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Abstract: This study introduces and explores the use of supersaturated solutions of calcium and
phosphate ions to generate well-defined hydroxyapatite coatings for orthopaedic implants. The
deposition of hydroxyapatite is conducted via several solutions of metastable precursors that precipi-
tate insoluble hydroxyapatite minerals at a substrate–solution interface. Solutions of this nature are
intrinsically unstable, but this paper outlines process windows in terms of time, temperature, concen-
tration and pH in which coating deposition is controlled via the stop/go reaction. To understand the
kinetics of the deposition process, comparisons based on ionic strength, particle size, electron imaging,
elemental analyses and mass of the formed coating for various deposition solutions are carried out.
This comprehensive dataset enables the measurement of deposition kinetics and identification of an
optimum solution and its reaction mechanism. This study has established stable and reproducible
process windows, which are precisely controlled, leading to the successful formation of desired
hydroxyapatite films. The data demonstrate that this process is a promising and highly repeatable
method for forming hydroxyapatites with desirable thickness, morphology and chemical composition
at low temperatures and low capital cost compared to the existing techniques.

Keywords: hydroxyapatite; solution deposition; novel coating; deposition kinetics; functional coatings;
structural characterizations

1. Introduction

Orthopaedic implant fixation is hindered by fibrosis encapsulation, which is the body’s
natural response to a foreign object [1–4]. Coating metallic implants with a bio-compatible
layer can mitigate fibrous build-up and promote implant fixation [5,6].

Being the main ceramic component of bones and teeth in the human body, with proper-
ties of rigidity and compressive strength and a brittle nature, hydroxyapatite (HA) coatings
are used to improve the osteointegration of orthopaedic implants. The use of synthetic
HA coating aids orthopaedic recovery since it mimics natural bone, and when deposited
in a porous structure, it encourages new bone-ingrowth directly onto an implant [7]. HA
coating is particularity important for total hip and total knee replacements as it accelerates
implant fixation at these load-bearing joints [8].

HA is a crystalline phase of calcium, phosphate and hydroxyl groups of chemical
formula Ca10(PO4)6(OH)2 and hexagonal crystal structure of space group P63/m. Biological
HA is a product of the nucleation and crystallisation of calcium and phosphate ions in vivo,
but these ions in solution can also synthetically initiate HA formation. Synthetic HA can
enhance bone growth in vivo, and its deposition can be achieved on a wide range of
materials [9–13]. Certain types of synthetic HA as doped-HA or HA nanoparticles are
being explored for their antimicrobial performance to aid in post-orthopaedic operative
infections [14,15].
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However, synthetic methods of coating metallic parts with HA are far from facile.
Solution-based HA processes highlight a requirement to regulate the ionic strength of
solutions [16–19]. Chemical precipitation is advantageous in forming HA nanoparticles and
nano-powders because the phases of HA can be controlled during this process, but it has
not yet been extensively explored as a coating technique [20–25]. Similarly, precipitation of
Ca2+ and PO4

3− ions out of a solution onto a surface to form a HA layer has been achieved
with relevant precursors under specific conditions of pH and temperature on collagen or
bone interfaces [26,27]. In general, formation of a complex crystalline structure with the
desired morphology, adhesion properties and mechanical strength remains a significant
challenge. Despite a plethora of methods that lead to HA formation, not many replicate the
body’s natural process of HA growth, and those that do are limited by poor porosity, phase
and thickness control, along with limited substrate adhesion to a relevant orthopaedic
implant [28,29].

HA crystallisation in vivo is thought to start with 10–25 nm sized amorphous apatite
particles [30]. Studies suggest these initial particles are Posner clusters of Ca9(PO4)6, which
are formed from the nucleation of phosphate-based fluid in contact with calcium semi-
solid interfaces [31–33]. These particles accumulate into clusters and act as a precursor to
amorphous calcium phosphate (ACP), with their shape allowing for pores and interstices
in the HA as it forms [34–36]. Formation of synthetic HA under aqueous conditions should
allow for ACP nucleation followed by HA crystal growth which replicates the body’s
endogenous bone growth process [37]. However, the formation of HA at surfaces is not
well understood; the focus of research has mainly been on characterisation rather than
the mechanism of film formation. This study builds upon the findings of the scientific
community regarding other HA deposition methods, both biologically and synthetically.
With a focus on the required outcomes of porosity, herein, chemical structure analysis is
undertaken at various stages to tie the characterisation outcomes back to the process itself.

