimated
aerosol stream is created by generating aerosol using an ultrasonic or pneumatic atomizer
and transporting the aerosol stream via a carrier gas, focusing on a sheath gas [97–99].
Compared to IJP, AJP offers greater flexibility, higher resolution, and a broader scope for
viscosity manipulation of inks. The AJP setup and various conditions and parameters that
affect the process are shown in Figure 2c.

2.4. Applications of IJP, DIW, and AJP

The three printing techniques discussed in the previous section are widely used to
print various materials for applications in electronics, catalysis, solar cells, sensors, and
batteries. Additionally, they have been employed to print active layers, dielectric layers, and
gate electrodes in semiconductor devices. Recently, a broad range of materials, including
metals, metal oxides, chalcogenides, perovskites, and polymers, have been printed using
these methods. Table 1 summarizes the materials and techniques used for printing, along
with their respective applications.
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Table 1. Some examples of materials printed using IJP, DIW, and AJP for various applications.

Material Printing Method Application Reference

CuBi2O4 IJP Photoelectrochemical water splitting [100]
Pt–CB IJP As a catalyst to improve PEFC performance [101]
TiO2 IJP Photocatalytic degradation of pollutant [102]
Co3O4/N-rGO IJP A catalyst for the oxygen reduction reaction [103]
LaSrCoF IJP Catalysis [104]
Pt/Al2O3 IJP Catalytic reduction of NO [105]
α-Al2O3 DIW Catalysis [106]
Nano Palladium IJP A catalyst for electroless plating [107]
TiO2 DIW Plasmonic structures for photocatalysis [108]
Al2O3 DIW Biomimetic porous ceramic catalyst carriers [109]
UiO-66/polymer composites DIW Rapid catalytic hydrolysis of methyl paraoxon [110]
Pd/Al2O3 CFR DIW Porous catalytic continuous flow reactor (CFR) [111]
Metal Oxide/H-ZSM-5 Catalysts DIW A 3D-printed catalyst for hexane cracking [112]
Silica-coated Pt/carbon IJP A catalyst to improve PEFCs performance [113]
AgNO3/H2O IJP A catalyst for electroless plating [114]
Ni cermet anode IJP The catalyst for hydrogen oxidation [115]
3D SiC scaffold DIW Catalyst support for methanol steam reforming micro-reactor [116]
Ag nanoparticles (NPs) AJP Wearable strain sensor [117]
Reduced GO AJP 3D electrodes for sensing COVID-19 antibodies [118]
Pt AJP Microheaters for gas sensing applications [119]
PEDOT: PSS/enzyme solution IJP Glucose sensing [120]
Ag/AgCl/C/CNT AJP Electrochemical sensor for protein detection [121]
NiO AJP Temperature sensor [122]
Hydrogel DIW Mechanochromic sensor [123]
WO3 IJP Ultraviolet photodetectors [124]
MOF IJP Ammonia gas sensor [125]
Ag NPs AJP Capacitance-based strain gauge [126]
CNT AJP pH sensor for live cell applications [127]
Graphene DIW Gas sensing applications [128]
Graphene AJP Ammonia sensing [129]
Graphene/polyimide IJP Ultrasound sensors [130]
GO/BP IJP Humidity sensing [131]
IrOx IJP pH sensing [132]
MWNT/Carbon/PDMS IJP Flexible deflection monitors sensing [133]
Hydrogel electrodes IJP Detecting glucose, lactate, and triglycerides [134]
PEDOT: PSS IJP Touch sensor [135]
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Table 1. Cont.

Material Printing Method Application Reference

Graphene AJP Histamine sensor for food safety [136]
Graphene AJP Immunosensor for cytokine monitoring in serum [137]
Cu and CuNi AJP Flexible temperature sensors [138]
Ru based dye IJP Oxygen sensing patch [139]
Silica/NdFeB DIW A magnetic flexible tactile sensor [140]
CoFe2O4 AJP Micro supercapacitor applications [141]
LFP, LTO/GO, CNT DIW Battery electrodes [142]
LFP cathodes AJP High-performance cathodes [143]
PVDF-co-HFP/Pyr13TFSI/LiTFSI/TiO2 DIW Solid-state electrolyte for Li-ion batteries [144]
Graphene IJP Anode for Li-ion batteries [145]
Ni IJP Flexible current collector for Li-ion batteries [146]
zinc oxide and P3HT: ICBA IJP Heterojunction solar cell applications [147]
Cellulose/alginate/carbon black hydrogel DIW Solar steam generation [148]
graphene DIW Solar steam generation [149]
Cu (In, Ga) Se2 IJP Solar absorber [150]
α-ITO/Ag DIW 3D Top electrodes for perovskite solar cells [151]
Pt AJP Conductive tracks on polymer and ceramic substrates [152]
Graphene AJP Interconnects [153]
CNT/h-BN AJP 1D 2D-TFTs [154]
CNTs AJP TFTs [155]
PEDOT: PSS/WO3/PEDOT: PSS IJP Flexible NVM applications [156]
Halide perovskite-based IJP LEDs [157]
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region of ink on the right (reproduced with permission from [84]: copyright 2020, Royal Society of
Chemistry); (b) schematics of typical DIW apparatus ink on the left (reproduced with permission
from [95]: copyright 2016, Royal Society of Chemistry), and different types of dispensing techniques
for DIW on the right (reproduced with permission from [93]: copyright 2013, Wiley–VCH Verlag
GmbH & Co., KGaA, Weinheim); (c) schematics of aerosol jet printing set up on the left (reproduced
with permission from [98]: copyright 2013, American Chemical Society), and factors influencing the
process on the right (reproduced with permission from [97]: copyright 2019, Springer).

3. Cu and W Printing

This section aims to review various types of inks, challenges, and progress for non-
contact printing of Cu and W because of their exceptional properties and resulting ap-
plications. Significant research has focused on developing Cu-based inks for conductive
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electronic applications. Li et al. [158] published a review paper that compiled various
copper inks, including Cu nanoparticles, small molecular precursors, and mixed inks for
electronic applications. In contrast, much less attention has been given to printing W
nanoparticle or precursor-based inks. This result is due to the refractory metal’s extremely
high sintering temperature and the seldom studied precursor chemistry for solution-based
deposition systems. Table 2 provides an overview of different types of inks used and
printing methods for various applications.

3.1. Current Reported Applications of Printed Cu and W

There is limited literature on printing W for practical purposes. Recently, printed W
has been used as solar absorber coatings [159] and radiation shielding on circuit boards
(Figure 3a) [160]. In contrast, printed Cu has been utilized in various applications such as
Cu grid electrodes for organic light-emitting diodes (OLEDs) (Figure 3b) [161], porous 3D
scaffold for Li-ion batteries [56], current collecting grids for photovoltaics [162], repairing
PCB boards [163], interconnects and power electronics [164–166], resistive temperature
sensors [167]. The following section discusses the progress and challenges of printing Cu
and W for these applications.
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Table 2. Some of the works investigated Cu and W printing using different types of ink and AJP, IJP, and DIW.

