
Citation: Xiao, Y.; Zhang, H.; Zhao,

Y.; Liu, P.; Kondamareddy, K.K.;

Wang, C. Carrier Modulation via

Tunnel Oxide Passivating at Buried

Perovskite Interface for Stable

Carbon-Based Solar Cells.

Nanomaterials 2023, 13, 2640.

https://doi.org/10.3390/

nano13192640

Academic Editors: Hugo Aguas and

Rodrigo Martins

Received: 4 September 2023

Revised: 19 September 2023

Accepted: 21 September 2023

Published: 26 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Carrier Modulation via Tunnel Oxide Passivating at Buried
Perovskite Interface for Stable Carbon-Based Solar Cells
Yuqing Xiao 1,2,* , Huijie Zhang 2, Yue Zhao 3, Pei Liu 2, Kiran Kumar Kondamareddy 4 and Changlei Wang 3,*

1 School of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
2 Key Laboratory of Artificial Micro & Nano Structures of Ministry of Education, School of Physics and

Technology, Wuhan University, Wuhan 430072, China
3 Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of

Modern Optical Technologies of Education Ministry of China, School of Optoelectronic Science and
Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University,
Suzhou 215006, China

4 Department of Physics, School of Pure Sciences, College of Engineering Science and Technology,
FIJI National University, Lautoka Campus, Suva 744101, Fiji

* Correspondence: xiaoyuqing@whu.edu.cn (Y.X.); cl.wang@suda.edu.cn (C.W.)

Abstract: Carbon-based perovskite solar cells (C-PSCs) have the impressive characteristics of good
stability and potential commercialization. The insulating layers play crucial roles in charge mod-
ulation at the buried perovskite interface in mesoporous C-PSCs. In this work, the effects of three
different tunnel oxide layers on the performance of air-processed C-PSCs are scrutinized to unveil
the passivating quality. Devices with ZrO2-passivated TiO2 electron contacts exhibit higher power
conversion efficiencies (PCEs) than their Al2O3 and SiO2 counterparts. The porous feature and robust
chemical properties of ZrO2 ensure the high quality of the perovskite absorber, thus ensuring the
high repeatability of our devices. An efficiency level of 14.96% puts our device among the state-of-
the-art hole-conductor-free C-PSCs, and our unencapsulated device maintains 88.9% of its initial
performance after 11,520 h (480 days) of ambient storage. These results demonstrate that the function
of tunnel oxides at the perovskite/electron contact interface is important to manipulate the charge
transfer dynamics that critically affect the performance and stability of C-PSCs.

Keywords: perovskite solar cells; insulating layer; carrier modulation; carbon electrodes

1. Introduction

Organic lead halide perovskite solar cells (PSCs) have emerged as a competitor of
silicon photovoltaics regarding their high performance and commercial prospects. During
the last few years, the power conversion efficiency (PCE) of PSCs improved from 3.8% to
a recently certified 26.1% [1,2] as a result of relying on perovskite films with impressive
properties, such as a high absorption coefficient, excellent ambipolar charge transport [3–5],
long carrier diffusion lengths and a tunable bandgap [6–10]. Noble metals and organic
hole-transporting materials (HTMs) are being widely employed for the preparation of state-
of-the-art PSCs. However, their presence leads to an expensive manufacturing process and
poor stability [11–14]. These issues could be overcome by the application of carbon counter
electrodes (CEs) in hole-conductor-free PSCs. However, the removal of hole collection
layers would sacrifice cell efficiency [15–19]. Currently, the PCE of hole-conductor-free C-
PSCs is still lower than 20%, considerably lagging behind regular PSCs with fully functional
layers [20,21].

Electron-collecting contacts play vital roles in determining the performance of com-
mon PSCs [22–27], especially that of carbon-based hole-transporting-layer-free PSCs (C-
PSCs) [28–30]. Electron contacts simultaneously affect the charge transfer dynamics and
influence the growth kinetics of the perovskite absorber [31]. Despite the fast progress and
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superior stability of C-PSCs [32], more in-depth research efforts are still required to improve
the performance of C-PSCs. Since there are no HTMs in C-PSCs, charge manipulation and
film growth modulation are more important than PSCs with fully functional layers [33].
Spike energy strategies that reduce the interface recombination are highly desired in inor-
ganic photovoltaics [34,35]. SiO2 and Al2O3 have been introduced in silicon photovoltaics
as electron tunneling paths forming the tunnel oxide passivated contacts on solar cells [36].
Similarly, insulating layers acting as energy band uplifters at the perovskite/TiO2 electron
transport layer (ETL) interface are usually employed in mesoscopic PSCs [37–39]. Han and
coworkers reported that modifying the ETL surface with an insulating material reduces the
charge recombination and improves the open-circuit voltage (Voc) of the device PSCs [37].
Xu and coworkers found that introducing a thick (about 100 nanometers) Al2O3 insulator
layer can reduce nonradiative recombination in PSCs [40]. Kamat and coworkers reported
that hole accumulation can indirectly promote halide ion segregation in HTM-free PSCs
with TiO2 ETLs, while insulating ZrO2 substrates suppresses phase segregation due to a
more balanced charge transport [41].