This method of depositing hydroxyapatite (HA) on orthopaedic implant-type sub-
strates mimics biological-like self-assembly growth processes. One novelty of this process
lies in the use of chemical precipitation directly onto a substate to be coated without inter-
mediate steps. Using these saturated solutions of calcium and phosphorous gives rise to
coatings with adequate coverage, thickness and morphology control that are relevant to
manufacturing requirements. This method also allows for a non-line of sight HA deposition,
which is also another of its advantages over the existing techniques [38–40]. It is possible to
build on the existing literature and studies to hypothesise how a colloidal method might
work. At a near biological pH of 7 in aqueous supersaturated conditions, studies show
that HA will form via apatitic precursors [41,42]. The precursors formed should follow
Ostwald’s rule of 4, whereby the most thermodynamically unstable phase forms first [43].

Our results detail a proposed nucleation and growth pathway for HA within this
deposition system. With the aim of identifying the ideal process solutions, analysis is
carried out on pH, ionic strength, and dynamic light scattering (DLS) properties. Subse-
quently, HA films are formed with different solutions and are analysed. Weight analysis,
scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) of the
deposited films reveals the solutions which generated HA films with coverage, morphology
and chemical structure best aligned to osetoinduction HA coatings.

2. Materials and Methods

All materials and reagents were used as received. Monobasic potassium phosphate
(KH2PO4) United States Pharmacopeia (USP) reference standard, Honeywell Fluka hydrochlo-
ric (HCl) acid solution 6 M, tris(hydroxymethyl)-aminomethane (TRIS) ACS reagent, 99.8%
sodium chloride (NaCl) BioXtra, and 99.5% calcium nitrate tetrahydrate (Ca(NO3)2·4H2O)
ACS reagent were all purchased from Sigma Aldrich (St. Louis, MO, USA). A calibrated
benchtop pH meter with a temperature-enabled probe (Orion Star A111, Thermo Scien-
tific™, Oxford, UK) was used for pH measurements with an accuracy of 0.001 pH. Titanium
coupons of Ti-6Al-4V alloy were used as substrates. All substrates were submerged in hot
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basic solutions to increase roughness and yield a negatively charged surface for calcium
ion attachment [44–47].

KH2PO4, TRIS and NaCl were mixed in deionized water (DIW) to yield a super-
saturated phosphate concentrate. See Supplemental Materials Section S1 for molarities,
CAS numbers and water solubility of reagents. HCl was added to increase the stability of
the concentrate to prevent precipitation. Ca(NO3)2·4H2O was mixed with DIW to yield
a supersaturated calcium concentrate. For deposition process runs, the supersaturated
concentrates were combined and diluted to various concentrations.

Solutions of varying dilution are identified with %v/v, which is the percentage of
concentrate volume to process solution volume. Solutions were warmed to 40–50 ◦C for
the deposition of hydroxyapatite.

Ionic strength is a well-established modifier in hydroxyapatite formation since it
increases or decreases the ions present in a solution [48,49]. Ionic strength was calculated
as follows.

Equation (1): Ionic Strength (I) formula:

I = 1/2 S((CKH2PO4 ·(ZKH2PO4 )2) + (CTRIS·(ZTRIS)2) + (CNaCl·(ZNaCl)
2) + (CCa(NO3)2 ·(ZCa(NO3)2 )2)) (1)

where C = mol·L−1 and Z = electric charge.
Despite the ratio of components remaining fixed, ionic strength of the supersaturated

solutions is increased via sodium chloride addition (increasing the ratio of concentrate in
solution); see Table 1 for list of the solution data.

Table 1. Table containing list of process solutions used (1–7) in this work, with their corresponding
percent solution to concentrate (%v/v) and ionic strength values (mmol·L−1).

