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Abstract: Flexible sensing electronics have received extensive attention for their potential applications
in wearable human health monitoring and care systems. Given that the normal physiological
activities of the human body are primarily based on a relatively constant body temperature, real-time
monitoring of body surface temperature using temperature sensors is one of the most intuitive and
effective methods to understand physical conditions. With its outstanding electrical, mechanical,
and thermal properties, graphene emerges as a promising candidate for the development of flexible
and wearable temperature sensors. In this review, the recent progress of graphene-based wearable
temperature sensors is summarized, including material preparation, working principle, performance
index, classification, and related applications. Finally, the challenges and future research emphasis
in this field are put forward. This review provides important guidance for designing novel and
intelligent wearable temperature-sensing systems.
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1. Introduction

Wearable or attached health monitoring smart systems are considered as portable
devices for the next generation of telemedicine [1,2]. These devices can monitor physio-
logical information closely related to physical conditions, such as heart rate, wrist pulse,
body temperature, blood pressure, etc. [3–8]. Intelligent and flexible sensing electronic
components are crucial to ensuring that health monitoring systems track and monitor
physiological signals in real time [9–11], providing a convenient and non-invasive means
for disease diagnosis and health assessment [12–14]. Since all life activities of the human
body are based on metabolism and relatively constant body temperature, real-time moni-
toring of body surface temperature is one of the simplest, most intuitive, and most effective
ways to understand the body’s conditions [15–17]. For example, in patients infected with
COVID-19, the most prominent clinical manifestation is fever [18]. Continuous real-time
detection of human body temperature can not only effectively screen out infected patients
from the population, but also inhibit the spread of the disease to a certain extent [19,20].

Commercially available contact temperature sensors are often rigid, have poor fit
with human skin, and are difficult to achieve accurate measurement during human move-
ment [21]. As a traditional non-contact temperature sensor, the infrared thermal imager
can monitor the temperature of the human body in motion, but its imaging contrast and
resolution are not satisfactory [22]. To realize real-time monitoring of dynamic and spa-
tial temperature changes, it is necessary to develop wearable temperature sensors with
flexibility, stretchability, biocompatibility, and high sensitivity. Although some flexible tem-
perature sensors, including thermocouples [23,24], thermal resistors [25,26], and thermal
response field-effect transistors [27–29], have been reported, they are generally large in
size and require complex circuitry, making them unsuitable for integration into large-scale
wearable devices.
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The most practical and common approach to building wearable temperature sensors
is by combining lightweight temperature-sensitive materials directly with stretchable or
knitwear substrates. This method effectively reduces the overall thickness and maximizes
the flexibility of the sensors.

Currently, a wide variety of temperature-sensitive materials have been reported, such
as pure metals, metal nanowires [30–32], conductive polymers [33,34], and carbon materials
(including carbon nanotubes, carbon black, graphene oxide, graphene, etc.) [35–38]. Among
them, graphene has shown superior compatibility in the development of flexible and wearable
sensors due to its excellent electronic mobility, tensile strength, flexibility, transparency, and
biocompatibility. In particular, graphene has significant thermal conductivity and unique
temperature response characteristics. Its conductivity mainly depends on the internal carrier
mobility and carrier concentration. With the increase in temperature, the change in carrier
concentration becomes the main factor affecting the conductivity. As the carrier concentration
increases, the conductivity will also increase and show semiconductor characteristics. In
summary, graphene can be used as an important candidate material for temperature-sensing
applications [39,40]. Furthermore, graphene, being modified with rich oxygen-containing
functional groups during preparation, is easier to integrate with flexible polymer substrates
than metal nanomaterials [41–45]. Considering the increasing importance of graphene-
based temperature sensors in the development of advanced wearable devices, there is an
urgent need for a comprehensive and systematic overview to guide further advancements in
this field.

In this report, we focus on the research progress of graphene-based wearable tempera-
ture sensors and systematically summarize the material preparation methods, the working
mechanism, and the performance parameters of the sensors. After that, graphene-based
wearable temperature sensors and their multifunctional integrated devices are also clearly
classified and reviewed according to the flexible substrate types, as shown in Figure 1.
Finally, the current challenges of the sensors are discussed, and future research directions
are prospected.
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2. Graphene Preparation Methods

With excellent properties in force, heat, light, and electricity, graphene possesses
great potential for developing a new generation of temperature sensors [53–57]. In order
to obtain graphene-based temperature-sensing systems with ideal performance, high-
quality graphene needs to be prepared by appropriate methods. At present, the com-
monly used methods for preparing graphene are roughly divided into physical and
chemical preparation.