In addition, the surface morphology of the underneath scaffold has a strong impact
on the perovskite layer, which is paramount in influencing the final efficiency of PSCs.
Zhu and coworkers investigated the compositional and optoelectronic properties of the
buried perovskite interface [42]; they found that the bottom surfaces of perovskite films
have severe compositional inhomogeneity and sub-microscale imperfections, causing major
energy loss pathways that hinder device performance. They suggest that the underneath
scaffolds play vital roles in the elimination of detrimental defects on the perovskite bottom
surfaces. Therefore, surface topography tailoring should also be significantly considered in
the optimization of C-PSCs. Regarding the charge transfer dynamics and perovskite film
crystallization kinetics, the application criteria of Al2O3 [37], ZrO2 [18,38] and SiO2 [39]
should be unveiled urgently.

In this work, we investigated the influence of tunnel oxide passivating (TOP) layers
on the perovskite film quality and charge transporting properties of mesoscopic C-PSCs.
TOP layers have several advantages in C-PSCs: first, they uplift the band bending at per-
ovskite/ETL interfaces through the passivation of TiO2 surfaces by forming a discontinuous
coating; second, they reduce charge shunting risks in the case of the presence of pinholes in
the perovskite film; and, third, they modify the ETL with a porous topology more favorable
for the solution infiltration of the perovskite precursor, leading to a higher absorber film
quality and better interconnection with ETL networks. We selected commonly employed
dielectric materials as tunnel oxides in PSCs, including Al2O3, SiO2 and ZrO2. In particular,
ZrO2 has a relatively higher dielectric constant than TiO2, which might cause sufficient
passivation on the TiO2 surface. Moreover, ZrO2 nanoparticle-coated scaffolds maintain
high uniformity and porous features, facilitating perovskite crystallization and charge col-
lection. An electrical impedance spectroscopy demonstrated that ZrO2 TOP-based C-PSCs
show the best charge transfer properties with the highest efficiency of 14.96%. The efficient
passivation with the tunnel oxide layer enables the high repeatability of our devices. Our
HTM-free C-PSCs were fabricated under ambient conditions with a humidity of about 50%,
further emphasizing the robust air stability that is compatible with high-yield manufactur-
ing processes. Our C-PSCs present excellent long-term stability; they maintained 88.9% of
their original efficiency after 11,520 h (480 days) of ambient storage without encapsulation.

2. Materials and Methods
2.1. Materials

Lead iodide (PbI2, 99.99%), CH3NH3I (MAI), bis(2,4-pentanedionato)-bis(2-propanola-
to)titanium(IV) (C16H28O6Ti) (75wt% in isopropanol) were purchased from TCI, isopropanol
(IPA, 99.8%), diethanolamine (DMF, 99.8%), lead chloride (PbCl2, 99.99%), 1-butanol (99.8%),
ZrO2 (50 nm, 99.99%), SiO2 (50 nm, 99.5%) and Al2O3 (γ phase, 20 nm, 99.99%)nanoparti-
cles were obtained from Aladdin. The conductive carbon paste was synthesized according
to our previous work [43].



Nanomaterials 2023, 13, 2640 3 of 13

2.2. Preparation of TiO2, ZrO2, Al2O3, SiO2 Paste

ZrO2, Al2O3 andSiO2 pastes were prepared by ball-milling 1.4 g powders of commer-
cial ZrO2, Al2O3, SiO2, 0.7 g ethylcellulose, 5.77 g terpineol and 23.61 g ethanol for 24 h.
The as-prepared ZrO2 and Al2O3 pastes were subsequently diluted with ethanol in ratios
of 1, 2, 3 and 4 times by weight to obtain the optimal thickness of tunnel oxide layers. The
high concentration of original pastes resulted in excessively thick insulating layers on the
surface of the TiO2 electron transporting layer (ETL), thereby impeding charge transport
and reducing the performance of C-PSCs. The TiO2 paste was prepared using a recipe that
was similar to the published work [44].

