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Abstract: Doping engineering of metallic elements is of significant importance in photocatalysis,
especially in the transition element range where metals possess empty ‘d’ orbitals that readily absorb
electrons and increase carrier concentration. The doping of Mn ions produces dipole interactions
that change the local structure of BiOCl, thus increasing the specific surface area of BiOCl and the
number of mesoporous distributions, and providing a broader platform and richer surface active
sites for catalytic reactions. The combination of Mn doping and metal Bi reduces the forbidden
bandwidth of BiOCl, thereby increasing the absorption in the light region and strengthening the
photocatalytic ability of BiOCl. The degradation of norfloxacin by Bi/Mn-doped BiOCl can reach
86.5% within 10 min. The synergistic effect of Mn doping and Bi metal can change the internal energy
level and increase light absorption simultaneously. The photocatalytic system created by such a
dual-technology combination has promising applications in environmental remediation.

Keywords: photocatalysis; BiOCl; manganese doping; self-assembly

1. Introduction

Semiconductor photocatalysts have drawn considerable attention because of their
widespread application in the degradation of organic pollutants in water [1–3]. BiOCl,
as a classical material with a layered structure, has a promising future in the fields of
optics, electricity, and magnetism because of its internal electric field and electron-hole
separation resulting from the alternating combination of [Bi2O2]2+ and [Cl−] layers [4,5].
However, the performance of BiOCl is limited because it can only be activated by UV light.
Therefore, the wider bandgap of BiOCl (about 3.4 eV) necessitates additional methods to
improve light utilization. The development of modification techniques for BiOCl groups
has been extensively studied, including defect control, construction of heterojunctions,
metal deposition, and heteroatom doping. These techniques can also increase the carrier
concentration and accelerate the charge transfer rate [6–10].

Among these methods, metal deposition is the compounding of metals on the surface
of photocatalysts. It uses the better electrical conductivity of metals to promote electron
transfer and effectively prevent electron-hole recombination [11,12]. In addition, due to
the different directions of electron transfer, the Schottky barrier or plasma resonance effect
will occur, respectively. When the Fermi energy level of metal is lower than that of the
semiconductor, electrons tend to transfer from the semiconductor surface to the metal
surface. As a consequence, the electron-hole domain is fixed on the metal and semicon-
ductor, respectively, resulting in a Schottky barrier, and thus effectively suppressing the
charge recombination [13,14]. When the size of the metal particles is small enough, it is

Nanomaterials 2023, 13, 2408. https://doi.org/10.3390/nano13172408 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13172408
https://doi.org/10.3390/nano13172408
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-2160-5135
https://orcid.org/0000-0002-2818-0408
https://doi.org/10.3390/nano13172408
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13172408?type=check_update&version=1


Nanomaterials 2023, 13, 2408 2 of 14

easy to excite hot electrons under visible light irradiation, thus transferring electrons to the
semiconductor conduction band position. The collective electron oscillation in the semicon-
ductor conduction band under light irradiation could trigger the surface plasmon resonance
effect (SPR) [15,16]. Such a phenomenon can occur not only with precious metals but also
with the metal Bi, which has great cost savings and a good overall performance compared
to precious metals. Indeed, metal Bi nanoparticle loading has been extensively utilized to
improve the photocatalytic performance of semiconductors. For instance, Bi/Bi2O3 [17],
Bi/Bi2MoO6 [18], Bi/C3N4 [19], and Bi/CdS [3], etc. photocatalyst systems have been re-
ported. Chang et al. [20] used in situ electron microscopy and theoretical studies to explain
in detail the interfacial transport pathways of carriers during the SPR effect induced by
metallic bismuth particles in the heterojunction system. Moreover, the metal Bi triggers an
increase in the light absorption range after the bandgap change, which is favorable for the
photoreactivity of the semiconductor. These studies contribute to a better understanding of
the reasons for the increased activity of various bismuth-based photocatalysts.