2.1. Physical Preparation Methods
2.1.1. Mechanical Exfoliation

Mechanical exfoliation is a technique used to obtain single or few layers of graphene materials
using the friction motion between objects and graphite [58,59]. In 2004, Williams et al. [60] first
prepared a small amount of monolayer graphene by repeatedly pasting graphite with tape.
Although this method can prepare micron-scale graphene materials, it cannot be industrialized
for large-scale mass production due to low production efficiency and low controllability [61].

2.1.2. Supercritical Fluid Exfoliation

This method utilizes the high dispersion and strong permeability of supercritical fluid
to strip graphite [62,63] (Figure 2a). Pu et al. first used this method to prepare graphene
with a thickness of 3.8 nm [64]. After that, in order to increase the yield and quality of
graphene, some auxiliary means can be used. For example, ultrasonic assistance can be used
to obtain a few layers of graphene by its cavitation effect [65], and pyrene-based polymer
assistance allows adsorption on the surface of graphite through π–π bond interaction to
prepare a uniform and stable dispersion [66].
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2.2. Chemical Preparation Methods
2.2.1. Oxidation-Reduction

In another method, the crystal structure of graphite is disrupted using strong acids
and oxidants, and then reduced to graphene using reducing agents. The most well-known
method is the Hummer method [67], which is commonly used by researchers for preparing
graphene (Figure 2b). In this method, graphite is first oxidized to graphene oxide (GO)



Nanomaterials 2023, 13, 2339 4 of 19

using a combination of H2SO4, NaNO3, and KMnO4. The GO solution is then mixed with
hydrazine hydrate and ammonia as reducing agents and subjected to ultrasonic dispersion
to obtain graphene.

2.2.2. Chemical Vapor Deposition

Chemical vapor deposition (CVD) [71] refers to the decomposition of carbon-containing
compounds at high temperatures into carbon atoms, which are deposited on the surface
of metals or other substrates to obtain graphene. In 2006, Somaniet al. [72] deposited
graphene on the surface of nickel (Ni) at 180 ◦C using camphor in an argon (Ar) atmosphere
by thermochemical vapor deposition. The CVD method allows for the production of
graphene with a complete structure and large size, and the number of graphene layers
can be controlled by adjusting the growth time, growth temperature, and other conditions,
and the controllability is strong. However, the complicated preparation process and high
production cost limit the widespread application of this method [73].

2.2.3. Organic Synthesis

The organic synthesis method involves the conversion of small molecular aromatic
compounds into graphene nanoribbons, which are then further treated through dehydro-
genation to obtain graphene [74]. The method yields graphene with high quality, but it
is associated with challenges such as high preparation cost, low efficiency, and potential
environmental pollution.

2.3. Other Preparation Methods
2.3.1. Laser Induction

Laser-induced graphene (LIG) is a three-dimensional porous material that is generated
when a laser beam is irradiated on certain carbon precursors [68,69] (Figure 2c). In 2014,
Tour et al. [75] discovered that a CO2 infrared laser could produce LIG with a three-
dimensional porous structure on the surface of polyimide (PI). LIG exhibits high porosity,
excellent electrical conductivity, and good mechanical flexibility. It is possible to directly
create pre-designed LIG patterns that can be directly fabricated on various carbon materials
such as polyimide, wood, lignin films, polysulfone, cross-linked polystyrene, and Teflon
polysulfone. The microstructure, conductivity, chemical composition, and heteroatom
doping are controllable. This selective and cost-effective patterning technology minimizes
the use of raw materials and reduces environmental impact.

2.3.2. Flash Joule Heating

In 2020, Tour et al. [70] introduced a flash Joule heat method for synthesizing graphene.
This innovative process enables the conversion of various carbon-containing precursors
into high-quality graphene. It has the capability to produce large quantities of valuable
graphene sheets from almost any carbon source. Moreover, the preparation process is rapid,
with only 1 s required to produce 1 g of graphene.

3. Thermal Response Mechanism and Performance Index of Graphene-Based
Temperature Sensors
3.1. Thermal Response Mechanism

Graphene-based temperature sensors are considered one of the most promising new-
generation temperature sensors. The unique characteristics and structure of graphene
make it suitable for the construction of temperature sensors. For example, ultra-high
thermal conductivity makes graphene-based temperature sensors have an ultra-fast thermal
response, the huge specific surface area makes it have a much larger thermal contact
area than other materials, and the ultra-high carrier mobility also fully ensures that the
temperature sensor can respond quickly to temperature changes. These characteristics
have attracted significant attention from scholars who are studying and discussing the
temperature-sensitive mechanism of graphene-based temperature sensors.
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Hwang et al. [76] calculated the transport properties of graphene in the temperature
range of 500 K by considering the relationship between temperature and phonon scattering
of carrier density (Figure 3a). The study confirmed that the changes in the electrical
properties of graphene are related to electron-phonon scattering. After that, Shao et al. [46]
carried out temperature tests on graphene prepared by mechanical exfoliation. They
observed that as the temperature increased from 300 K to 500 K, the resistance of monolayer
and bilayer graphene decreased by 30% and 70%, respectively (Figure 3b). At the same
time, they also found that the temperature characteristics of graphene should not only
consider electron-phonon scattering, but also consider the composite scattering of electrons
and other charged particles.
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In summary, the temperature response of graphene involves both the scattering effect
of electron-phonons and the scattering effect of other charged particles at high temperatures.
When temperature is applied to graphene, the electron motion direction is altered due to
the scattering of electrons and phonons, as well as the combined scattering of electrons
and other charged particles. This results in a change in resistivity [77] (Figure 3c). It is
important to note that this understanding of the temperature response of graphene does
not consider the influence of defects and substrates.