Material Ink Type Printing Method Post-Processing
Technique

Optimum Resistivity
(Conductivity) Application Reference

Cu NPs IJP Laser sintering 0.5 µΩ �−1

(3.6 kS·cm−1)
Current collecting grids for photovoltaics [162]

Cu Core-shell NPS IJP Conventional sintering 11 µΩ·cm Conductive patterns for electronics [168]

Cu NPs IJP Conventional sintering 13.5 µΩ·cm Conductive patterns [169]

Cu Precursor IJP Conventional sintering 9.5 µΩ·cm Conductive patterns [170]

Cu Precursor IJP Conventional sintering 10.5 µΩ·cm Conductive patterns [171]

Cu Precursor IJP Conventional sintering (15 kS·cm−1) Conductive patterns [172]

Cu Precursor IJP sintering in formic acid 2.3 µΩ·cm Conductive patterns [173]

Cu Precursor IJP Conventional sintering -
Binding material in binder jetting, an additive
manufacturing technology, to produce copper
structures

[174]

Cu NPs IJP Conventional sintering -
Binding material in binder jetting, an additive
manufacturing technology, to produce copper
structures

[175]

Cu NPs IJP Photonic sintering <2.5 µΩ·cm Circuits [164]

Cu NPs AJP CW laser sintering 18 µΩ·cm To repair the PCB board [163]

Cu–Mn Microparticles DIW Conventional sintering - Hierarchical porous alloy could be used in catalysis,
sensors, electrodes, and actuators applications [176]

Cu NPs DIW Conventional sintering 1 × 104 µΩ �−1 Interconnects [165]

Cu Microparticles DIW Conventional sintering (2.8 kS·cm−1) Support structures for steel [177]

Cu–Ni NPs AJP Conventional sintering 1.0 × 106 µΩ �−1 Resistor for power applications [166]

Cu and alloys NPs AJP Conventional sintering - Resistance temperature sensors [167]

Cu Shear thinning Cu
microparticle ink DIW Conventional sintering - 3D porous scaffold for Li-ion batteries [56]

Cu NPs AJP Conventional and photo
sintering <15.0 µΩ·cm Conductive patterns [178]

Cu and Cu-Graphene NPs AJP Conventional sintering (1.5 kS·cm−1) Conductive patterns [179]

W Precursor AJP Conventional sintering - Porous nanostructured coating for enhancing solar
absorption [159]

W NPs DIW Conventional sintering - Could be used for ultrahigh-voltage electric contacts [180]

W NPs DIW Conventional sintering - Could be used for heat exchangers [181]
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3.2. Commercial Cu and W Inks

The market is abundant with commercial copper nanoparticle-based inks, yet lacks
metallic tungsten inks. However, there are tungsten oxide inks available, such as those
provided by Sigma–Aldrich, which can be used with a reducing agent, provided the
application allows for a reduction step in the procedure. The manufacturers of conduc-
tive nanoparticle inks include applied nanotechnologies, dycotech materials, novacentrix,
copprint, and nanochemazone. Although the specifics of ink production largely remain
proprietary information, these manufacturers typically recommend post-processing tech-
niques, such as laser treatment, flash lamp treatment, or formic acid vapor treatment, to
enhance the conductivity [182,183]. Table 3 lists some of the inks properties, carrier solvent,
and processing techniques of commercial Cu inks. This table serves as a general reference;
for detailed properties of a specific ink, it is recommended to refer to the corresponding
manufacturer’s website.

Table 3. List of commercial copper Inks.

Manufacturer Solvent Post-Processing Printing Methods Resistivity

Applied NanoTech - Photo sintering Aerosol, inkjet, and
screen printing -

Copprint - Hot air, IR lamp
Aerosol, flexo, gravure,
inkjet, and screen
printing

-

Dycotech Materials Diethylene Glycol
monoethyl ether Laser/flash lamp, formic acid Aerosol, inkjet, and

screen printing 3.5–15 × 103 µΩ �−1

Novacentrix Glycol ether Laser, formic acid vapor Aerosol, inkjet, and
screen printing 3.4–18 µΩ·cm

3.3. Challenges and Progress of Printing Cu

Cu is an excellent conductor and can potentially replace gold (Au) and silver (Ag)
as the primary component in conductive inks. These inks are in high demand in printed
electronics, which seek to manufacture cost-effective, large-scale devices. While Ag is a
slightly better conductor, Cu is more abundant and significantly less expensive. However,
Cu is more susceptible to oxidation than Ag, a more pronounced problem for NPs. Since
copper oxides act as semiconductors instead of metals, controlling oxidation is essential
when employing Cu NPs in conductive inks. The primary challenge in leveraging Cu’s
affordability for conductive inks is to create an economical synthesis method that yields
metallic Cu NPs. Numerous innovative studies have tackled the oxidation of Cu inks
during the printing, synthesis, or device fabrication process [162,168,170]. In this section,
we discuss the progress made in addressing oxidation issues at different stages of the
printing process and for different types of inks.

3.3.1. IJP of Cu

Inkjet printing of Cu is primarily employed for printing conductive patterns for semi-
conductor device applications. Over the past two decades, numerous investigations have
been carried out to understand substrate-ink interactions, nozzle clogging, ink rheology, the
coffee ring effect, and post-treatment methods. These challenges are generally expected for
any material and application. However, for metal-based inks like Cu, oxidation is the main
issue. Post-processing methods like sintering in the atmosphere can lead to the oxidation of
printed Cu, increasing the resistance of the patterns. Various Cu inks have been developed
for different printing methods to address these challenges and study the performance of
printed patterns [158].

Georgiou et al. [162] employed a fast laser sintering technique (infrared diode laser)
instead of slow conventional heating to minimize the oxidization. Cu nanoparticles
(NPs) (Intrinsiq Materials) dispersion ink with a viscosity of 12 cp and surface tension
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of 29–30 mN·m−1 was used to fabricate the Cu grid as a bottom electrode for solution-
processed solar cells using a Fujifilm Dimatix DMP-2800 inkjet printer. An electrical
conductivity of 3600 S·cm−1 (Figure 4a) was achieved as the optimum value without Cu
layers detaching from the substrate surface. This optimal condition was obtained at a
laser scanning speed of 25 mm·s−1 and a focal length of 14 mm. The researchers also
explored doctor blade coating of Cu grids with different PEDOT: PSS layer thicknesses to
protect them during solution processing of other device layers (Figure 4b–d). Despite the
protective layer, sintering in ambient conditions after coating adversely affects the electrical
conductivity of the Cu grid layer (Figure 4e). The authors reported that Coated Cu-based
organic photovoltaics (OPV) devices showed a power conversion efficiency (PCE) of 3.35%,
compared to 4.92% for ITO-based devices.
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Core-shell NP inks represent another approach that has been explored to prevent
the oxidation of Cu NPs and fabricate conductive Cu layers. Moon’s research group
synthesized copper formate (CuF) shells around Cu to prevent oxidation, as illustrated
in Figure 5a [169]. The OLA-capped Cu NPs were synthesized using copper (II) 2-ethyl
hexanoate at 250 ◦C, and a copper formate shell was formed with the help of formic
acid injection into the dispersion of 1 g of Cu NPs in acetonitrile. Subsequently, the inks
were formulated by dispersing these 25 wt% core-shell NPs in 1-methoxy 2-propanol,
and conductive patterns were printed using a piezo print head developed by Microfab.
After annealing the films at 150 ◦C, the formate shell was converted to conductive copper,
achieving a resistivity of 13.5 µΩ·cm. Figure 5b shows X-ray photoelectron spectra (XPS)
of Cu, CuF core-shell particles, and annealed core-shell particles. It can be observed that
the surface oxidation of NPs is evident from the Cu–O peak at 934.6 eV. In contrast, no
oxidation is present on the annealed core-shell particles.