Heteroatom doping is also a general and effective photocatalyst modification strategy.
Because transition metal atoms have unsaturated ‘d’ orbitals, the energy level structure of
the semiconductor can be regulated by transition metal atom doping for improved light
absorption and photogenerated carrier generation. It can reduce the energy required for
electron leap and promote charge separation, thus improving the photocatalytic activity
of the photocatalyst [21–26]. Currently, numerous researchers have certified that the
photocatalytic activity of BiOCl in the degradation of organic pollutants can be improved
effectively by metal doping [27–30]. Manganese (Mn), a common transition metal, is often
used for doping into semiconductors because of the diverse valence states of the transition
and its low price. Recently, Mn doping has been used to improve the photocatalytic
degradation performance of BiOCl. Cen et al. degraded metronidazole using Mn-BiOCl
and achieved a removal efficiency of 91.6% after 60 min of treatment under simulated
solar light [30]. Pare et al. reported that Mn-BiOCl could remove 98% of malachite green
after 120 min under visible light irradiation [31]. In addition, Lin et al. [32] improved
the photocatalytic CO2 reduction reaction efficiency by doping manganese ions (Mn2+)
in CsPbBr3 halide chalcogenide nanoplates and applying an external magnetic field. Mn
doping generates spin-polarized electrons and increases the number of photogenerated
carriers using the synergistic effect of Mn doping and the applied magnetic field, which
prolongs the carrier lifetime and inhibits charge recombination.

In this work, metal Bi composite and metal Mn doping were used to optimize the
bandgap of BiOCl semiconductors. A one-step solvothermal method is used in situ to
reduce metal Bi and dope transition metal Mn, both of which modify BiOCl to form Bi/Mn
doped BiOCl (MBB) structures. This heterojunction takes advantage of the tight coupling
between metallic Bi and BiOCl to shorten the charge transfer distance. Meanwhile, Mn
doping changes the internal structure of BiOCl and creates a new bonding energy linkage
with it. MBB possesses a higher specific surface area and a more suitable bandgap for
light absorption, which enhances the photoresponse and increases the photogenerated
carrier concentration and electron-hole separation efficiency. The deposition of metal-
lic Bi and Mn doping modification will further enhance the photocatalytic activity and
strengthen the degradation rate of norfloxacin by MBB, thereby constructing a highly active
photocatalytic system.

2. Experimental Section
2.1. Chemicals

Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O) was purchased from Shanghai Dibai
Biotechnology Co., Ltd. (Shanghai, China), potassium chloride (KCl) was purchased from
Tianjin Guangfu Technology Development Co., Ltd. (Tianjin, China), manganese chloride
tetrahydrate (MnCl2·4H2O) was purchased from Aladdin Reagent Co., Ltd. (Shanghai,
China), and N,N-dimethylformamide (DMF) was purchased from Tianjin Fuyu Fine Chem-
ical Co., Ltd. (Tianjin, China). Norfloxacin (C16H18FN3O3) was purchased from Shanghai
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XianDing Biotechnology Co., Ltd. (Shanghai, China), and sodium sulfate (Na2SO4) was
purchased from Aladdin Reagent Co., Ltd. (Shanghai, China). All the above chemicals are
analytical grade and used without further purification.

2.2. Synthesis

The Bi/Mn-doped BiOCl microspheres were prepared by a solvothermal method.
A total of 6 mmol Bi(NO3)3·5H2O and 6 mmol KCl were added to 32 mL DMF. After
stirring for 30 min, a certain amount of MnCl2·4H2O (molar ratio Mn:Bi = 1:20, 1:30, 1:40)
was added and stirred until complete dissolution. The mixture was then transferred to a
50 mL polytetrafluoroethylene (PTFE)-lined stainless steel autoclave for 3 h at 160 ◦C. The
reaction was cooled down and the catalyst was washed with water and ethanol. Finally,
the catalyst was dried at 60 ◦C. The collected sample was denoted as MBB (the molar ratio
of Mn:Bi = 1:30 was optimal and this ratio was used for subsequent tests).

Next, 6 mmol Bi(NO3)3·5H2O and 6 mmol KCl were added to 32 mL DMF. After
stirring for 30 min, the solution was transferred to a 50 mL PTFE-lined stainless steel
autoclave for continuous reaction at 160 ◦C for 12 h. The collected sample was denoted as
Bi/BiOCl.