3.2. Performance Indexes

To evaluate whether a temperature sensor has a stable health monitoring capability,
it is necessary to start with the following key indicators: sensitivity, stability, resolution,
repeatability, and response time. The sensitivity of the temperature sensor is determined
by the resistance temperature coefficient [78–80]. The general equation of the temperature
change of a thermistor is [16]:

Rt = R0expβ

(
1
T
− 1

T0

)
(1)
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where Rt is the resistance value at temperature T, R0 is the resistance value at T0 (reference
temperature), and β is the material coefficient of the thermistor. Taking the logarithm of
both sides of the above equation, we can obtain the linear relation between ln (Rt) and 1/T,
where β represents the slope of the output curve (K). The temperature coefficient α of the
thermistor is:

α =
1
Rt

dRt

dT
= − β

T2 (2)

where α is the percentage of resistance value change with unit temperature change, %/K.
The resistance temperature coefficient [81] is divided into the positive temperature coeffi-
cient (PTC) [82] and the negative temperature coefficient (NTC). When the temperature
coefficient is positive, the resistance value of the sensors will increase with the increase
in temperature. When the temperature coefficient is negative, the resistance value of the
sensors will decrease with the increase in temperature.

The stability evaluation of the temperature sensor is achieved by recording and ana-
lyzing the resistance fluctuation of the sensor multiple times at the same time interval at a
constant temperature. In the case of small temperature changes, the temperature sensor
needs to be very sensitive and stable to detect such small changes [83]. If the resistance
value of the sensor itself changes greatly, it will interfere with the temperature detection.
Therefore, the stability of the sensor is fundamental in detecting small temperature changes.
Generally speaking, the condition for judging the stability of the device is that the relative
change rate of the resistance does not exceed 1% [84].

To further judge the performance of temperature sensors, their hysteresis [85] and
repeatability [86] also need to be known. Hysteresis is to point in the process of heating and
cooling at the same temperature corresponding to the biggest difference in the resistance,
the availability of the maximum error of the hysteresis

yH =
(NH max)

y f s
× 100% (3)

where NHmax represents the maximum change value in the process, and y f s represents the
full-scale output value.

Reproducibility is one of the most important properties of flexible temperature sensors,
which affects the reuse of temperature sensors in daily life. With the increase in the number
of rising and cooling cycles, the activation energy on the surface of graphene sheets will
also change, a more stable network structure will be established between layers, and the
electrical conductivity will become more stable. Therefore, graphene has good temperature-
sensitive repeatability. The non-repeating index is defined as follows [87]:

ez =
Nmax

y f s
× 100% (4)

where Nmax represents the maximum non-repeating error of the output, and y f s represents
the full-scale output.

In practical applications, resolution and response time [88] are also important perfor-
mance indexes of temperature sensors. Resolution refers to the sensor’s ability to detect
subtle changes in temperature. A high-resolution sensor can detect even small temperature
variations. Response time, on the other hand, refers to the time it takes for the sensor to
respond to a change in ambient temperature. A smaller response time means the sensor
can quickly react to temperature changes. Both higher resolution and smaller response
time are beneficial for the detection performance of temperature sensors.

Furthermore, to assess the flexibility of the sensors, a bending test is conducted. This
test involves subjecting the sensor to multiple bending cycles to evaluate its temperature
detection capability. It is observed that the temperature detectability of the device remains
normal even after bending. This can be attributed to the tunneling effect generated by the
graphene film during the bending process. This effect helps offset the deformation caused
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by partial bending and the shrinkage of the carbon-carbon bond spacing. As a result, the
conductive properties of graphene remain largely unchanged during the bending process.

4. Classification and Application

Wearable temperature sensors primarily utilize the change in the electrical signal
caused by the temperature change of thermal sensitive materials to realize real-time tem-
perature monitoring. To ensure accurate measurement of human temperature, in addition
to the reliable sensitivity of the sensing materials, these sensors need to be accompanied by
flexible substrates that can conform closely to the human skin. Flexible substrates are char-
acterized by uniform deformation, high elasticity, and the ability to be easily processed into
portable forms such as scrolls. In addition, the substrates should possess a low modulus of
elasticity, making them resistant to damage under folding and bending, thereby meeting
the requirements of mechanical properties for flexible devices. There are various substrate
materials available with soft properties, such as flexible thermoplastic polymers (polycar-
bonate, polyimide, polyurethane, etc.), thermosetting polymers (polydimethylsiloxane),
textiles, and paper. Different types of soft substrates can be chosen based on the specific
application scenarios.