ID Concentrate to Solution Dilution [%v/v] Ionic Strength [mmol·L−1]

Solution 1 3.1 163.08
Solution 2 4.6 244.71
Solution 3 6.2 326.81
Solution 4 7.7 407.71
Solution 5 9.2 489.74
Solution 6 10.8 570.76
Solution 7 12.3 652.36

A custom-designed experimental apparatus was used for deposition. A sample holder,
a thermometer, and a pH probe for in situ temperature and acidity measurements, and
an overhead stirrer to agitate the solution were inserted into the vessel. High agitation rates
of 1000 RPM prevented gross precipitation of mineral from the solution. Substrates were
placed in the reaction vessel for deposition, and then removed and rinsed with DIW; this
process was repeated several times with fresh solutions to grow a coherent layer of HA at
the solution–substrate interface of desired thickness. Between deposition steps, substrates
were removed from solution and allowed to dry for a minimum of 15 min in ambient
conditions (to ensure that active sites are available for subsequent process runs). More
data behind the drying rational are provided in Supplemental Materials, Section S2. To
assess the effect of different solutions on eventual film growth, identical substrates were
subjected to several deposition process runs of each solution and analysed intermittently,
i.e., one substrate underwent 7 deposition runs using solution 1, one substrate underwent
7 deposition runs using solution 2, etc.

Dynamic Light Scattering (DLS) was performed using Malvern Zetasizer Nano ZS
(Worcestershire, UK), with 633 nm HeNe laser. Samples were added to glass cuvette
which had a 10 mm pathlength and allowed to equilibrate for 120 s at 47 ◦C prior to
sampling. The machine was operated in backscatter mode at an angle of 173◦. Scanning
Electron Microscopy (SEM) images were recorded on a Zeiss Ultra Plus system (Jena,
Germany) with accelerating voltages in the range of 5–10 kV, at a working distance between
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3 and 10 mm and with an in-lens detector. Energy-dispersive X-ray spectroscopy (EDX)
spectra were acquired at 15 kV on an Oxford Inca EDX detector (Oxford Instruments, High
Wycombe, UK).

3. Results
3.1. Kinetics of Process Solutions

The solution reactions are complex but may be thought of using the following reaction
schemes which detail the formation of hydroxyapatite (HA). At equilibrium, calcium and
phosphate ions in solution form a tricalcium phosphate (TCP) mineral product as shown in
Equation (2).

Equation (2): Equilibrium chemical reaction for the formation of tricalcium phosphate
(TCP) from calcium and phosphate ions.

3Ca2+
(aq) + 2PO4

3−
(aq) 
 Ca3(PO4)2(s) (2)

At stoichiometric proportions and in the presence of hydroxyl ions, the formation of
TCP is thermodynamically favoured. To form pure hydroxyapatite (HA) under solution,
excess calcium ions as Ca2+ or Ca(OH)2 are required, Equation (3).

Equation (3): Example of one reaction where additional calcium ions with tricalcium
phosphate and hydroxyl ions can form hydroxyapatite (HA).

3Ca3(PO4)2(s) + Ca2+
(aq) + 2OH−

(aq) 
 Ca10(PO4)6(OH)2(s) (3)

In this work, as the concentration of solutions are equally supersaturated with respect
to calcium and phosphate ions, they drive the precipitation of thermodynamically unstable
phases of octacalcium phosphate (OCP), as shown in Equations (4) and (5) [50–52].

Equation (4): Formation of calcium-deficient (CDHA) precursor to octacalcium phos-
phate (OCP) particles in aqueous solution.

9Ca2+
(aq) + 6PO4

3−
(aq) + OH−

(aq) + H+
(aq) 
 Ca9(HPO4)(PO4)5(OH)(s) (4)

Equation (5): Nucleation of octacalcium phosphate (OCP) particle in aqueous solution.

Ca9(HPO4)(PO4)5(OH)(s) + 5H2O(aq) 
 Ca8H2(PO4)6·5H2O(s) + CaO(s) (5)

Whilst the experimental solutions at room temperature contain metastable intermedi-
aries (which form and then re-dissolve continually), their nucleation into stable precipitates
only occurred above a critical temperature, and deposition only occurred between 44 and
50 ◦C. There is an upper temperature limit because of redissolution. Figure 1a, which
collates temperature from more than 100 process runs (including process runs from various
solutions), shows a mean of 46.9 ◦C.