Then, 6 mmol Bi(NO3)3·5H2O and 6 mmol KCl were added to 32 mL distilled water
and the solution was stirred for 30 min. A certain amount of MnCl2·4H2O (molar ratio
Mn:Bi = 1:30) was added, stirred until complete dissolution, and then the mixture was
transferred to a 50 mL PTFE-lined stainless steel autoclave for 3 h at 160 ◦C. The collected
sample was denoted as MB.

Finally, 6 mmol Bi(NO3)3·5H2O and 6 mmol KCl were added to 32 mL distilled water,
the solution was stirred for 30 min, and the mixed solution was transferred to a 50 mL
PTFE-lined stainless steel autoclave for continuous reaction at 160 ◦C for 12 h. The collected
sample was denoted as BiOCl.

3. Results and Discussion
3.1. Morphology and Microstructure

The scanning electron microscope (SEM) image of Figure 1a demonstrates many
distributed BiOCl nanosheets. The nanosheet structure of MB is shown in Figure S1, and
the uniform distribution of Mn, Bi, O, and Cl elements in MB nanosheets is shown in
Figure S2. The aggregation of nanosheets forms the microsphere structure of Bi/BiOCl as
shown in Figure 1b. Figure 1c,d shows the structural features of MBB. It is observed that
MBB is formed by the self-assembly of many nanosheets into tightly bound microspheres,
and this structure minimizes the agglomeration of nanosheets [22]. The surface free energy
of the thinner nanosheets allows them to be uniformly dispersed and combined into a
microsphere structure [33], which maximizes the exposure of the specific surface area and
increases the active sites for photocatalysis.

Meanwhile, the mapping images (Figure 1e–h) show that each element is uniformly
distributed. The presence of Mn elements can be observed in the mapping images [34]. The
energy dispersive X-ray (EDX) of Figure 1i demonstrates the distribution of the elements,
with the four elements Mn, Bi, O, and Cl co-existing in the MBB structure [35]. The
transmission electron microscopy (TEM) of Figure 1j clearly shows the ultrathin nanosheet
structure of MBB, and two lattice stripes are observed by further high-resolution TEM
(HRTEM) images (Figure 1k). Between these stripes, a lattice spacing of 0.324 nm was
obtained by exposing the metallic Bi (012) crystal plane. There is also a lattice spacing of
0.273 nm obtained by exposing the BiOCl (110) crystal plane, which is slightly reduced
compared to the original crystal plane spacing, resulting from the effect of lattice distortion
caused by Mn doping.
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Bi3+ (with a larger ionic radius) by Mn2+ (which has a smaller ionic radius), occupying the 
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tance (UV-vis) image in Figure 2b reflects the optical properties of the MBB catalyst. As 
can be seen from Figure 2b, MBB exhibits higher absorption intensity than Bi/BiOCl, MB, 
and BiOCl in the 400–800 nm range, indicating that the Mn doping and metal Bi together 
enhance the sensitivity of BiOCl to light. The bandgap values of 2.84, 3.05, 3.33, and 3.37 
eV for MBB, Bi/BiOCl, MB, and BiOCl, respectively [36], are seen in the bandgap diagram 
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light absorption for two reasons. Firstly, Mn doping creates an intermediate energy level 
in the energy band structure of BiOCl. This energy level can be used as a bridge for elec-
tron leap to achieve the reduced bandgap effect of BiOCl. Secondly, the metal Bi has a 
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XRD although the amounts of doped Mn are different. However, the presence of metallic 
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Figure 1. SEM images of BiOCl (a), Bi/BiOCl (b), MBB (c,d). Elemental mappings of Mn (e), Bi (f),
O (g), and Cl (h) in MBB. EDX (i), TEM (j), and HRTEM (k) of MBB.