4.1. Based on Polymer Substrates

Polymer materials are commonly used as flexible substrates due to their outstanding
flexibility, low cost, and ability to be easily rolled into structures. Some of the polymer
materials used as flexible substrates include polyimide (PI) [89], polyethersulfone (PES),
polyether imide (PEI) [90], polyethylene naphthalate (PEN), and polyethylene terephthalate
(PET) [91].

For example, Yang et al. [92] reported a simple wearable temperature sensor using
graphene nanowalls (GNWs) embedded in polydimethylsiloxane (PDMS) as the substrate
(Figure 4a). This sensor exhibits an exceptionally high thermal response, surpassing
traditional temperature sensors. It has a temperature coefficient of resistance (TCR) of
0.214%/◦C, which is three times higher than that of conventional similar products. The
PDMS substrate, known for its flexibility and high coefficient of thermal expansion (TCE),
enables the stretchability of GNWs. During heating, the PDMS substrate expands radially,
forming long conductive channels between the GNWs. Upon cooling, the conductive
channel returns to the original state with fast response, considerable recovery speed, and
high stability, which can monitor the temperature in real time. Similarly, Neella et al. [93]
prepared a resistive temperature sensor by coating a solution mixed with reduced graphene
oxide (rGO) and Ag nanoparticles onto a PI substrate. The experimental results show that
the sensor demonstrates excellent temperature-sensing characteristics with a temperature
coefficient of resistance (TCR) of −1.64 × 10−3 Ω K−1. It also exhibits a fast measurement
response time of 470 ms, which is much faster than most commercial temperature sensors.
Additionally, the sensor displays good repeatability and stability (Figure 4b).
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Figure 4. (a) The preparation process of wearable temperature sensors based on GNW/PDMS [92].
(b) Fabrication process of flexible temperature sensor based on rGO and Ag nanoparticles [93].
(c) Preparation of multimodal strain and temperature sensors [47]. (d) Structure and morphology
of transparent stretchable temperature sensor [94]. (e) Photograph of the sample, with sensor array
of four sensors, being attached to the skin [95]. (f) A flexible temperature sensor composed of
polyvinylidene fluoride (PVDF) and rGO was designed to imitate the fingerprint structure and
epidermal microjunction structure of the human fingertip [96].

Some polymer materials, in addition to their good tensile ductility, also have biocom-
patibility, making them suitable for human body temperature monitoring. For instance,
polyurethane (PU) is commonly used in this context. Hang et al. [47] developed a tempera-
ture sensor by preparing a hybrid aerogel of PEDOT: PSS and rGO and injecting it onto a
PDMS substrate (Figure 4c). The resulting sensor exhibits multimodal strain capability, high
resolution, and repeatability in the temperature range of 34.0 ◦C to 42.0 ◦C. The resistance
of the sensor decreases with increasing temperature, with a TCR of 1.69%/◦C. Based on the
high transparency of most polymer substrates, it is possible to develop fully transparent
sensors to meet specific application requirements. Trung et al. [94] developed a transparent
and stretchable temperature sensor that can be easily attached to objects or human skin
(Figure 4d). Conductive and temperature-sensitive rGO nanosheets were inserted into an
elastic PU matrix to form a composite material as a temperature-sensing layer. This sensor
can withstand tensile strains of up to 70% and exhibits a sensitivity of TCR = 1.34%/◦C, ca-
pable of detecting temperature changes as small as 0.2 ◦C. Furthermore, Vuorinen et al. [95]
utilized inkjet printing of graphene/PEDOT: PSS inks and screen-printing of silver inks
to prepare sensing layers, which were then printed on a PU plaster. The resulting sensor
operates within a temperature range of 35–45 ◦C, with a TCR of −0.06%/◦C (Figure 4e).

Incorporating bionic structures into the design of flexible sensors can effectively
improve their compatibility with wearable devices. To this end, Park et al. [96] designed a
flexible temperature sensor by imitating the fingerprint structure of the human fingertip and
the epidermodermal micronodular structures. The sensor is composed of polyvinylidene
fluoride (PVDF) and rGO. This bionic design enables the sensor to sensitively detect
temperature changes, exhibiting a temperature coefficient of resistance (TCR) of up to
2.93%/◦C (Figure 4f). This approach leverages nature-inspired structures to improve the
performance and compatibility of flexible sensors in wearable applications.