Precipitation of Ca-P phases from solution should be associated with a pH drop as a re-
sult of decreased calcium ion concentration [53]. As Equations (1)–(3) show, the formation
of HA species initiates a drop in calcium ion concentration and OH− concentration. Within
this study, pH dropped by 0.12 ± 0.02 from 0 to 30 min with almost no change after that;
therefore, process runs were ceased at 30 min for all solutions, Figure 1b. The pH reduction
confirmed that ions are removed from solution, and their concentration decreases with the
solution becoming more thermodynamically stable until the rate of deposition becomes
kinetically too slow.

While all constituent parts were accounted for in the ionic strength calculations, 95%
of the ionic strength value for each solution was due to the NaCl component, see Table 1
for values.
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Figure 1. (a) Collated temperature data from all process runs, (b) pH data from all runs graphed
against process time fitted with linear line of best fit and (c) dynamic light scattering (DLS) data of
different solutions, intensity versus particle size.

DLS data from various process solutions shows that the particle size in solution varies
significantly with dilution becoming smaller with increased dilution, Figure 1c. Solution
of 12%v/v has particle size with a mean of 5.2 µm, whereas concentrations between 6 and
9%v/v have a particle size of around 100 nm, and the concentration of 3%v/v have 35% of
particles that are <8 nm.

3.2. Analysis of HA Films Formed with Various Process Solutions

When a substrate is added to the solutions at the correct temperature, heterogeneous
nucleation occurs at the substrate, thereby forming a deposit. A side-by-side photograph
of samples post 7 deposition runs reveals a colour gradient of the HA film across solutions;
see Figure 2. It is clear from this photograph that solutions 5, 6 and 7 have more white
material, and we postulate that some of this is just apatite mineral deposited on the surface
as it is easily removed. The darker colour gradient seen in solution 3 and 4 indicates that
more well adhered crystal growth bonded onto the substrates, as it cannot be removed
with mininal effort.
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Figure 2. Photograph of HA samples on Ti coupons after being deposited with solutions 1–7.

The porosity of an HA film is fundamental to the success of the coating in vivo, and it
should be on the few hundred nm to micron scale [54,55]. SEM imaging was performed
on the samples of the HA film deposited with solutions 1–7 after 2, 4 and 7 process runs
(Supplemental Materials Section S3: Figures S2–S4). A subset of these SEM images is
included in Figure 3 to assess their mineral coverage and porosity. From Figure 3a,b,
it can be concluded that solution 1 generated little or no coverage of mineral, with its
topography being unchanged compared to the blank substrate after 7 process runs; see
Supplemental Materials Section S3: Figure S5.

Solution 4 showed the beginning of a porous network after 2 process runs, with mineral
clusters forming a porous layer amidst needle-like interconnectivity; see Figure 3c. After
7 process runs, solution 4 shows thorough coverage and porosity on the sub-micron scale.
Solution 7 shows a large build-up of mineral after 2 process runs without any apparent
needle-like interconnectivity; see Figure 3e. After 7 process runs, solution 7 has good
film coverage, and although pores can be seen, morphological features are larger, flatter
and show evidence of cracking typical of poor adhesion. When compared with lower
concentration solutions, it can be inferred that this solution results in a coating of high
coverage but low porosity/high density. We postulate that this is related to the larger
particle size of solution 7; particles should be on the nanometres scale to nucleate, and they
should form a film with sub-micron features.