The X-ray diffraction (XRD) patterns of Figure 2a clearly show the diffraction peaks of
BiOCl and Bi in MBB. The crystallographic planes corresponding to each diffraction peak
are marked in detail in Figure 2a. Among them, BiOCl in MBB is in the tetragonal struc-
tured crystalline phase, corresponding to the standard card JCPDS no. 73-2060 [27,28]. The
diffraction peaks corresponding to the (110) and (011) crystallographic planes are the most
significant, indicating that the crystallographic planes where the microsphere nanosheets
are heavily exposed are probably the (110) crystallographic planes. The presence of in
situ reduced metal Bi in the system was also demonstrated by XRD. There are obvious
diffraction peaks of singlet Bi at 2θ = 27.2, 37.9, and 39.6◦, corresponding to the crystallo-
graphic planes (012), (104), and (110), respectively (JCPDS no. 85-1329) [17]. The diffraction
peaks of metallic Bi have been marked by orange shading in Figure 2a. Meanwhile, the
magnification of the yellow shaded part shows that the diffraction peak of MBB is shifted
to a higher angle than that of Bi/BiOCl. This change is due to the replacement of Bi3+ (with
a larger ionic radius) by Mn2+ (which has a smaller ionic radius), occupying the interstitial
sites and causing the lattice to contract. The ultraviolet-visible diffuse reflectance (UV-vis)
image in Figure 2b reflects the optical properties of the MBB catalyst. As can be seen from
Figure 2b, MBB exhibits higher absorption intensity than Bi/BiOCl, MB, and BiOCl in
the 400–800 nm range, indicating that the Mn doping and metal Bi together enhance the
sensitivity of BiOCl to light. The bandgap values of 2.84, 3.05, 3.33, and 3.37 eV for MBB,
Bi/BiOCl, MB, and BiOCl, respectively [36], are seen in the bandgap diagram of Figure 2c.
This indicates that MBB has a forbidden bandwidth more suitable for sunlight absorption
for two reasons. Firstly, Mn doping creates an intermediate energy level in the energy band
structure of BiOCl. This energy level can be used as a bridge for electron leap to achieve
the reduced bandgap effect of BiOCl. Secondly, the metal Bi has a larger absorption rate of
light and can enhance the utilization of UV and visible light by BiOCl. The above reasons
make MBB absorb a broader range of visible light [37].