In another study, Grouchko et al. [168] synthesized air-stable Cu–Ag core-shell NPs
(Figure 5c,d) through a two-step reaction mechanism, using copper nitrate precursor fol-
lowed by the addition of silver nitrate to create a shell around Cu NPs via a transmetalation
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reaction. Subsequently, an ink was formulated using 25 wt% of core-shell NPs with a
viscosity of 1.9 cP and surface tension of 23.9 mN·m−1 to demonstrate inkjet printing with
the Microfab JetDrive III controller. The inks were used to print decorative and conduc-
tive patterns on various substrates, as shown in Figure 6a. The films were annealed at
different temperatures to enhance their conductivity. The results indicate that the core-shell
structures remained intact at 150 ◦C; however, above 250 ◦C, silver NPs were formed, and
Cu NPs were no longer coated by silver (Figure 6b). Nonetheless, no further oxidation of
the printed layers was observed after cooling, indicating that this ink could be useful in
conductive electronics.

Nanomaterials 2023, 13, x FOR PEER REVIEW 11 of 35 
 

 

 
Figure 5. (a) Cu–CuF core-shell particles showing that core-shell protects the copper core from being 
oxidized, (b) XPS spectra of Cu and core-shell particles under different conditions (reproduced with 
permission from [169]: copyright 2013, Royal Society of Chemistry); (c) TEM micrograph of Cu–Ag 
core-shell NPs, (d) STEM and elemental profile along the diameter of core-shell NP (reproduced 
with permission from [168]: copyright 2009, Royal Society of Chemistry). 

In another study, Grouchko et al. [168] synthesized air-stable Cu–Ag core-shell NPs 
(Figure 5c,d) through a two-step reaction mechanism, using copper nitrate precursor fol-
lowed by the addition of silver nitrate to create a shell around Cu NPs via a transmeta-
lation reaction. Subsequently, an ink was formulated using 25 wt% of core-shell NPs with 
a viscosity of 1.9 cP and surface tension of 23.9 mN·m−1 to demonstrate inkjet printing with 
the Microfab JetDrive III controller. The inks were used to print decorative and conductive 
patterns on various substrates, as shown in Figure 6a. The films were annealed at different 
temperatures to enhance their conductivity. The results indicate that the core-shell struc-
tures remained intact at 150 °C; however, above 250 °C, silver NPs were formed, and Cu 
NPs were no longer coated by silver (Figure 6b). Nonetheless, no further oxidation of the 
printed layers was observed after cooling, indicating that this ink could be useful in con-
ductive electronics. 

Additionally, numerous other studies have focused on developing core-shell NPs 
inks to understand the effects of oxidation. Yu et al. [184] studied the sintering behavior 

Figure 5. (a) Cu–CuF core-shell particles showing that core-shell protects the copper core from being
oxidized, (b) XPS spectra of Cu and core-shell particles under different conditions (reproduced with
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core-shell NPs, (d) STEM and elemental profile along the diameter of core-shell NP (reproduced with
permission from [168]: copyright 2009, Royal Society of Chemistry).
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Additionally, numerous other studies have focused on developing core-shell NPs
inks to understand the effects of oxidation. Yu et al. [184] studied the sintering behavior
of Cu–Ag core-shell particles synthesized using a green approach. They proposed a
sintering mechanism and found that Ag de-wetting enhanced the sintering performance
and protected the Cu core from oxidation up to 156 ◦C. These findings highlight the need
to investigate the sintering mechanism and establish a correlation between the core-shell
NPs sintering mechanism and the electronic and mechanical properties of the films.
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Copper molecular organic decomposition (MOD) precursors offer another approach to
prevent the oxidation of Cu inks. An additional advantage of these inks is that they contain
particle-free molecular precursors that can be dissolved in common solvents, such as water,
alcohol, and glycol ethers for inkjet printing [170–172]. Shin et al. [170] used alkanolamines
to modify copper formate salt and dissolved them in alcohols for printed electronics. Their
research demonstrates that the 2-amino 2-methyl-1-propanol (AMP) complexation resulted
in fewer carbon and oxygen impurities in the films after annealing. They also synthesized
co-complexed copper formate with AMP and oleyl amine to produce more compact and
dense films, as opposed to the voided films formed by the Cu formate-AMP ink. The
inks were then formulated for printing by dissolving the modified precursors in alcohols
after mixing them with oleic acid and hexanoic acid. The annealed Cu films showed
a peak around 932.2 eV and 932.3 eV from XPS data, as shown in Figure 7a indicating
that these particle-free inks are both oxidation-resistant and capable of producing Cu
films without oxides. Furthermore, SEM micrographs (Figure 7b,c) show that the sintered
nanoparticles connected together to form conductive copper with hexanoic acid, while
small nanoparticles were generated with oleic acid. The authors attributed this to the high
boiling point of oleic acid compared to hexanoic acid. The measured specific resistivities
of films formed by adding hexanoic acid (which has lower resistivity compared to oleic
acid) were found to be temperature-dependent, decreasing from 23.4 to 9.5 µΩ·cm when
the sintering temperature increased from 200 ◦C to 350 ◦C as shown in Figure 7d. The work
also demonstrated inkjet printing of MOD ink with hexanoic acid as an additive (Figure 7e).
It is worth noting that another significant factor contributing to the good conductive copper
films is the formation of densely packed films with minimal voids. Sintering aids have a
considerable impact on the resistivities of copper films, and carboxylic acids are a class
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of materials that have been used for this purpose [170,173]. These carboxylic acids are
miscible in most solvent systems used for Cu ink formulations.
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precursors (reproduced with permission from [170]: copyright 2014, American Chemical Society).

3.3.2. DIW of Cu

DIW of copper has the potential for various applications due to its excellent properties.
Yet, there is limited literature on the direct writing of 3D Cu structures and ink development.
When compared to the IJP process for copper, oxidation is not a significant concern in
the DIW process as oxidation can be prevented through an annealing process, which
is a necessary step after DIW. More importantly, a key challenge in DIW is developing
a shear-thinning ink with optimal rheological properties that allow for layer-by-layer
structure building.