4.2. Based on Textile Substrates

Textiles are lightweight, flexible, deformable, and breathable, and ensure comfort for
the human body. As a result, they have great potential in the manufacturing of flexible
electronics for personal health management. Graphene can be incorporated into textile
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products through various methods [97–99], with the following two being the most com-
monly used. The first method is the functional modification of fabrics or fibers by the
chemical or physical coating of carbon materials such as graphene, graphene oxide, and
reduced graphene oxide. This method is simple, easy to apply, scalable, and has received
high praise from scholars and industry experts. The second method is the chemical vapor
deposition of graphene on metal mesh templates, followed by removal of the templates
through acid treatment. This process results in the formation of a graphene fabric structure,
commonly known as graphene fabric.

Wang et al. [100] developed a wearable temperature sensor by ultrasonically com-
bining polybutylene terephthalate melt-blown non-woven fabric (PBTNW) with rGO and
carbon nanotubes (CNTs) (Figure 5a). The test results showed that the sensor revealed high
sensitivity (−0.737% ◦C−1), with a resolution of 0.1 ◦C within the temperature range of
25 ◦C to 45 ◦C. Tan et al. [101] achieved a temperature-sensitive effect on cotton fabric by
applying multiple dipping and drying cycles of PNIPAM-GO, followed by reduction with
hydrazine hydrate. The resistance value of the fabric exhibited reversibility with temper-
ature changes in the range of 25–50 ◦C (Figure 5b). Yin et al. [50] prepared a waterproof
breathable cotton fabric composite decorated with rGO and CNTs by solution osmosis.
The composite material served as a sensing layer capable of highly sensitive detection of
pressure and temperature stimuli. The device demonstrated a good linear response in the
temperature range of 28~40 ◦C (Figure 5c) and successfully applied to non-contact real-time
monitoring of human respiratory signals.
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Figure 5. (a) A wearable temperature sensor is prepared by combining non-woven fabric with
rGO/CNT [100]. (b) The process of loading PNIPAM-rGO on cotton fabric [101]. (c) Waterproof
breathable cotton fabric composite decorated with rGO and CNTs [50]. (d) The morphology of the
fabric and its response to heat [48]. (e) Wearable temperature sensor based on single microfiber [102].
(f) A strain-insensitive stretchable temperature sensor for rGO/PU composites was prepared by the
fiber-spinning method [103].

In addition to functionalizing textile fabrics, graphene can also be loaded onto a single
woven yarn or microfiber, which can be easily integrated into clothing. Afroj et al. [48]
developed a graphene-based wearable textile that is flexible, washable, and bendable,
operating within the temperature range of 25–55 ◦C (Figure 5d). Graphene-based inks
were used to dye (coat) textile yarns using high-speed yarn dyeing techniques. The
resulting graphene textile sensor exhibited excellent temperature sensitivity, washability,
and extremely high flexibility. Similarly, Trung et al. [102] reported a wearable temperature
sensor based on a single microfiber for the first time (Figure 5e). Graphene fibers were
prepared by wet spinning and in situ reduction processes. GO gel fibers were reduced in
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a hydrogen iodide/acetic acid solution with a volume ratio of 1:20, followed by thermal
treatment with deionized water in an autoclave at 200 ◦C for 24 h. This process produced
a single RGO fiber with a diameter of approximately 40 µm, close to that of human hair.
The device operated within the temperature range of 30–80 ◦C, exhibited a fast response
time (7 s), good recovery time (20 s), and maintained its response even when subjected
to bending radii up to 4 mm and cycling bends up to 10,000 times. In the same year,
Trung et al. [103] also prepared a strain-insensitive stretchable temperature sensor based on
rGO/PU composites using a simple fiber-spinning method, which showed higher thermal
responsiveness and remarkable mechanical deformation. The sensitivity of the temperature
sensor was 0.8%/◦C, the stretchability was up to 90%, and the sensing resolution value
is 0.1 ◦C (Figure 5f). The sensors were sewn onto stretchable bandages and attached to
the human body to continuously and steadily detect changes in skin temperature during
various body movements.

4.3. Based on Paper Substrates

To address the issue of electronic waste, researchers are focusing on developing paper
substrates for sensors. Paper, being hydrophilic and capillary, can be easily modified
through simple methods such as soaking, coating, spraying, or printing. Paper-based
sensors offer several advantages including low cost, recyclability, and environmental
degradation. These paper-based sensors are widely utilized in various applications such as
detecting pressure [104], temperature, humidity, and more. The versatility and accessibility
of paper make it an ideal substrate for developing sensors that are both environmentally
friendly and cost-effective.