Figure 2d–f shows the characterization of the modulated MBB (Mn:Bi = 1:20, 1:30, 1:40)
series. It is observed in the XRD plots of Figure 2d that there is almost no change in XRD
although the amounts of doped Mn are different. However, the presence of metallic Bi
in MBB is confirmed by three strong Bi diffraction peaks. In the UV-vis plot of Figure 2e,
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the light absorption intensity of the three ratios of MBB does not differ by much, but the
bandgap values (Figure 2f) are slightly different. The bandgaps of MBB (1:20, 1:30, 1:40)
samples are 2.79, 2.84, and 2.90 eV, respectively [36]. Moreover, the bandgap values become
smaller as the amount of Mn doping gradually increases. These results indicate that Mn
doping can effectively regulate the light absorption property of BiOCl.
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Figure 3a shows the Raman spectra to determine the vibrational modes of the molecules
inside the BiOCl structure. It can be seen from Figure 3a that the characteristic peak of
MBB at 144 cm−1 caused by the interlayer vibration of A1g is significantly weakened and
blue-shifted. This difference indicates that the Mn doping in BiOCl may be chemically
coordinated with the internal bonds, thus shifting the vibrational peak [38]. The Bi–Cl
bond stretching within Eg occurs at 199 cm−1 while the O-atom stretching vibration within
B1g appears at 395 cm−1. Both the above characteristic peaks almost disappear for MBB,
indicating that the doping technique and metal composite are effective in modifying the in-
ternal structure and surface state of the material [39]. The electron paramagnetic resonance
(EPR) pattern in Figure 3b also further demonstrates the doping of Mn elements in BiOCl,
showing the stronger signal response of MBB compared to BiOCl, MB, and Bi/BiOCl due
to the six EPR vibrational peaks splitting from the interaction between the nuclear spins
of Mn2+ ions (S = 5/2) and their electron spins. These six splitting peaks indicate that the
dipole interaction of Mn2+ ions changes the local structure of BiOCl, and indirectly proves
the Mn doping in BiOCl [32]. The nitrogen adsorption–desorption isotherm profiles in
Figure 3c show typical type IV isotherms for BiOCl, MB, Bi/BiOCl, and MBB, indicating
that all three catalysts have a mesoporous structure and MBB exhibits a higher nitrogen
adsorption effect. As seen in Table S1, the specific surface area of MBB (21.9 m2/g) is not
only 1.2 times higher than that of Bi/BiOCl (18.4 m2/g), but also 22 times higher than
that of BiOCl (1.0 m2/g) and 3.4 times higher than that of MB (6.5 m2/g). In addition, the
pore size pore capacity of MBB is higher than that of Bi/BiOCl, MB, and BiOCl materials.
The mesopore distribution curves in Figure 3d also show that MBB has better mesopore
distribution peaks, a large number of mesopore structures, and a high specific surface area
that can better trap charges, accelerate carrier separation, and provide more active sites for
catalytic reactions [40,41].
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Figure 4a–d shows the X-ray photoelectron spectra (XPS) of the MBB, showing the
surface chemical states of the four elements. All elements are calibrated in reference to
the binding energy of C 1s (284.8 eV). Figure 4a shows the spectrum of the element Bi in
MBB, and the two peaks at 158.95 and 164.33 eV belong to the characteristic peaks of Bi3+,
corresponding to the Bi 4f7/2 and Bi 4f5/2 tracks, respectively [42]. In addition, two small
peaks at 158.59 and 163.86 eV were separated within the characteristic peak of Bi3+, and
this peak belongs to the Bi0 characteristic peak, which proves the presence of metallic Bi on
the surface of the MBB structure. Figure 4b shows the O elemental spectrum in MBB with
distinct peaks at 527.07 and 531.82 eV due to metal-O bonding inside the structure and
hydroxyl groups on the sample surface, respectively [43]. However, unlike the previous
Bi-O characteristic peaks around 529 eV, the MBB binding energy is blue-shifted, probably
due to the substitution of the original lattice oxygen in Mn-doped BiOCl to form Mn-O
bonds. Figure 4c shows the elemental spectrum of Cl in MBB, and the characteristic peaks
at 198.23 and 199.88 eV belong to the Cl 2p3/2 and Cl 2p1/2 orbitals, respectively. Figure 4d
shows the spectrum of the Mn element in MBB. The 640.34 and 652.08 eV split peaks belong
to the Mn 2p3/2 and Mn 2p1/2 orbitals. The combined analysis of XRD, EPR, and XPS
speculates that the Mn doping in MBB possesses two forms: one is the replacement of some
high-valent Bi3+ ions by low-valent Mn2+ ions to form Mn-O bonds, which easily induces
the vibration of O atoms in MBB, and another is the grafting of Mn2+ on the surface of
BiOCl to form manganese oxygen clusters, which excites the motion of photogenerated
carriers [44,45]. Finally, in the full XPS spectrum of Figure 4e, it can be seen more clearly
that the MBB sample contains four elements, Bi, O, Cl, and Mn, thus confirming the doping
of Mn. The XPS valence band spectrum energy of MBB is known to be 2.24 eV in Figure 4f.
The energy level structure produced by Mn doping can both promote electron leap and
block the recombination of photogenerated electrons and holes, thus inhibiting charge
recombination.
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Figure 5a shows the electrochemical impedance spectrum (EIS) to analyze the resis-
tance ability of the material to the AC current. It can be seen that MBB has a smaller
radius of curvature and weaker resistance to current than Bi/BiOCl, MB, and BiOCl, in-
dicating that MBB heterojunction possesses stronger charge transfer ability and diffusion
ability [41,46]. The energy level change of MBB can be inferred from the Mott–Schottky
curve in Figure 5b, in which the slope of the curves for MBB, Bi/BiOCl, MB, and BiOCl can
visually be seen to be positive, reflecting that the materials are all n-type semiconductors.
In addition, the extension of the Schottky curve and the intersection of the X-axis determine
that the flat-band potentials of MBB, Bi/BiOCl, MB, and BiOCl are −1.23, −1.07, −1.01,
and −0.99 V, respectively. The carrier concentration (Nd) in the material can also be derived
from Equation (1):
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The vacuum dielectric constant (ε0) of BiOCl is taken as 55 [47]. The carrier concen-
trations of MBB, Bi/BiOCl, MB, and BiOCl were calculated to be 3.41 × 1019, 2.66 × 1019,
1.53 × 1019, and 1.22 × 1019, respectively. MBB exhibits the highest carrier concentrations,
showing that it has better conductivity to accelerate the charge flow. Finally, the conduction
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band positions of the four materials are derived from the flat-band potential, as calculated
in Equation (2):

E (RHE) = E (Ag/AgCl) + 0.0591pH + 0.197 (2)

The calculated CB values for MBB, Bi/BiOCl, MB, and BiOCl are estimated to be −0.62,
−0.46, −0.40, and −0.38 V, respectively. Thus, the calculated VB values are estimated to be
2.22, 2.57, 2.93, and 2.99 V based on the equation ECB = EVB − Eg [48,49]. Consequently, the
involved samples’ energy band structures are determined and shown in Figure 5c.