Research groups from West Virginia University and the University of Massachusetts,
Amherst, led by Sierros and Wu, fabricated a porous Cu grid, as shown in Figure 8a, onto
Li1 + xAlx3 + M2-x 4 + (PO4)3 (LATP) electrolyte for Li-ion batteries using machine learning
to optimize the ink properties [56]. The ink was formulated by dispersing copper particles in
a 10% (w/v) ethyl cellulose binder in ethanol, with toluene added as a humectant to prevent
nozzle drying during printing. Concentrations of solids loading, solvent, and binder are
crucial in any printing process for optimal printing performance. This study performs
process development for ink formulations through sequential learning by examining the
battery’s performance and adjusting ink parameters to attain optimal printing and battery
performance. The design of experiments determined that 0.4 wt% of Cu particles, 0.56 wt%
of binder solution, and 0.04 wt% humectant were the optimal parameters used to fabricate
a Cu scaffold with 500 µm pores. The binder from the printed samples was removed by
sintering them at 550 ◦C in air. The oxidized grid was reduced to metal by expositing it
to the H2 atmosphere for 30 min. The electrochemical performance depicted in Figure 8b
shows that the Li|Cu@LATP@Cu|Li significantly reduced the overpotential compared to
the Li|LATP|Li cell.
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DIW has also been utilized for printing 3D hierarchical nanoporous (3DHNP) Cu-
based alloys, which have applications in catalysis, sensors, electrodes, and actuators [176].
Mooraj et al. [176] fabricated Mn–Cu alloy by DIW and chemical dealloying. Two different
ratios of (70/30 and 80/20 at% of Mn/Cu) powders of Mn and Cu were mixed in PMMA–
PnBA bi-block co-polymer binder and Tetrahydrofuran (THF) and 2-Butoxyethanol solvent
mixture to formulate bi-metallic inks for printing. The printed samples were sequentially
sintered to remove the solvents and polymer binder and then sintered at 948 ◦C and 1017 ◦C
for Mn70Cu30 and Mn80Cu20, respectively, and cooled at different rates. Subsequently, the
printed parts were dealloyed in 0.1 M HCl for 91.5 h and 4 M HCl for 12.5 h. The composi-
tion and cooling rates influenced the nanoscale morphology of the resulting 3DHNP-Cu
structures, with nano-ligaments coarse and non-continuous for furnace cooled samples
and smooth and continuous for water-quenched samples, as shown in Figure 8c. The
Mn80Cu20 morphology, with nanoscale pores, is suitable for catalysis applications. This
sample was further characterized using SAXS to determine nanoscale features, estimating
the ligament-to-ligament distance of 150 nm using the Teubner-Stray model (Figure 8d).
A peak at 0.005 A−1 was observed for 3DHNP-Cu, indicating nanostructures, and the
Teubner–Strey model yielded a ligament-to-ligament distance of 150 nm.

Furthermore, DIW can be used to print patterns and circuits. However, crack and
pores pose challenges in achieving high-quality printed patterns, as they can deteriorate
the conductivity. Therefore, minimizing cracks and pores in printed films is crucial, as
they negatively impact electrical properties. Recently, Cu NPs synthesized using the
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double template method were redispersed in various solvents and polymer binders to
promote gel formation, which helps minimize phase separation in ink used for direct write
interconnects [165]. The authors addressed these defects by optimizing solvent evaporation
rates and employing double sintering to decrease cracks and pores. Consequently, they
achieved a Cu film with a 0.01 Ω·sq−1 resistance.

3.3.3. AJP of Cu

Similar to the previous section, the AJP of Cu presents challenges, such as ink formu-
lations and post-processing techniques. Many of the ink formulations discussed in the
above sections can potentially be used in aerosol jet printing systems, as these systems
exhibit flexibility regarding ink rheological properties. However, care must be taken when
formulating the ink, depending on the specific application of the printed materials. Despite
this flexibility, factors such as print resolution, density, and post-processing techniques
will influence the selection and formulation of the ink. For instance, Hilna et al. [166]
investigated the printing of resistors on thick-printed copper film. Formulating inks that
can be heat-treated in an inert atmosphere and do not require oxygen to remove additives
from the printed film is necessary. They addressed this issue by formulating various Cu
and Ni inks compositions using a mixed solvent system containing 50 wt% isopropyl
alcohol, 5 wt% 2-benzyloxy ethanol, and 15 wt% 2-ethoxyethanol. Their investigation
revealed that a CuNi 55:45 composition resulted in a low sheet resistance of 1 Ω·sq−1

and a coefficient of resistance of ±100·10−6 K−1, making it suitable for shunt resistors.
Furthermore, previous studies have explored the post-processing techniques for the AJP of
copper. Lall et al. [178] thoroughly investigated process parameters such as photo sintering
voltage, flash energy, pre-drying time, and temperature for printing conductive Cu lines on
polyimide substrates. The ink in this work contained about 60 wt% 90 nm Cu NPs with
a viscosity of about 30–40 cP. The electrical resistivity slightly increased with voltage and
decreased with flash energy.

Furthermore, the samples dried at 50 ◦C and 65 ◦C exhibited similar electrical re-
sistivity, while those pre-dried at 85 ◦C showed lower resistivity that further decreased
with pre-drying time. These results show the importance of selecting proper sintering
parameters to achieve the optimum resistivity of conductive lines for different applica-
tions. More recently, Yu et al. [179] additively manufactured nanostructured Cu and
Cu-graphene composite conductive lines on ceramic substrates for electronic applications.
Hydrothermally synthesized Cu nanoplates using a copper chloride precursor were dis-
persed in a 2 wt% hydroxy propyl methylcellulose solution in DI water. This mixture
added 0.3–1.5 wt% dopamine hydrochloride to the Cu NP ink to formulate a hybrid
Cu-graphene ink for conductors. The conductors printed by OPTOMEX AJ5X showed a
negative temperature coefficient resistance of 0.07% ◦C−1, demonstrating the potential for
high-temperature applications.

3.4. Challenges and Progress of Printing W

W is a refractory metal with a high melting point, good mechanical properties, and
high temperature and chemical resistance. Printing this material could be beneficial for
various high-temperature applications. However, solutions-based chemistry for metallic W
has rarely been explored. This section will briefly overview the progress made in tungsten
printing and discuss how some challenges have been addressed.

3.4.1. IJP of W

Like Cu, W also has applications in electronics as a gate electrode because of its electri-
cal conductivity and surface finishing coatings for its excellent mechanical properties such
as hardness. However, printing W inks and achieving dense patterns required for optimal
electrical or mechanical properties is challenging due to its high sintering temperature.

Several studies have synthesized solution-based W NPs; however, none of these works
have investigated printing NP dispersions. Despite this, these studies (Table 4) provide
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a valuable foundation for formulating W NP-based inks for various printing techniques.
To date, no articles have been published on IJP of W precursor inks. However, Gordon
et al. [185] synthesized volatile liquid precursors of W for chemical vapor deposition. These
liquid precursors were synthesized by complexing W(CO)6 with isonitriles and Lewis
bases. Depending on the basicity of the Lewis bases, some were solids, while others were
liquids. These new precursors could be dissolved in suitable solvents to adjust rheological
properties. In doing so, these liquid precursors pave the way for IJP of W, which could
then be converted to W nanostructures using a heated substrate or laser heating method
(Figure 9a,b). In this case, heat-assisted IJP is analogous to the aerosol-assisted CVD method.

Table 4. W NPs synthesized by solution-based methods.

Method Morphology Size Reference

Reverse micelle Spherical 13 nm [186]
Template Nanowire 300–500 nm length and 5–8 nm dia. [187]
Solvothermal Spherical 15–28 nm [188]
Sonoelectrochemistry Spherical 30 nm [189]
Reverse microemulsion mediated Spherical 5 nm [190]
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Figure 9. (a) Heat-assisted Inkjet printing (b) laser-assisted ink conversion with two steps; the
precursor printing followed by laser conversion.