2.3. Fabrication of C-PSCs

The process for fabricating C-PSCs involved several steps. First, the FTO glass was
patterned by etching with Zn powder and 2 M HCl diluted in ethanol. The surface of the
glass was then cleaned using acetone, deionized water, acetone and ethanol alternately,
and dried in clean air. A solution of 0.15 M titanium diisopropoxidebis(acetylacetone) in
1-butanol was spin-coated on the cleaned FTO glass at 3000 rpm for 30 s, and dried at
125 ◦C for 20 min to form a compact TiO2 layer. The mesoporous TiO2 layer was deposited
over the compact TiO2 layer by spin-coating a homemade TiO2 P25 paste at 3000 rpm for
20 s. The deposited layers were then sintered in air at 500 ◦C for 30 min. After cooling down
to room temperature, the films were treated with a 0.05 M aqueous solution of TiCl4 at
70 ◦C for 30 min, rinsed with deionized water and ethanol, and dried in the air. Insulating
layers were prepared by spin-coating ZrO2, Al2O3 or SiO2 paste over the TiCl4-treated
TiO2 film and annealing it at 500 ◦C for 30 min. The perovskite film was deposited on
the mesoporous TiO2 film using a two-step sequential method under ambient conditions
with high humidity (~50%). In the first step, the PbI2 precursor solution was spin coated
at 4000 rpm for 20 s and then the wet PbI2 film was treated with ethanol and annealed at
100 ◦C for 8 min. In the second step, the film was immersed in an isopropanol solution
of MAI (7 mg mL−1) for 5 min and dried with nitrogen gas. The as-prepared MAPbI3
perovskite film was further heated at 100 ◦C for 10 min. Finally, the carbon paste was
coated over the perovskite film using a doctor-blade method and annealed at 100 ◦C for
40 min. The resulting solar cells had a configuration of FTO/c-TiO2/meso-TiO2/TOP
layer/MAPbI3/carbon.

2.4. Measurements and Characterization

The Bruker instrument (D8 Focus diffractometer) utilizing Cu Kα radiation
(λ = 0.15406 nm) at 40 kV and 40 mA was employed for structural analysis. The sur-
face and cross-sectional morphology were observed by a field emission scanning electron
microscope (SEM, Zeiss SIGMA, Jena, Germany). The absorption spectra of films deposited
on FTO were collected using a UV-vis spectrophotometer (Lambda 650S, PerkinElmer,
Shelton, CT, USA) with a wavelength range of 300–800 nm at room temperature. The J-V
curves of the solar cells were measured using a CHI660C electrochemical workstation
(Shanghai, Chenhua) coupled with a solar simulator (Newport, 91192) under 100 mW cm−2

illumination (AM 1.5 G) with a scan rate of 0.05 V s−1. The area of the portion of C-PSC
exposed to the radiation was confined to 0.1 cm2 using a metal mask. The films were
characterized by ambient air condition, with a temperature of around 25 ◦C and relative
humidity of 50%. The time-resolved photoluminescence (TRPL) was performed using a
time-correlated single photon counting (TCSPC) module, excited with a 532 nm pulsed
laser. The external quantum efficiency (EQE) was measured using an instrument equipped
with a 300 W xenon lamp (Newport 66984), and the monochromatic light ranged from
300 to 800 nm. Electrochemical impedance spectra (EIS) were recorded under one sun
illumination over the range of frequencies spanning from 1 MHz to 1 Hz at open-circuit
voltage bias. During the long-term stability test, we stored the devices under room light
without further protection. As aging progressed, the devices exhibited gradually increased
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performance for hundreds of hours before beginning to decline. The devices were exposed
to room light during storage.