Liu et al. [49] developed a flexible paper-based multimodal sensor that could simul-
taneously detect strain, humidity, temperature, and pressure with a single device. They
achieved this by spraying a moisture dispersion of carbon black (CB) and rGO onto the
paper, repeating the spray-drying process multiple times to form a sensitive layer. The
micromorphology of this sensitive layer is shown in Figure 6a, where CB particles are
adsorbed on the surface of the rGO and then arranged hierarchically. The device operates
in the temperature range of 20–60 ◦C and has a sensitivity of 0.6%/◦C, higher than com-
mercial Pt sensors. Besides, since the paper is made from plant fibers, the sensor easily
degrades in water but can be reused after undergoing the soil-drying process, making it a
reliable option.

Nanomaterials 2023, 13, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 6. (a) The preparation process and performance display of paper multimode sensor [49]. (b) 
Preparation process and performance of disposable flexible temperature sensor [105]. 

5. Wireless Sensor Network 
5.1. The Composition and Working Mechanism of Wireless Sensor Network 

A wireless sensor network (WSN) is composed of tens of thousands of sensor nodes 
that are interconnected through wireless communication technology. Unlike a traditional 
local area network, WSN offers stronger communication stability and ensures the fresh-
ness, integrity, and confidentiality of data during transmission. The sensor nodes in a 
WSN comprise several units, including the data acquisition unit, data transmission unit, 
data processing unit, and energy supply unit. These units work together to collect data 
from the surrounding environment, transmit it wirelessly, process it if necessary, and en-
sure a continuous supply of energy to the sensor node. Wireless sensor networks are key 
technologies for continuous sensing and wireless transmission of data, especially for the 
implementation of the Internet of Things (IoT) [106,107]. Figure 7a represents a schematic 
diagram illustrating the structure and connectivity of a wireless sensor network [22]. 

Figure 6. (a) The preparation process and performance display of paper multimode sensor [49].
(b) Preparation process and performance of disposable flexible temperature sensor [105].



Nanomaterials 2023, 13, 2339 11 of 19

Likewise, Gong [105] reports on a disposable flexible temperature sensor that uses
synthetic graphene nanoribbon (GNR) ink with high thermal sensitivity, which can be
written or sprayed onto commonly used paper (Figure 6b). The sensor serves as an
economical and practical disposable health monitoring equipment, employing inexpensive
materials and simple technology. At high temperatures, the GNR forms appropriate
band gaps and local traps within the forbidden band, thus enhancing thermal activation
transmission and resulting in high thermal sensitivity. Notably, the sensor operates within
a temperature range of 30–60 ◦C, exhibiting a high sensitivity of 172%, fast response time
of 0.5 s, high-temperature resolution of 0.2 ◦C, and flexibility.

5. Wireless Sensor Network
5.1. The Composition and Working Mechanism of Wireless Sensor Network

A wireless sensor network (WSN) is composed of tens of thousands of sensor nodes
that are interconnected through wireless communication technology. Unlike a traditional
local area network, WSN offers stronger communication stability and ensures the freshness,
integrity, and confidentiality of data during transmission. The sensor nodes in a WSN
comprise several units, including the data acquisition unit, data transmission unit, data
processing unit, and energy supply unit. These units work together to collect data from
the surrounding environment, transmit it wirelessly, process it if necessary, and ensure
a continuous supply of energy to the sensor node. Wireless sensor networks are key
technologies for continuous sensing and wireless transmission of data, especially for the
implementation of the Internet of Things (IoT) [106,107]. Figure 7a represents a schematic
diagram illustrating the structure and connectivity of a wireless sensor network [22].

Nanomaterials 2023, 13, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 7. Wireless sensor networks and applications. (a) Schematic diagram of a wireless sensor 
network [22]. (b) Intelligent clothing application diagram [48]. (c) Washable electronic textiles with 
multiple functions [51]. (d) PANI/graphene-based temperature sensor integration [52]. (e) A flexible 
rGO temperature sensor on a 3D-printed robot fingertip [108]. 

Typically, sensors provide data output in the form of digital or analog signals. In the 
dynamic detection of human physiological conditions, the capacitance or resistance of the 
sensors will change with the change of sensor parameters. At this point, a digital converter 
(CDC) or electro–digital conversion (RDC) is required to convert the sensor’s capacitance 
or resistance data into digital form. However, CDC or RDC has limited ability to process 
and compute data. Therefore, additional units (such as microcontroller units (MCUS)) that 
can perform data processing are required. The processed data is then transmitted wire-
lessly via a radio transceiver to a receiver node or gateway/base station. In addition, the 
receiver node or gateway forwards this data to the cloud over Wi-Fi, Ethernet, or cellular 
networks (e.g., 2G to 5G). 