3.4.2. DIW of W

DIW of W presents challenges due to its high sintering and melting temperatures,
which are significantly higher than other materials. Dunand’s group at Northwestern
University investigated DIW of W using WO3 NP inks [180,181]. In their first study [180],
they examined the microstructure of W micro lattices (Figure 10a), Cu infiltrated composites,
and additively manufactured W sheet gyroids (Figure 10b,c) in their second study [181].
The inks are developed by dispersing tungsten oxide platelets, NiO NPs in DCM, ethylene
glycol butyl ether, dibutyl-phthalate dissolved in DCM, and polylactic-co-glycolic acid
dissolved in DCM separately. The latter two solutions were mixed with the NP dispersion
to formulate the ink, and the viscosity was optimized to 20–30 Pa·s by evaporating the
solvent via ultrasonication at 50 ◦C. The printed 3D structures were reduced to W in an
H2 atmosphere. The SEM micrographs in Figure 10d,e show the morphology of W struts
sintered at 1200 ◦C and 1300 ◦C, indicating that porosity can be controlled by adjusting
the sintering temperature. By adding NiO to the ink, high relative density parts (95%
and near-full-density at 1200 ◦C and 1400 ◦C, respectively) were achieved due to the high
solubility of W in Ni and the low solubility of Ni in W. In contrast, less dense parts were
formed without the Ni additive. However, Ni is segregated along the grain boundaries
when sintered at 1400 ◦C (Figure 10f–h) or at higher sintering times. The undesirable
segregation of Ni reduces the strength of the W phase. They also investigated infiltrating
the W structures with Cu (Figure 10i–k) to improve density by filling the voids with Cu.
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This material choice is interesting, as W–Cu composites can be used in thermal management
applications [24,26,191]. Using these ink formulations, complex 3D W structures (cross-
ply lattice and gyroid) were fabricated, and their mechanical properties were studied.
Compression tests performed below and above their ductile to brittle transition temperature
(20 ◦C and 400 ◦C) showed that both structures have similar stiffness, while gyroids exhibit
lower peak stresses and absorption energy due to significant multiaxial stress. Figure 10l,m
shows intergranular fractures at 20 ◦C and 400 ◦C for single-layer wall gyroid with high
relative density.
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Figure 10. (a) Printed tungsten oxide micro-lattices (on top) and reduced to W (on bottom) (re-
produced with permission from [180]: copyright 2018, Wiley-VCH). (b) different gyroid structures
studied by Kenel et al.; (c) 3D printed structures using tungsten oxide nano-ink to the final gyroid
structure after reducing and removal of the outer shell (reproduced with permission from [181]:
copyright 2020, Elsevier Ltd.). (d,e) SEM micrograph of porous W printed with WO3 inks containing
0.5 wt% NiO without ball milling sintered at 1200 ◦C and 1300 ◦C; (f) SEM micrograph of porous W
printed with ball-milled WO3 inks containing 0.5 wt% NiO sintered at 1400 ◦C; (g,h) EDS mapping
of W in red and Ni-rich phase (in yellow) segregated at grain boundaries; (i) SEM micrograph of
porous W printed without ball-milled WO3 inks containing 0.5 wt% NiO sintered at 1200 ◦C; (j,k)
EDS mapping of W in red and Cu in green) (reproduced with permission from [180]: copyright 2018,
Wiley-VCH). (l,m) SEM micrographs of the fractured gyroid wall at 20 ◦C and 400 ◦C (reproduced
with permission from [181]: copyright 2020, Elsevier Ltd.).

3.4.3. AJP of W

The AJP of W presents challenges because of the similar reasons highlighted in pre-
vious sections. The inks developed for other printing methods could be utilized for this
printing technique. Interestingly, no literature is available on AJP of W except for one
publication in 2021. More recently, the authors [159] demonstrated the capability of AJP,
a volatile CVD precursor, then decomposing it using an IR laser for high-temperature
applications. This work highlights that volatile precursors can be converted to a final
product using fast heating techniques. A porous network of nanostructured W (Figure 11)
was formed on Inconel 625, enhancing the base material’s solar absorptance due to the
assembled nanostructures’ surface plasmon response. Furthermore, this method shows
the potential to fabricate various W-based composites, and by integrating it into MAM,
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gradient composites can be produced. Moreover, NP inks discussed in the previous section
can be used for AJP. Although producing dense tungsten would be challenging using
this technique, some applications, such as catalysis and solar absorption, do not require
dense structures and prefer porous ones because of high surface areas and localized surface
plasmon resonance (LPSR).
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Figure 11. Porous networks of nanostructured W converted at different laser powers and a scanning
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4. Integration of SBAM Material Jetting within Powder Bed-Based MAM

This section provides a brief overview of the MAM processes integrated with SBAM
technologies and then discusses the scalability of each process.

4.1. Binder Jetting Additive Manufacturing (BJAM)

The inkjet printing technique is used to jet binders into the powder bed to fabricate
free-form 3D objects, known as binder jetting additive manufacturing (BJAM). BJAM
utilizes inkjet printing principles, in which a print head selectively applies a liquid binder
to a layer of metal powder, adhering the particles to create an intermediate, or “green” part
(Figure 12a,b). Afterward, the green part is subjected to a debinding process, removing
the remaining binder. Finally, the part undergoes a sintering process, causing the metal
particles to fuse and form a dense, solid part [192].
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ink as a binder for BJAM method, (d) optical images of the 3D printed copper with different binder
saturation ratios (reproduced with permission from [174]: copyright 2018, Elsevier Ltd.).

At Virginia Tech, researchers investigated using Cu NP dispersions and Cu MOD inks
as binders to fabricate Cu parts, as illustrated in Figure 12c [174,175]. In one study [175], a
23.3 wt% Cu NP-loaded dispersion produced by Sun Chemical was employed as an NP
binder in an ExOne R2 3D printer. This NP binder helped reduce organic impurities and
increased the purity of the sintered part. In another study [174], a MOD precursor was
synthesized using copper (II) formate, AMP, and octylamine as a particle-free binder to
alleviate nozzle clogging and oxidation issues. The ink was formulated by dissolving the
precursor in 2 methoxy ethanol, a common solvent for polymer binders typically used in
this technique. The green parts were subsequently cured at 200 ◦C and 250 ◦C in an inert
atmosphere to convert the MOD precursor to Cu before sintering the parts. Figure 12d
shows the parts treated with compressed air under varying conditions. The parts with 150%
saturation and a curing temperature of 250 ◦C were relatively stronger, although not as
strong as those made with a polymer binder. This work demonstrates that particle-free inks
can be used as binders; however, ink optimization with alternative solvents is necessary to
enhance the bonding of powders and reduce porosity.

4.2. Hybrid Laser Powder Bed Fusion (LPBF)

LPBF is an AM process that uses a laser to selectively fuse a metal powder layer at the
top of a powder bed, consolidating it layer by layer to produce solid parts. The process
offers MAM processes the broadest range of applications [193]. Despite its widespread
usage, most LPBF systems are limited to using single alloys. Paul et al. [194] at Oregon
State University developed a hybrid LPBF that incorporates the inkjet printhead (XEROX
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M series) into a commercial LPBF (ProX DMP 300 by 3D systems) system, as shown in
Figure 13. This enables doping a second-phase ink via the inkjet printhead into the powder
bed prior to laser consolidation, which allows the production of metal matrix composite
(MMC) or multi-material structures at a single LPBF build.
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from [194]: copyright 2020, Elsevier Ltd.).

Two published papers have explored using the hybrid LPBF-Inkjet system to enhance
the mechanical properties of stainless steel (SS). Oxide dispersion strengthened (ODS) 304
L SS [194] was produced using 304 L SS powder and a precursor ink made of yttrium
nitrate hexahydrate Y(NO3)3 dissolved in methanol. The process involved jetting the
precursor ink onto the consolidated 304 L SS, followed by laser NP synthesis and mixing,
then metal powder layering and laser consolidation. ODS 316 L SS [193] was also produced
by depositing an ethanol-based ink containing Al13 nanoclusters (NCs) onto 316 L SS
powder and then processed by laser. Moreover, a 316 L SS—Cu MMC was fabricated to
enhance effective thermal conductivity compared to 316 L SS by using a jettable Cu ink and
emulating the hybrid LPBF-Inkjet method [48].