EDX analysis enhanced SEM observations. Lower titanium signals indicated higher
HA coverage, and it can be seen in Figure 4a that the more concentrated solutions 5–7
show <5 at% titanium after just 2 process runs, but at lower concentrations, the HA layers
are thinner. Solution 7 had no titanium detection in all post 7 process runs. Calcium and
phosphorus signals are minimal for solutions 1 and 2. Solutions 3 and 4 show clear increases
in these elements with process runs, while solutions 5–7 show greater than 12 at% Ca and
10 at% P following 2 process runs; see Figure 4b,c. Oxygen is 50–60 at% for all the samples,
which is consistent with the presence of oxide-containing phases; see Figure 4d. Surface-
bound carbon is universally observed across all samples, which is a typical occurrence
with hydroxyapatite (HA) due to its well-known adsorption properties [56]. Notably, the
carbon content exhibits an upward trend with increasing solution concentration, which is
attributed to the greater availability of apatitic minerals for adsorption, as illustrated in
Figure 4e. Figure 4f shows the NaCl content of the films. The NaCl concentration is small
for all samples, regardless of the ionic strength (Na at% < 2.5% and Cl at% < 2%), which is
consistent with the expectations because of the high solubility of NaCl. It is clear from these
data that NaCl only acts to increase the ionic concentration and improve the availability of
other ions for the precipitation process.
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7 have an increasing intake of 1 mg per run, with solution 7 having 4 mg of film attachment 
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Figure 3. Scanning electron micrograph images of hydroxyapatite mineral formed on Ti-6AL-4V alloy.
(a) image of the mineral deposited using solution 1 after 2 process runs, (b) image of the mineral
deposited using solution 1 after 7 process runs, (c) image of the mineral deposited using solution 4
after 2 process runs, (d) image of the mineral deposited using solution 4 after 7 process runs, (e) image
of the mineral deposited using solution 7 after 2 process runs and (f) image of the mineral deposited
using solution 7 after 7 process runs.

It was possible to quantify the amount of film deposited from the weight of the samples
after each process runs; see Figure 5a. Mass uptake for solutions 1 and 2 is minimal. There is
a linear trend of mass uptake per run with increasing concentration. Solutions 4–7 have an
increasing intake of 1 mg per run, with solution 7 having 4 mg of film attachment per run.

The calcium to phosphate at% ratio (Ca/P) and the oxygen at% are widely used to
identify hydroxyapatite phases; see Table 2 with data listed for relevant phases [57,58].
From Figure 5b, it is seen that there is generally a decrease in the Ca/P ratio as the
number of process runs increases (where deposition is significant: solutions 3–7). Solutions
1 or 2 show the highest Ca/P ratios, and the data suggest that calcium attachment is
preferential in the early stages of film development (nucleation); this is consistent with the
substrate having negatively charged hydroxyl groups that attract Ca2+ from the solution.
For solutions 1 and 2, there are not enough available ions to form TCP or OCP mineral
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as per Equations (1) and (2). After 2 process runs, both solutions 3 and 4 show a higher
Ca/P, aligning with Equation (2), since a TCP content would increase the Ca/P. However,
as deposition progresses (4, 7 runs), the OCP phase dominates; see Figure 5b. Figure 5b
shows that solutions 3–7 are very closely aligned near the level of OCP in terms of Ca/P
after 7 runs. Solutions 3–7, however, have an oxygen at% > 40%, implying that ACP is also
present since ACP can have a flexible oxygen at%.
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Figure 4. Energy-dispersive X-ray spectroscopy (EDX) spectra of deposited films recording various
elements pertinent to hydroxyapatite deposition. All data points are the mean of 3 areas within
a sample, grouped on the x-axis by solution ID, 1–7, and number of processes runs complete for each
film (2, 4 or 7). ((a): titanium atomic %, (b): calcium atomic %, (c): phosphorus atomic %, (d): oxygen
atomic %, (e): carbon atomic %, (f): sodium and chlorine atomic %).



Nanomaterials 2023, 13, 2577 9 of 13

Nanomaterials 2023, 13, 2577 9 of 13 
 

 

Equations (1) and (2). After 2 process runs, both solutions 3 and 4 show a higher Ca/P, 
aligning with Equation (2), since a TCP content would increase the Ca/P. However, as 
deposition progresses (4, 7 runs), the OCP phase dominates; see Figure 5b. Figure 5b 
shows that solutions 3–7 are very closely aligned near the level of OCP in terms of Ca/P 
after 7 runs. Solutions 3–7, however, have an oxygen at% > 40%, implying that ACP is also 
present since ACP can have a flexible oxygen at%. 

 
Figure 5. (a) Graph of weight added per run in mg versus solution ID and (b) the calcium to phos-
phate ratio (Ca/P) of films calculated for each solution after 2, 4, and 7 process runs. 