3. Results and Discussion

The C-PSCs possess a straightforward device architecture comprising FTO/TiO2/TOP
layer/perovskite/carbon, as depicted in Figure 1a. Here, FTO refers to fluorine-doped
tin oxide, and the perovskite layer corresponds to CH3NH3PbI3 (MAPbI3). The entire
fabrication process was conducted in ambient air, with the perovskite layer deposited
using a two-step sequential method, and the carbon electrode doctor-blade coated onto
the perovskite film using the homemade carbon paste [43]. Our previous research indi-
cates that high-temperature annealed TiO2 films exhibit numerous surface defects, which
should be responsible for the inferior performance of C-PSCs [44]. We randomly used
TiCl4 post-treatment and an external SiO2 coating to passivate the ETL surfaces, and the
PCEs have been improved for the corresponding C-PSCs due to the elimination of interface
defects [38,44]. However, the criteria for selecting surface passivating layers remain unclear.
Drawing inspiration from the optimization processes of silicon (Si) solar cells, we deliber-
ately selected SiO2, Al2O3 and ZrO2 as the TOP layers, taking into account their surface
charge states, dialectical constants, film topologies and interface electric fields. Efficient
C-PSCs require optimal TOP layers. Thus, we initially investigated the concentrations
of SiO2, ZrO2 and Al2O3 pastes by diluting the original pastes with ethanol. Figure 1b
shows the typical energy level diagram of the C-PSC that employs the ZrO2 TOP layer. The
thin ZrO2 TOP layer exhibits a deep valence band maximum (VBM), with its conduction
band position surpassing that of TiO2 [37]. Photo-generated electrons in the perovskite
absorber layer may transfer from the conduction band (CB) of MAPbI3 to TiO2 through
either the tunneling effect or the voids of the discontinued insulating layer coated on the
thick mesoporous TiO2 scaffold. Consequently, electrons accumulate at the TiO2 interface
due to the existence of this layer of insulating oxide, ultimately elevating the Fermi level
and increasing the Voc of the solar cell. Simultaneously, due to the blocking effect of the
insulating layers, it becomes challenging for electrons in the conduction band of TiO2 to
recombine with holes. Therefore, a thin layer of insulating materials can reduce interfacial
recombination, thereby facilitating carrier transport [40].
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Figure 1. (a) Schematic illustration of the C−PSCs structure; (b) energy−level diagram of a C−PSC
with ZrO2 as a TOP layer.

The variation in photovoltaic parameters of C-PSCs employing different concentrations
of ZrO2 and Al2O3 pastes are shown in Figure 2a,b, respectively. As the concentration of
ZrO2 or Al2O3 increases, the photovoltaic parameters, including Voc, Jsc, FF and PCE, first
exhibit an increase and then a decrease trend. This can be ascribed to the thickness of the
tunnel oxide layers, which is tuned by the concentration of the pastes. For the non-treated
C-PSCs, severe charge recombination occurs at the buried perovskite interface due to the
presence of defects, leading to inferior performance. However, if the concentration of
ZrO2 or Al2O3 is too high, the thickness will be thick enough to suppress the electron
transportation process, ultimately reducing the performance of final devices. The optimal
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weight ratio of ethanol to ZrO2 and Al2O3 pastes is found to be 1:1 and 2:1, respectively.
The SiO2 TOP layer used here is the same as that reported in our previous work [38].
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Figure 2. Dependence of Voc, Jsc, FF and PCE on the concentration of (a) ZrO2 paste and
(b) Al2O3 paste.

Figure 3a,b shows the cross-sectional SEM images of the full device and perovskite
film grown on the TiO2/ZrO2 layer, respectively. The thicknesses of FTO, TiO2/ZrO2 and
MAPbI3 are about 380 nm, 460 nm and 530 nm, respectively. The images reveal that the
perovskite materials infiltrate well into the pores and the carbon electrode tightly adheres
to the perovskite film.
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Figure 3. (a) Cross-sectional SEM image of the PSC device; (b) cross-section SEM image of perovskite
grown on TiO2/ZrO2 layer.