Like the abovementioned papers, Brigham Young University explored integrating the
SBAM techniques, such as inkjet printing and direct writing, into the LPBF process [195,196].
Instead of modifying the LPBF machine to embed the SBAM modules, the feasibility of
producing the MMC was demonstrated by manually doping the ink onto the powder bed
using an inkjet printhead and a direct write system at each layer.

5. Factors Influencing Large-Scale Fabrication

Ink formulation and sintering methods are critical for scalability. These considerations
are not only applicable to Cu and W but are also essential for any material that needs to be
printed using material jetting techniques.
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5.1. Scaling Up of Synthesis of NPs and Precursor for Ink

There are varying approaches to preparing ink formulations for printing methods.
The first step involves synthesizing NPs or precursors, and the second step consists of
dispersing or dissolving them in suitable solvents with additives. One common method
is synthesizing NPs and dispersing them in solvents to create particle inks; the second
method involves using precursors with additives that can influence and affect the thin
film morphology and/or post-treatment of generated thin film or coatings using vari-
ous heating techniques. In the former method, NPs are synthesized separately through
different methods such as hydrothermal synthesis [197,198], sol-gel [199], solvothermal
process [188], and electrolysis [200]. Subsequently, the NPs are washed and dispersed in
solvents with surfactants and stabilizers to formulate printable inks. However, scaling-up
these processes to synthesize uniformly distributed NPs and large volumes of inks can
be economically challenging. Continuous flow micro/milli reactors have demonstrated
promising capabilities for controlled synthesis of NPs and NPs ink [201,202]. There are
many routes to scale-up from lab to industrial scale (Figure 14a), and all these routes are
reviewed in detail elsewhere by Dong et al. [203]. Numbering-up approach retains the
micro-scale transport phenomena and could be related to individual lab-scale synthesis.
However, complex flow distribution (Figure 14b,c) needs to be investigated. These reactors
could be used to produce high volumes of ink onsite, which helps avoid long-term storage
of inks that can lead to precipitation, aggregation, oxidation, or other unforeseen issues.
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permission from [203]: copyright 2021, Elsevier Ltd.), (d) mechano-chemical synthesis of copper
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In the latter case, direct precursors can be dissolved in solvents to formulate particle-
free inks instead of using particulate inks that could clog the nozzles. When these inks
are exposed to heat or light, they transform into the final products. However, precursor
synthesis requires a significant amount of solvent and is not environmentally friendly. This
issue can be addressed using mechanochemical synthesis (Figure 14d) [204].
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The most crucial factor in both methods mentioned above is the solvent selection to
adjust the ink’s rheology based on the application type, cartridge, and printhead require-
ments. Additionally, the choice of additives such as viscosity modifiers, surface tension
modifiers, and humectants significantly impacts jetting performance.

5.2. Post-Processing after Printing Ink

Post-heat or pre-heat treatment is crucial for solution-based printing techniques to dry
solvents, cure or remove binders and other additives, convert molecular precursors to final
products [205], and sinter the printed films or structures. Various heating techniques have
been explored, including conventional thermal sintering (oven or heated-bed) [206], intense
pulsed light (IPL) sintering [207–212], Infrared (IR) sintering [206,213,214], microwave sin-
tering [206,215,216], laser sintering [208,217,218], and plasma sintering [206,219]. However,
additives are often necessary to enhance the absorption of radiation from non-contact
heating sources to improve heating efficiency. While adding additives is not always de-
sirable or feasible depending on several factors, these additives can sometimes enhance
printed materials’ properties. For example, Kwon et al.’s investigation demonstrated that
using H2 plasma reduced cracks in the Cu film compared to conventional thermal sinter-
ing and significantly decreased the resistivities because of enhanced densification of the
films (Figure 15a,b). Figure 15c,d shows another example where laser sintering reduced
the resistivities. The authors reported that this improvement was due to the enhanced
microstructure of connected nanorods. Therefore, selecting efficient heating methods can
reduce costs and improve the properties of the final printed materials.
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5.3. SBAM within Powder Bed-Based MAM
5.3.1. BJAM

The scalability of binder jetting makes it a promising option for industries that require
high-volume production of metal parts, such as aerospace, automotive, and medical device
manufacturing. This result is because a significant benefit of binder jetting, compared to
other MAM processes, is its capacity to rapidly and effectively process large quantities of
powder material, leading to faster production times and increased throughput. Unlike
powder bed fusion (PBF), which uses a laser or electron beam to selectively melt metal
powder layer by layer, binder jetting can deposit the binder material over a build area
by using one or more inkjet printheads, making up an array of nozzles. The factors that
affect the scalability can be as follows: (1) work envelope size; (2) number of nozzles (#);
(3) printing technology; and (4) printing direction. The basic printing process steps of BJAM
are (1) powder deposition; (2) powder spreading and compaction; (3) binder deposition;
and (4) drying the wet binder. All BJAM systems perform similar steps with certain
variations, which can influence printing speed. For example, Triple ACT technology by
Desktop Metal combines the first three steps into a unified step and dries the solvent when
the printing components return to the home position. Furthermore, Desktop Metal’s Single
Pass Jetting (SPJ) advances the technology further by executing all process steps, including
drying (no curing step), simultaneously enabling bi-directional printing. This feature
significantly speeds up the printing process. Table 5 compares the maximum build rates of
five selected Desktop Metal machine tools, with rates largely influenced by the previously
mentioned factors. The first three machines (X-series) listed in Table 5 are designed for
product development, while the last two (P-series) are intended for mass production.

Table 5. Comparison of BJAM system in terms of maximum build rates influenced by a few factors.

InnoventX X25Pro X160Pro P1 P50

Work envelope size (mm3) 165 × 65 × 65 250 × 400 × 250 500 × 800 × 400 200 × 100 × 40 490 × 380 × 260
# of Nozzles 256 2048 4096 4096 16,384
BJAM printing technology Triple ACT Triple ACT Triple ACT SPJ SPJ
Printing direction Uni-directional Uni-directional Uni-directional Uni-directional Bi-directional
Max build rate (cm3/h) 54 1200 3120 1350 12,000
Reference [221] [222] [223] [224] [225]

5.3.2. Hybrid LPBF

As outlined in Section 4.2, the hybrid LPBF-Inkjet method enables in-situ production
of MMC during LPBF. Typically, powder feedstock for MMC is prepared via ball milling.
However, this ball milling process poses scalability issues due to its time-consuming nature
and the challenges associated with upscaling. As such, the hybrid LPBF method is expected
to significantly improve scalability in MMC production by substituting ball milling with
inkjet printing.

Furthermore, this hybrid system offers another advantage: the ability to create multi-
material structures with spatially tailored properties at a single LPBF build. This is achiev-
able by doping the second phase only in the desired area via the inkjet printhead. Thus,
compared to conventional methods that produce multi-material structures through multi-
ple manufacturing steps, the hybrid LPBF technique can enhance scalability by combining
multiple processes into a single LPBF build.