Table 2. Tabular data of hydroxyapatite phases: their acronym, mineral name, stoichiometric for-
mula, calcium to phosphate ratio (Ca/P) and stoichiometric atomic percentage of oxygen [59]. 

Acronym Mineral Formula Ca/P Ratio Atomic % 
Oxygen 

HA Hydroxyapatite Ca10(PO4)6(OH)2 1.67 34.9 
ACP Amorphous calcium phosphate CaxHy(PO4)z·nH2O 1.2–2.2 Flexible 
OCP Octacalcium phosphate Ca8H2(PO4)6·5H2O 1.33 39.7 
TCP Tricalcium phosphate Ca3(PO4)2 1.5 41.3 

CDHA Calcium deficient hydroxyapatite Ca9(HPO4)(PO4)5OH 1.5 43.13 

Together, these data sets reveal that solutions 1 and 2 had minimal apatite film at-
tachment across all process runs, implying that their concentration and ionic strength are 
too low. Solutions 3 and 4 showed slower apatite film growth kinetics, but they showed 
the most adhered layer with a suitable mg of material added per run; also, they had the 
best morphological development after 7 process runs, mirrored through EDX data of the 
relevant elements at 2, 4 and 7 process runs. Compared to other studies, this morphology 
and phase composition are advantageous since the presence of TCP can accelerate coating 
degradation, whereas the mix of ACP and OCP allows for ease of integration and the 
structure encourages bone growth [60,61]. Solutions 5, 6 and 7 had large-scale apatite film 
attachment after only 2 process runs, but morphologically, emergence of some cracks were 
observed after 7 process runs with materials having fewer interconnecting needles and 
pores. Solutions 6 and 7 also exhibit high carbonate contents, corresponding to HA-based 
materials. The chemical composition of HA film from solutions 3–7 was matched at 7 pro-
cess runs, indicating an OCP crystalline phase with ACP material. It is clear from this data 
that by altering the concentration and ionic strength of solutions, it is possible to expediate 
or remediate HA growth. However, growth follows the same nucleation and growth 
mechanism. Further detailed investigation of the crystallinity of HA phases is carried out 
in Part 2 of this work, including XRD analysis after various process runs to identify the 
growth mechanism of OCP, HA and ACP as they emerge from this solution process. 

Figure 5. (a) Graph of weight added per run in mg versus solution ID and (b) the calcium to
phosphate ratio (Ca/P) of films calculated for each solution after 2, 4, and 7 process runs.

Table 2. Tabular data of hydroxyapatite phases: their acronym, mineral name, stoichiometric formula,
calcium to phosphate ratio (Ca/P) and stoichiometric atomic percentage of oxygen [59].

Acronym Mineral Formula Ca/P Ratio Atomic %
Oxygen

HA Hydroxyapatite Ca10(PO4)6(OH)2 1.67 34.9
ACP Amorphous calcium phosphate CaxHy(PO4)z·nH2O 1.2–2.2 Flexible
OCP Octacalcium phosphate Ca8H2(PO4)6·5H2O 1.33 39.7
TCP Tricalcium phosphate Ca3(PO4)2 1.5 41.3

CDHA Calcium deficient hydroxyapatite Ca9(HPO4)(PO4)5OH 1.5 43.13

Together, these data sets reveal that solutions 1 and 2 had minimal apatite film at-
tachment across all process runs, implying that their concentration and ionic strength are
too low. Solutions 3 and 4 showed slower apatite film growth kinetics, but they showed
the most adhered layer with a suitable mg of material added per run; also, they had the
best morphological development after 7 process runs, mirrored through EDX data of the
relevant elements at 2, 4 and 7 process runs. Compared to other studies, this morphology
and phase composition are advantageous since the presence of TCP can accelerate coating
degradation, whereas the mix of ACP and OCP allows for ease of integration and the
structure encourages bone growth [60,61]. Solutions 5, 6 and 7 had large-scale apatite film
attachment after only 2 process runs, but morphologically, emergence of some cracks were
observed after 7 process runs with materials having fewer interconnecting needles and
pores. Solutions 6 and 7 also exhibit high carbonate contents, corresponding to HA-based
materials. The chemical composition of HA film from solutions 3–7 was matched at 7 pro-
cess runs, indicating an OCP crystalline phase with ACP material. It is clear from this data
that by altering the concentration and ionic strength of solutions, it is possible to expedi-
ate or remediate HA growth. However, growth follows the same nucleation and growth
mechanism. Further detailed investigation of the crystallinity of HA phases is carried out
in Part 2 of this work, including XRD analysis after various process runs to identify the
growth mechanism of OCP, HA and ACP as they emerge from this solution process.