The surface morphology and structure of scaffold layers play a crucial role in the perfor-
mance of mesoscopic PSCs. Factors such as surface roughness, pore size and hydrophilicity
have a significant impact on the infiltration of perovskite materials, crystallization quality
and carrier transportation in the device [37]. Figure 4a–d shows the surface morphology of
various scaffold layers (left column) and the perovskite grown on them (right column). TiO2
film shows a relatively uniform surface, with some nanoparticle agglomeration. In contrast,
the TiO2/ZrO2 film exhibits a homogeneous morphology with well-dispersed top ZrO2
nanoparticles, which facilitates the infiltration and growth of perovskite materials, thereby
promoting the transport of photo-generated carriers. However, the pores in the TiO2/Al2O3
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scaffold are very small, which will hinder the infiltration of the precursor solution and limit
the growth and crystallization of MAPbI3 in the pores. The TiO2/SiO2 film shows serious
agglomeration, resulting in a rough surface with an exposed TiO2 layer that weakens the
effect of the insulation layer as a separator between the carbon electrode and TiO2 layer,
leading to a higher risk of shunting. All perovskite films grown on different scaffold layers
show nanocube-like structures, indicating that the addition of insulating oxide has little
effect on their surface morphology. Therefore, the improvement in PSCs’ performance is
not only caused by the morphology of the perovskite but also by the modulation of the
TOP layer on the carriers, which will be discussed later.
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Figure 4e shows the XRD patterns of TiO2, TiO2/ZrO2, TiO2/Al2O3 and TiO2/SiO2
films. Except for the TiO2/ZrO2 film that shows a ZrO2 tetragonal phase at 2θ~29.2◦ [45],
the XRD patterns for the rest of the films are identical to that of the TiO2 film without new
peaks belonging to SiO2 or Al2O3. This means that the SiO2 or Al2O3 present in the TiO2
film is in the amorphous phase rather than the crystal phase, which could be attributed to
the higher sintering temperatures required to form the phases [46,47]. The XRD patterns of
perovskite films coated on different metal oxide films reveal similar features, indicating
that the introduction of insulating layers does not affect the crystallization of perovskite
inside. The diffraction peak observed at around 12.7◦ corresponds to PbI2, resulting from
the presence of excess lead iodide in the perovskite, which can contribute to the increase in
the Voc of PSCs [48].

In addition, we studied the UV-Vis absorption spectra for ETLs and MAPbI3 per-
ovskite films grown over different insulating layers, as shown in Figure 5a,b, respectively.
The absorption spectra of the scaffolds with various insulating layers exhibit negligible
differences. The absorption of perovskite films is slightly increased after the addition
of the insulating layers, which may be caused by the increased thickness of the scaffold
layers resulting from the introduction of the insulating layers so that more perovskites can
be loaded.
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N2 adsorption–desorption isotherms were recorded for the powders of TiO2, ZrO2,
Al2O3 and SiO2, as shown in Figure S1a–d. The inset shows the corresponding pore-size
distribution curves obtained by the Barrett–Joyner–Halenda (BJH) method. The isotherms
of the samples are the originated classic type IV isotherms of H3 hysteresis loop, indicating
the existence of mesopores (2–50 nm) originating from the aggregated nanoparticles. This
is consistent with the results observed from the SEM. The TiO2 and Al2O3 exhibit relatively
narrower pore size distribution. The pore diameter of TiO2 ranges from 62 nm to 88 nm,
while Al2O3 shows the smallest pore size of ~20 nm. The smaller pores may facilitate
poor penetration of PbI2 into the TiO2 mesoporous scaffold and hinder the growth of
perovskite. However, ZrO2 and SiO2 exhibit a wide range of pore-size distribution. The
ZrO2 is mainly composed of macropores with a size of the order of 100–165 nm, and the
pore size of SiO2 is distributed between 50 and 120 nm. Therefore, the relatively larger pore
size corresponding to the ZrO2 can accommodate more perovskite in the scaffold layer,
which, in turn, facilitates better light harvesting and higher electron collection efficiency.

We prepared a large number of C-PSCs to study the effects of different insulation layers
on photovoltaic performance. Figure 6a–d shows the statistics of photovoltaic parameters,
including Voc, short circuit current density (Jsc), FF and PCE, and the corresponding average
values are summarized in Table 1. Each parameter was calculated from 40 devices. The C-
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PSC without an insulating layer shows an average Voc of 0.959 V, a Jsc of 20.29 mA cm−2 and
an FF value of 65.25%, yielding an average PCE value of 12.71%. The average PCE values
of C-PSCs that employ ZrO2, Al2O3 and SiO2 as insulation layers are increased to 13.84%,
12.89% and 13.42%, respectively. The increase in PCE is mainly due to the enhancement of
Voc and FF, which can be attributed to the inhibition of carrier recombination by insulation
layers, as discussed above. As mentioned previously, after TOP layer coating, the absorption
of the perovskite film slightly increases. Therefore, more light energy can be collected and
the Jsc of the solar cell is increased accordingly. The improvement in average PCE for PSCs
employing ZrO2 as the insulating layer is noticeably higher than that of PSCs using Al2O3
and SiO2. This could be due to the uniform and porous morphology of ZrO2 promoting the
effective permeation of PbI2 into the mesoporous TiO2 scaffold layer, thereby facilitating
charge transport. As shown in Figure S2, our devices exhibit good reproducibility with a
small deviation in PCE.
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the champion C−PSCs with various insulating layers; (f) incident photon-to-electron conversion
efficiency (IPCE) spectrum and corresponding integrated current for the device based on TiO2/ZrO2.
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Table 1. Average photovoltaic parameters of total of 160 C-PSCs prepared with different scaffold
layers. The error values represent the standard deviations.