In this hybrid method, selecting the appropriate ink is crucial. The inks require suitable
viscosity, surface tension, and density to ensure stable droplet formation. Additionally,
factors such as the solvent boiling point, its compatibility with the printing technology, and
the concentration of solids in the inks are also important considerations when choosing
the ink.
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6. Summary and Outlook

This review article summarizes the current status of SBAM material jetting Cu and W
and the integration of SBAM with powder bed-based MAM. Significant advancements have
been made in various aspects of manufacturing, including types of NPs, ink formulations,
post-processing techniques, and the utilization of SBAM with powder bed-based MAM.
The main conclusions can be drawn as follows:

• The oxidation of Cu NPs and the printed track has been addressed through various
techniques. The techniques include core-shell NPs, laser sintering, protective coating
layers, and the development of new precursor MOD inks that do not require reducing
agents to convert to Cu. Factors such as solvent evaporation, cooling rates, and ink
composition have been reported to control the morphology and microstructure of
printed parts;

• Photothermal conversion of solution-printed volatile precursors has been employed to
address the challenges related to the unavailability of precursor chemistry. Addition-
ally, wetting agents have been used to improve the sintering of W-based composites;

• The challenges associated with large-scale fabrication include synthesizing NPs or
precursors for ink formulations and performing post-treatment on the printed ink.
Both microfluidic channels and mechanochemical syntheses have been identified as
viable approaches for scaling up ink production;

• NPs and precursor inks have been utilized to produce three-dimensional parts using
BJAM, paving the way for selective doping;

• Various metal matrix composites have been fabricated using hybrid LPBF integrated
with material jetting techniques;

• This hybrid LPBF method is expected to reduce manufacturing time for producing
metal matrix composites by eliminating the need for mixing two different powders
via ball-milling;

• This hybrid LPBF method can create functional alloys with selectively tailored thermal
properties through the selective doping of Cu and W.

Despite the advantages of non-contact printing for Cu and W, the amount of research
on these approaches indicates that the field is still in its infancy. The untapped aspects and
critical areas of SBAM for Cu and W are outlined as follows:

• The development of Cu–Ni, Cu–Ag, and Cu–Cu formate core-shell NPs inks has been
discussed in the article. However, no reported works on Cu–W or alloying Cu–W
NPs with other metal NPs exist. The synthesis of such multi-alloyed NPs is possible
through controlled microfluidic synthesis. Investigating the printing and sintering of
these films could be beneficial, as adding W to Cu improves its mechanical properties
and high-temperature resistance, while adding Cu to W enhances its electrical and
thermal conductivities [26];

• Recent work by Bernasconi et al. [226] demonstrates that highly viscous fluids can
be jetted using drop-on-demand piezoelectric printheads. These types of printheads
could address the concern of low solid loading (percent of NPs or precursors inside
the carrier solvent) in inks used in inkjet printing mechanisms for hybrid LPBF-Inkjet
systems, particularly when a significant amount of second-phase material is required;

• Additionally, investigating new stand-alone W precursors or combining them with Cu
MOD precursors could increase the options for selecting and formulating inks;

• Recently, grain refinement and strengthening of the Cu matrix with nanoscale W
particles have been reported [227]. There are existing works on synthesizing W NPs
(Table 3). Formulating inks and doping these into the powder bed could enable
the fabrication of interesting three-dimensional structures for applications such as
heat exchangers.
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nanocatalyst on core-shell tungsten based support as a beneficial catalyst for low temperature fuel cells application. Electrochim.
Acta 2017, 247, 674–684. [CrossRef]

34. Zheng, M.Y.; Wang, A.Q.; Ji, N.; Pang, J.F.; Wang, X.D.; Zhang, T. Transition metal-tungsten bimetallic catalysts for the conversion
of cellulose into ethylene glycol. ChemSusChem 2010, 3, 63–66. [CrossRef] [PubMed]

35. Xiao, Z.Q.; Mao, J.W.; Ji, J.B.; Sha, R.Y.; Fan, Y.; Xing, C. Preparation of nano-scale nickel-tungsten catalysts by pH value control and
application in hydrogenolysis of cellulose to polyols. Ranliao Huaxue Xuebao J. Fuel Chem. Technol. 2017, 45, 641–650. [CrossRef]

36. Xiong, B.; Zhao, W.; Tian, H.; Huang, W.; Chen, L.; Shi, J. Nickel-Tungsten Nano-Alloying for High-Performance hydrogen
Electro-Catalytic oxidation. Chem. Eng. J. 2022, 432, 134189. [CrossRef]

37. Smid, I.; Akiba, M.; Vieider, G.; Plöchl, L. Development of tungsten armor and bonding to copper for plasma-interactive
components. J. Nucl. Mater. 1998, 258–263, 160–172. [CrossRef]

38. Cizek, J.; Vilemova, M.; Lukac, F.; Koller, M.; Kondas, J.; Singh, R. Cold sprayed tungsten armor for tokamak first wall. Coatings
2019, 9, 836. [CrossRef]

39. Kim, H.; Lee, H.J.; Jang, C. Thermal performance of multilayer PVD tungsten coating for the first wall application in nuclear
fusion devices. Fusion Sci. Technol. 2015, 68, 378–382. [CrossRef]

40. Kundrat, V.; Vykoukal, V.; Moravec, Z.; Simonikova, L.; Novotny, K.; Pinkas, J. Preparation of polycrystalline tungsten nanofibers
by needleless electrospinning. J. Alloys Compd. 2022, 900, 163542. [CrossRef]

41. Takamura, S.; Ohno, N.; Nishijima, D.; Kajita, S. Formation of Nanostructured Tungsten with Arborescent Shape due to Helium
Plasma Irradiation. Plasma Fusion Res. 2006, 1, 051. [CrossRef]

42. Steinhögl, W.; Steinlesberger, G.; Perrin, M.; Scheinbacher, G.; Schindler, G.; Traving, M.; Engelhardt, M. Tungsten interconnects
in the nano-scale regime. Microelectron. Eng. 2005, 82, 266–272. [CrossRef]

43. Calabretta, M.; Sitta, A.; Oliveri, S.M.; Sequenzia, G. An experimental-numeric approach to manufacture semiconductor wafer
using thick copper front metallization. Int. J. Interact. Des. Manuf. 2021, 15, 117–119. [CrossRef]

44. Ayoub, B.; Moreau, S.; Lhostis, S.; Frémont, H.; Mermoz, S.; Souchier, E.; Deloffre, E.; Escoubas, S.; Cornelius, T.W.; Thomas, O.
In-situ characterization of thermomechanical behavior of copper nano-interconnect for 3D integration. Microelectron. Eng. 2022,
261, 111809. [CrossRef]

45. Jia, J.; Bai, S.; Xiong, D.; Xiao, J.; Yan, T. Enhanced thermal conductivity in diamond/copper composites with tungsten coatings
on diamond particles prepared by magnetron sputtering method. Mater. Chem. Phys. 2020, 252, 123422. [CrossRef]

46. Tan, Z.; Li, Z.; Fan, G.; Guo, Q.; Kai, X.; Ji, G.; Zhang, L.; Zhang, D. Enhanced thermal conductivity in diamond/aluminum
composites with a tungsten interface nanolayer. Mater. Des. 2013, 47, 160–166. [CrossRef]

47. Wang, X.; Su, Y.; Wang, X.; Liu, K.; Zhang, L.; Ouyang, Q.; Zhang, D. Fabrication, mechanical and thermal properties of
tungsten-copper coated graphite flakes reinforced copper matrix composites. Mater. Des. 2022, 216, 110526. [CrossRef]