3.2. Photocatalytic Activity and Mechanism

To further investigate the photocatalytic activity of MBB, photocatalytic degradation of
norfloxacin antibiotic was performed to explore its photocatalytic ability. Figure 6a shows
the transient time-varying spectra of MBB degradation of norfloxacin. It can be seen that
the intensity of the absorbance curve gradually decreases with the increase of illumination
time, which indicates that MBB has a significant degradation ability of norfloxacin. The
maximum absorbance wavelength of norfloxacin is taken at 264 nm [50]. To investigate
the difference in the degradation ability of MBB, Bi/BiOCl, MB, and BiOCl, we clearly
show the comparison of the degradation performance of the four materials in Figure 6b.
The degradation did not change significantly in the dark treatment. Still, in only 10 min
under light, MBB degraded norfloxacin by 86.5%, which was 11.3% (1.15 times) higher than
Bi/BiOCl, 56.2% (2.85 times) higher than MB, and 72.1% (6.01 times) higher than BiOCl,
respectively. The reason for such a significant photocatalytic performance possessed by
MBB is attributed to the interfacial engineering of metal Bi with BiOCl and the Mn-doped
structure defect engineering.
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Meanwhile, the rate curves of MBB, Bi/BiOCl, MB, and BiOCl conformed to the first-
order kinetic equation (Figure 6c), and the rate constants of MBB, Bi/BiOCl, MB, and BiOCl
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(Figure 6d) were estimated to be 0.150, 0.102, 0.022, and 0.010 min−1, respectively. The
rate constant of MBB was calculated to be 1.47 times, 6.82 times, and 15 times higher than
those of Bi/BiOCl, MB, and BiOCl, respectively. This result more obviously shows that the
degradation activity of MBB is higher, which once again proves that Mn doping and metal
composite increase the utilization of light, accelerate charge separation and transfer, and
improve the degradation rate. The unsaturated ‘d’ orbitals of Mn absorb a large number
of electrons, thereby increasing the carrier concentration on the semiconductor surface to
further oxidize the contaminant [37,51]. The in situ deposition of metallic Bi and the tightly
coupled interface accelerates charge separation. Meanwhile, it further proves that MBB has
great potential in environmental remediation, and such a dual technology combination of
surface modification and internal structure doping also provides good ideas for the future
development of photocatalysts.

In order to study the stability of the MBB photocatalyst, a long-performance test was
executed on photocatalytic norfloxacin degradation. As can be seen in Figure S3a, no
obvious decrease in degradation rate is observed after four cycles. Furthermore, XRD
patterns of MBB hybrid before and after four cycles of photocatalytic degradation reaction
were recorded and shown in Figure S3b. It can be clearly seen that the crystal structure
of the MBB hybrid does not display a significant change after the long-performance test.
These results demonstrate the good stability of the MBB photocatalysts.

To understand the effect of Mn doping concentration on the photocatalytic degradation
rate of MBB, we investigated different doping concentrations of MBB (Mn:Bi = 1:20, 1:30,
1:40) for the photodegradation of norfloxacin antibiotics. As shown in Figure 7a, the
degradation rates of the three samples were 80.7%, 86.5%, and 77.5%, respectively. It can be
seen that the best photocatalytic degradation performance was obtained for MBB (1: 30)
with different ratios of modulated Mn doping. Such peak changes were also reflected in the
rate curves and rate constants. The rate curves in Figure 7b demonstrate that the compound
first-order kinetic curve changes for all three samples. It can be estimated that the kinetic
constants for MBB (Mn:Bi = 1:20, 1:30, 1:40) were 0.113, 0.150, and 0.102 min−1 (Figure 7c).
In summary, MBB (1: 30) has the most suitable Mn doping concentration and metal Bi
complex, which allows MBB to degrade norfloxacin at optimal performance. Usually, the
photocatalytic degradation process occurs with three reactive species •OH, •O2