  

Figure 7. Wireless sensor networks and applications. (a) Schematic diagram of a wireless sensor
network [22]. (b) Intelligent clothing application diagram [48]. (c) Washable electronic textiles with
multiple functions [51]. (d) PANI/graphene-based temperature sensor integration [52]. (e) A flexible
rGO temperature sensor on a 3D-printed robot fingertip [108].
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Typically, sensors provide data output in the form of digital or analog signals. In the
dynamic detection of human physiological conditions, the capacitance or resistance of the
sensors will change with the change of sensor parameters. At this point, a digital converter
(CDC) or electro–digital conversion (RDC) is required to convert the sensor’s capacitance or
resistance data into digital form. However, CDC or RDC has limited ability to process and
compute data. Therefore, additional units (such as microcontroller units (MCUS)) that can
perform data processing are required. The processed data is then transmitted wirelessly
via a radio transceiver to a receiver node or gateway/base station. In addition, the receiver
node or gateway forwards this data to the cloud over Wi-Fi, Ethernet, or cellular networks
(e.g., 2G to 5G).

5.2. Applications of Wireless Sensor Network

Wearable temperature sensors have remarkable properties such as high tensile strength,
skin compatibility, and high sensitivity and resolution, which can be combined with wire-
less sensor networks to realize the remote dynamic monitoring of human health conditions.
Continuous dynamic monitoring of body temperature requires continuous access and ma-
nipulation of sensory data. Cloud computing technology advancements offer an excellent
opportunity to further analyze and store sensor data in the IoT cloud. This enables users to
easily retrieve data from any Internet-connected device on demand. Different technologies
can be used to achieve wireless transmission, such as Bluetooth low power, radio frequency
identification (RFID), near-field communication (NFC), ZigBee, and long-range wide-area
network. To achieve remote dynamic detection of physiological signals, several factors need
to be considered when selecting the communication architecture. These factors include
the cost of sensing equipment, the number of sensor nodes, the target communication
range, equipment lifespan, and power consumption. In terms of power consumption,
graphene-based temperature sensors are commonly employed due to their low power
consumption, generally ranging from tens to hundreds of microwatt (µW) [107,109–111].

Integrated fabric or fiber-based temperature sensors have a wide range of applications
due to the flexibility and wearability of the fabric itself, as well as the washable properties
of graphene-based fabrics. Afroj et al. [48] demonstrated a smart garment concept that
integrates knitted temperature sensors, other wireless sensors (such as but not limited to
strain, pressure, and humidity), and RFID technology. The temperature data collected
by the sensors can be sent to a mobile application through an NFC reader. Additionally,
the garment can connect to low-power Bluetooth devices to transfer data to other devices
(as shown in Figure 7b). Zhang et al. [51] prepared a graphene-modified e-textile with
hydrophilic, breathable, biocompatible, and washable properties. The fabric was prepared
with sericin assistance, enabling a comfortable multisensor-integrated textile. The fabric’s
knitted structure is well-preserved with a conformal coating of hydrophilic sericin-graphene
sheets, providing excellent electrical conductivity, hydrophilicity, biocompatibility, air per-
meability, and flexibility. These properties ensure both electronic functionality and wearing
comfort. Building upon this foundation, an integrated multisensor textile was developed,
which could collect and analyze electromyographic and mechanical signals at the same time,
realizing the recognition and differentiation of complex human movement (Figure 7c).

In addition to integrated fabrics, portable integrated sensors are widely used for
real-time temperature monitoring. These sensors can be attached to the wrist and worn
as a bracelet, allowing for convenient monitoring in various situations. Ren et al. [52]
designed a temperature sensor based on graphene/PANI with high sensitivity (1.60%/◦C),
resolution (0.3 ◦C), and short time response (0.7 s) within the temperature-sensing range of
25~40 ◦C. Based on this, the temperature sensor can be combined with a readout circuit
and a filter circuit to create an integrated device, such as a sports bracelet. This device
can be used to monitor the athlete‘s body temperature in real time during running and
upload the health data to the cloud for remote intelligent medical treatment (Figure 7d).
In dangerous conditions, sensors can be integrated into certain parts of a robot for remote
monitoring. Zhou et al. [108] studied a new type of robotic finger with an rGO-based
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flexible temperature sensor, an integrated circuit, and an external Bluetooth for real-time
wireless data transfer to the phone (Figure 7e). The temperature-sensing performance of the
sensor was measured in the range of 303~353 K, and the resistance temperature coefficient
of −1.223%/K was obtained.

These portable integrated sensors offer the advantage of real-time temperature mon-
itoring in different scenarios, whether for personal health monitoring during physical
activities or for remote monitoring in hazardous environments. The data collected by these
sensors can be transmitted wirelessly for further analysis and decision-making.