4. Conclusions

This study has shown that HA film can be deposited and controlled using a colloidal
solution process. The repeatability of the process at 47 ◦C is confirmed through consistent
dropping of pH in 30 min runs. Bonding of calcium ions to the substrate leads to a drop in
pH, as explained in the proposed chemical pathway. DLS data show various particle sizes
in solutions, with ~100 nm particles being preferred for porous and coherent films (because
of the denser packing). SEM topography showed that various solutions used gave rise to
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a morphologically porous and chemically consistent HA coating. The concentration levels
of solutions influence film thickness, coverage, and coating rate; NaCl was shown to have
no role in HA bonding. Lower concentration solutions formed very thin films, with calcium
and phosphate contents being <5 at% after 7 deposition runs. While some films contained
carbonates at higher concentrations, all films had similar oxygen content. Formation of HA
films at >1 mg per run is a strong indication that the phase of HA formation is consistent in
all solutions. Ca/P ratio data strongly indicated an OCP phase; additionally, the oxygen
atomic percentage indicated the presence of water and ACP. This HA phase aligns with the
proposed nucleation and growth pathway from Equations (2)–(5).

Based on our results, it can be inferred that the optimal process solution is between
solutions 3 and 4, as they clearly followed the proposed chemical nucleation and growth
process. The advantage of this slower crystal growth is that it allows for excellent porosity
and morphology, which can be seen via SEM, and the adhesion of the layer can be also be
conveniently ratified with the photographs.

Overall, our study has shown that colloidal solutions can be used as a novel HA
coating process, wherein crystallisation occurs in a timely manner at low temperatures.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13182577/s1, Table S1: List of Reagents used and their exact CAS
number, the molarity (and molality tolerance) to which they were included in the concentrates, and
their water solubility at 20 ◦C. Figure S1: Dissipation versus relative time of a quartz crystal microbal-
ance which has undergone HA deposition, the data shows the sample gathering HA film growth
through this colloidal solution process (up to 1800 s) and afterwards during drying. Table S2: Weight
recorded for titanium coupons that were subject to HA deposition without allowing them to dry in
between process runs. Figure S2: Scanning Electron Microscope (SEM) images of hydroxyapatite
film on titanium alloy coupons after 2 hydroxyapatite solution deposition runs using Solutions 1–7.
Images are recorded using a Zeiss Ultra Plus system with the accelerating voltage of 5 kV, at a working
distance between 3 to 10 mm and an in-lens detector or secondary electron detector. (a): SEM images
with a scale bar of 2 µm to show nature of the porous film. (b): SEM images with a scale bar of
100 µm to show overall sample coverage. Figure S3: Scanning Electron Microscope (SEM) images of
hydroxyapatite film on titanium alloy coupons after 4 hydroxyapatite solution deposition runs using
Solutions 1–7. Images are recorded using a Zeiss Ultra Plus system with the accelerating voltage
of 5 kV, at a working distance between 3 to 10 mm and an in-lens detector or secondary electron
detector, all images have a 10 µm scale bar. Figure S4: Scanning Electron Microscope (SEM) images of
hydroxyapatite film on titanium alloy coupons after 7 hydroxyapatite solution deposition runs using
Solutions 1–7. Images are recorded using a Zeiss Ultra Plus system with the accelerating voltage
of 5 kV, at a working distance between 3 to 10 mm and an in-lens detector or secondary electron
detector. (a): SEM images with a scale bar of 2 µm to show nature of the porous film. (b): SEM
images with a scale bar of 100 µm to show overall sample coverage. Figure S5: Scanning Electron
Microscope (SEM) images of titanium alloy coupons after basic activation. Image recorded using
a Zeiss Ultra Plus system with the accelerating voltage of 5 kV, at a working distance of 7.8 mm and
an in-lens detector.
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