−, and h+

in the degradation system, as shown in Figure 7d. Each of the three substances is added
to play an inhibitory role in the degradation process to identify the radicals that play a
major and minor degradation role in the reaction system, with the capture of hydroxyl
groups, hole, electrons, and superoxide by tert-butanol (t-BuOH), potassium iodide (KI),
silver nitrate (AgNO3), and benzoquinone (BQ), respectively [52]. Figure 7d shows that
adding AgNO3 and BQ has a stronger inhibitory effect on the reaction system, indicating
that the magnitude of radical activity in the MBB degradation system is •O2

− > h+ > •OH.
The reaction system is characterized by •O2

− is the main active species; h+ and •OH are
the secondary active species.

As the mechanism diagram presented in Figure 8, MBB is a microsphere formed by a
large number of nanosheets because of the surface free energy assembly. A Mn 3d-O 2p
intermediate energy level formed near the top of the valence band of BiOCl in its energy
level via Mn doping. The introduced Mn 3d-O 2p intermediate energy level narrowed the
bandgap of BiOCl, optimizing light absorption and modulating the photoelectric properties
of BiOCl. Moreover, abundant OVs caused by Mn-doping would serve as electron traps to
promote the separation of photogenerated carriers [53,54]. The tightly coupled interface of
metal Bi and the Mn doping within the structure together broadens the light absorption
range, enhances the carrier lifetime, and accelerates the carrier transfer, which shows the
degradation of highly toxic norfloxacin; sunlight irradiation can convert the antibiotics
into CO2, H2O, and other non-toxic and harmless small molecules. Meanwhile, the energy
level structure of MBB excites charge transfer from VB to CB under illumination, leaving
holes at the VB position. The surface engineering of MBB is demonstrated by the interfacial
coupling of metal Bi, which allows electrons from the CB of BiOCl to leap to the Bi surface



Nanomaterials 2023, 13, 2408 10 of 14

to increase the electron concentration. Electrons concentrated on the surface of metal Bi
can convert the O2 adsorbed on the catalyst surface into •O2

− [37]. Furthermore, the
internal engineering of MBB is achieved by Mn doping to change the energy level position.
The holes in the VB position can convert OH− in water to •OH. In summary, both tight
interfacial coupling techniques and energy-level structure engineering are important in
creating high-performance catalysts. Both in situ reduced metal Bi and internally doped
Mn contribute to the high catalytic activity of MBB and build up the complete photocatalyst
system.
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4. Conclusions

In conclusion, the MBB microsphere structure was constructed by a simple solvother-
mal method, using in situ reduced metallic Bi to form a tight heterogeneous interface and
reduce the charge separation resistance. Replacing high-valent Bi atoms with low-valent
Mn to create Mn doping can build an intermediate energy level and accelerate electron
transfer. The metal Bi and the charged defect generated by Mn doping together promote the
utilization of the light by BiOCl. The specific surface area of MBB and active sites were also
increased to promote the photocatalytic degradation of norfloxacin. The degradation rate
of MBB was 1.15 times that of Bi/BiOCl, 2.85 times that of MB, and 6 times that of BiOCl.
Furthermore, the rate constant of MBB was 1.47 times, 6.82 times, and 15 times higher than
those of Bi/BiOCl, MB, and BiOCl, respectively. Such efficient photocatalytic activity can be
ascribed to in situ anchored metal Bi and Mn doping with unsaturated ‘d’ orbitals. These
modifications greatly promote the charge transfer within the MBB structure and prolong
the carrier lifetime. Superoxide anions are the main active substances confirmed by the
capture experiments. The combination of two structural engineering techniques can be
used to create efficient photocatalysts to provide a broader range of ideas for future catalyst
modification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13172408/s1, Figure S1: SEM image of MB; Figure S2:
Elemental mappings of Mn (a), Bi (b), O (c), and Cl (d) in MB; Figure S3: Cycling runs for the
photocatalytic degradation of norfloxacin in MBB nanocomposite suspensions. (a); (b) XRD patterns
of MBB before and after photocatalytic degradation reaction for four cycles (b); Table S1: The specific
surface areas, pore diameters, and pore volumes for BiOCl, MB, Bi/BiOCl and MBB, respectively.
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