6. Conclusions and Challenges

Compared to commercially available rigid temperature sensors, wearable temperature
sensors developed using graphene materials display outstanding flexibility and shape
adaptability. These sensors can be closely fitted to various parts of the human body, making
them highly suitable for physiological monitoring and disease prediction. This paper gives a
comprehensive overview of recent achievements in graphene-based wearable temperature
sensors, including the preparation methods of graphene, the performance index, and
the response mechanism of the sensors. Then, the temperature sensors are classified
according to the types of flexible substrates, and the corresponding application scenarios
are further introduced. Through the summary of relevant application developments,
it is evident that reliable intelligent wearable temperature-sensing systems require the
collaboration of multicomponents. This necessitates efficient integration of the sensing unit,
power supply unit, communication module, and data processing module. This integration
presents a major research trend in this field, as it sets higher requirements for achieving
seamless cooperation among these components. In conclusion, graphene-based wearable
temperature sensors offer significant advantages over rigid sensors, and they have great
potential in various applications related to physiological monitoring and disease prediction.

Graphene-based wearable temperature sensors have good application prospects be-
cause they are suitable for the integration of textiles or skin, can be closely attached to
various parts of the human body, and ensure the accuracy of real-time monitoring results.
At present, a lot of research has been carried out on the use of graphene to manufacture
wearable temperature sensors. The main performance is that there are more and more
methods for preparing high-quality graphene. Therefore, the performance of the sensor can
be regulated to a certain extent by different preparation methods. Due to the limitations of
graphene as a heat-sensitive material, the most suitable temperature range of graphene-
based temperature sensors is 25–55 ◦C, and the minimum resolution can reach 0.2 ◦C. It
not only covers the temperature range of human health monitoring, but also can accurately
measure the parts with a small temperature difference. In addition, based on the portability
of wearable sensors, sensors are combined with wireless sensor networks to achieve remote
dynamic monitoring of human health status and receive data information in real time.

Graphene-based wearable temperature sensors have good application prospects be-
cause they are suitable for the integration of textiles or skin, can be closely attached to
various parts of the human body, and ensure the accuracy of real-time monitoring results.

Although graphene has been used in a variety of flexible strain [112,113], pres-
sure [114], temperature [92,115,116], humidity [117,118], and multimodal sensors [119,120],
many practical applications are still challenging. These challenges include the following:

(1) The complex and high-cost preparation process of graphene-based temperature sen-
sors hinders their wide application. To overcome this limitation, there is an urgent
need to develop more low-cost and simple preparation methods. Researchers should
focus on finding alternative techniques that can streamline the production process
and reduce the overall cost of manufacturing these sensors. This will enable their
widespread adoption in various fields.

(2) One of the challenges faced by graphene-based temperature sensors is the crosstalk
between different stimulation signals. This can make it difficult for the sensor to
accurately distinguish the signal to be monitored from other signals, affecting its
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performance and reliability. Addressing this challenge requires the development of
advanced signal processing algorithms and techniques that can effectively filter out
unwanted interference and isolate the desired temperature signal. Researchers should
continue to explore innovative approaches to enhance the signal-to-noise ratio and
improve the specificity of these sensors.

(3) While high performance is essential, the comfort of wearable temperature sensors is
also crucial for their long-term use. Some substrate materials used in these sensors
may have poor air permeability, making them uncomfortable to wear for extended
periods. To address this issue, it is important to explore alternative substrate materials
that offer better breathability and comfort. Additionally, the design and fabrication of
the sensors should prioritize user comfort, ensuring that they are lightweight, flexible,
and non-irritating to the skin. This will enhance user acceptance and enable the
sensors to be worn for longer durations without discomfort.

Indeed, with the advancement of simple preparation methods for graphene materials,
the field of flexible graphene-based sensors is expected to make significant progress in the
future. These sensors will benefit from the high selectivity and comfort they offer.

Simplifying the preparation process for graphene materials will make them more
accessible and cost-effective, enabling wider adoption of flexible graphene-based sensors.
Researchers are actively exploring various techniques to simplify the fabrication process,
such as solution processing, printing, and scalable manufacturing methods. These advance-
ments will contribute to the mass production of graphene-based sensors, making them
more readily available for various applications.

Furthermore, the high selectivity of graphene-based sensors allows for precise and
accurate detection of specific signals or stimuli. This selectivity can be enhanced by func-
tionalizing the graphene surface or integrating additional sensing elements. The ability to
selectively detect and monitor specific parameters will enable these sensors to be applied in
diverse fields, including healthcare, environmental monitoring, and wearable technology.

Comfort is another crucial aspect to consider in the development of wearable sensors.
The flexibility and lightweight nature of graphene-based sensors make them well-suited
for comfortable and prolonged use. Researchers are continually exploring new substrate
materials and designs that prioritize user comfort, breathability, and skin compatibility.
These efforts will ensure that graphene-based sensors can be comfortably worn for extended
periods without causing any discomfort or irritation.

Overall, the combination of simple preparation methods for graphene materials, high
selectivity, and comfort in flexible graphene-based sensors holds great promise for future
advancements in sensor technology. These sensors are expected to find widespread appli-
cations in various industries, contributing to advancements in healthcare, environmental
monitoring, and wearable technology.
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