48. Lee, K.; Doddapaneni, V.V.K.; Mirzababaei, S.; Pasebani, S.; Chang, C.; Paul, B.K. Synthesis of a 316L stainless steel-copper
composite by laser melting. Addit. Manuf. Lett. 2022, 3, 100058. [CrossRef]

https://doi.org/10.1166/jnn.2016.12898
https://doi.org/10.1063/1.4903749
https://doi.org/10.1039/C6TC05117K
https://doi.org/10.1016/j.addma.2021.102574
https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.120
https://doi.org/10.1016/j.ijrmhm.2021.105648
https://doi.org/10.1088/1742-6596/1859/1/012063
https://doi.org/10.1063/1.1829156
https://doi.org/10.1021/acsanm.9b02542
https://doi.org/10.1063/1.4818711
https://doi.org/10.1063/1.2936997
https://doi.org/10.1016/j.electacta.2017.07.066
https://doi.org/10.1002/cssc.200900197
https://www.ncbi.nlm.nih.gov/pubmed/19998362
https://doi.org/10.1016/S1872-5813(17)30033-6
https://doi.org/10.1016/j.cej.2021.134189
https://doi.org/10.1016/S0022-3115(98)00358-4
https://doi.org/10.3390/coatings9120836
https://doi.org/10.13182/FST14-958
https://doi.org/10.1016/j.jallcom.2021.163542
https://doi.org/10.1585/pfr.1.051
https://doi.org/10.1016/j.mee.2005.07.033
https://doi.org/10.1007/s12008-020-00736-y
https://doi.org/10.1016/j.mee.2022.111809
https://doi.org/10.1016/j.matchemphys.2020.123422
https://doi.org/10.1016/j.matdes.2012.11.061
https://doi.org/10.1016/j.matdes.2022.110526
https://doi.org/10.1016/j.addlet.2022.100058


Nanomaterials 2023, 13, 2303 28 of 34

49. Ugarteche, C.V.; Furlan, K.P.; Pereira, R.d.V.; Trindade, G.; Binder, R.; Binder, C.; Klein, A.N. Effect of Microstructure on the
Thermal Properties of Sintered Iron-copper Composites. Mater. Res. 2015, 18, 1176–1182. [CrossRef]

50. Mirzababaei, S.; Doddapaneni, V.V.K.; Lee, K.; Paul, G.E.; Pirgazi, H.; Tan, K.-S.; Ertorer, O.; Chang, C.; Paul, B.K.; Pasebani, S.
Remarkable enhancement in thermal conductivity of stainless-steel leveraging metal composite via laser powder bed fusion:
316L-Cu composite. Addit. Manuf. 2023, 70, 103576. [CrossRef]

51. Singh, M.; Mulla, M.Y.; Santacroce, M.V.; Magliulo, M.; Di Franco, C.; Manoli, K.; Altamura, D.; Giannini, C.; Cioffi, N.; Palazzo,
G.; et al. Effect of the gate metal work function on water-gated ZnO thin-film transistor performance. J. Phys. D Appl. Phys. 2016,
49, 275101. [CrossRef]

52. Kim, W.S.; Moon, Y.K.; Lee, S.; Kang, B.W.; Kwon, T.S.; Kim, K.T.; Park, J.W. Copper source/drain electrode contact resistance
effects in amorphous indium-gallium-zinc-oxide thin film transistors. Phys. Status Solidi Rapid Res. Lett. 2009, 3, 239–241.
[CrossRef]

53. Zhao, M.; Xu, M.; Ning, H.; Xu, R.; Zou, J.; Tao, H.; Wang, L.; Peng, J. Method for Fabricating Amorphous Indium-Zinc-Oxide
Thin-Film Transistors With Copper Source and Drain Electrodes. IEEE Electron. Device Lett. 2015, 36, 342–344. [CrossRef]

54. Kim, J.L.; Lee, C.K.; Kim, M.J.; Lee, S.H.; Jeong, J.K. Role of MoTi diffusion barrier in amorphous indium-gallium-zinc-oxide
thin-film transistors with a copper source/drain electrode. Thin Solid Films 2021, 731, 138759. [CrossRef]

55. Tai, M.-C.; Wang, Y.-X.; Chang, T.-C.; Huang, H.-C.; Lin, C.-C.; Huang, B.-S.; Chang, H.; Huang, J.; Sze, S. Gate Dielectric
Breakdown in A-InGaZnO Thin Film Transistors With Cu Electrodes. IEEE Electron. Device Lett. 2021, 42, 851–854. [CrossRef]

56. Cipollone, D.; Yang, H.; Yang, F.; Bright, J.; Liu, B.; Winch, N.; Wu, N.; Sierros, K.A. 3D printing of an anode scaffold for lithium
batteries guided by mixture design-based sequential learning. J. Mater. Process. Technol. 2021, 295, 117159. [CrossRef]

57. Zhang, H.; Chen, L.; Liu, Y.; Li, Y. Experimental study on heat transfer performance of lotus-type porous copper heat sink. Int. J.
Heat Mass Transf. 2013, 56, 172–180. [CrossRef]

58. Chudpooti, N.; Savvides, G.; Duangrit, N.; Akkaraekthalin, P.; Robertson, I.D.; Somjit, N. Harmonized Rapid Prototyping of
Millimeter-Wave Components Using Additive and Subtractive Manufacturing. IEEE Trans. Compon. Packag. Manuf. Technol. 2022,
12, 1241–1248. [CrossRef]

59. Lewis, S.M.; Hunt, M.S.; Derose, G.A.; Alty, H.R.; Li, J.; Wertheim, A.; De Rose, L.; Timco, G.A.; Scherer, A.; Yeates, S.G.; et al.
Plasma-Etched Pattern Transfer of Sub-10 nm Structures Using a Metal-Organic Resist and Helium Ion Beam Lithography. Nano
Lett. 2019, 19, 6043–6048. [CrossRef]

60. Wu, F.; Levitin, G.; Hess, D.W. Patterning of Cu Films by a Two-Step Plasma Etching Process at Low Temperature. J. Electrochem.
Soc. 2010, 157, H474. [CrossRef]

61. Ryu, J.S.; Lim, E.T.; Choi, J.S.; Chung, C.W. Dry etching of copper thin films in high density plasma of CH3COOH/Ar. Thin Solid
Films 2019, 672, 55–61. [CrossRef]

62. Kaub, T.; Rao, Z.; Chason, E.; Thompson, G.B. The influence of deposition parameters on the stress evolution of sputter deposited
copper. Surf. Coat. Technol. 2019, 357, 939–946. [CrossRef]

63. Utomo, M.S.; Whulanza, Y.; Kiswanto, G. Maskless visible-light photolithography of copper microheater for dynamic microbiore-
actor. AIP Conf. Proc. 2019, 2193, 050013. [CrossRef]

64. Childs, W.R.; Nuzzo, R.G. Large-area patterning of coinage-metal thin films using Decal Transfer Lithography. Langmuir 2005, 21,
195–202. [CrossRef]

65. Cha, M.H.; Lim, E.T.; Park, S.Y.; Lee, J.S.; Chung, C.W. Inductively coupled plasma reactive ion etching of copper thin films using
ethylenediamine/butanol/Ar plasma. Vacuum 2020, 181, 109421. [CrossRef]

66. Sui, X.; Downing, J.R.; Hersam, M.C.; Chen, J. Additive manufacturing and applications of nanomaterial-based sensors. Mater.
Today 2021, 48, 135–154. [CrossRef]
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