Scaffold Layer Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

TiO2 0.959 ± 0.015 20.29 ± 0.42 65.25 ± 1.82 12.71 ± 0.45

TiO2/ZrO2 0.985 ± 0.018 20.61 ± 0.47 68.18 ± 1.63 13.84 ± 0.53

TiO2/Al2O3 0.969 ± 0.014 20.34 ± 0.54 65.39 ± 1.83 12.89 ± 0.56

TiO2/SiO2 0.971 ± 0.013 20.63 ± 0.56 65.39 ± 1.83 13.42 ± 0.48

Figure 6e shows the J-V curves of the best-performing devices with different scaffold
layers, with the corresponding photovoltaic parameters listed in the inset. The device
with a ZrO2 insulating layer exhibits excellent performance, with a Voc of 0.995 V, a Jsc
of 21.21 mA cm−2 and an FF of 70.91%, yielding a PCE of 14.96%. Figure 6f shows the
incident photon-to-electron conversion efficiency (IPCE) spectrum of a C-PSC prepared
on TiO2/ZrO2 film. The measured integral Jsc from the IPCE spectrum is also shown in
Figure 6f. The resulting integrated Jsc value is 20.92 mA cm−2, which is only ~1.4% lower
than that of the champion cell (21.21 mA cm−2) in Figure 6e.

The perovskite films deposited on the surface of the insulating layers, as shown in
Figure 7a, have a stable PL intensity lower than that deposited on the TiO2 surface, suggest-
ing that the introduction of the TOP layer increases the transport and extraction efficiency
of the carrier. The strongest PL quenching occurred on the perovskite film deposited on
TiO2/ZrO2, indicating that ZrO2 has better charge modulation capabilities. We further
performed a time-resolved photoluminescence (TRPL) test of the perovskite films. The
TRPL data are fitted by a biexponential decay model and the corresponding lifetime values
are listed in the inset of Figure 7b. The average carrier lifetime of TiO2/perovskite film
is 110.5 ns. After the introduction of the ZrO2 insulating layer for TiO2, the average car-
rier lifetime reduces to 82.5 ns, indicating improved charge transport. However, for the
TiO2/Al2O3/perovskite and TiO2/SiO2/perovskite films, the carrier lifetime increases to
125.6 and 108.3 ns, respectively.
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To further investigate the kinetics of charge transport and recombination in perovskite
solar cells, we measured the electrical impedance spectroscopy (EIS). The Nyquist plots of
our C-PSCs, employing different insulating layers, are shown in Figure 7c. The semicircles
at high- and low-frequency regions can be assigned to the charge transport resistance
(Rct) and recombination resistance (Rrec), respectively [43]. The corresponding impedance
parameters are listed in Table 2. It is found that Rct slightly decreases with the addition of
ZrO2 or SiO2, indicating that the presence of ZrO2 or SiO2 has a slight promoting effect
on charge transport. However, after Al2O3 treatment, Rct increases from 44.5 to 50.4 Ω
due to hindered charge transport by the addition of dense Al2O3. On the other hand,
Rrec obviously increases with the incorporation of insulating layers, indicating effectively
suppressed charge recombination, which confirms our previous expectation that insulating
layers can prevent direct contact with carbon and TiO2 [38]. In general, ZrO2-based C-PSC
has the smallest Rct and the largest Rrec, indicating faster carrier transport and slower
recombination, which well explains the significant improvement in the Voc and FF of
corresponding devices. The buried interface quality has been highly improved due to
carrier modulation with highly suppressed nonradiative recombination.

Table 2. Impendence values of PSCs with different insulating layers.

Samples Rs (Ω) Rct (Ω) Rrec (Ω)

TiO2 52.0 44.6 126.5
TiO2/ZrO2 53.2 40.5 630
TiO2/Al2O3 57.1 50.4 185
TiO2/SiO2 55.3 42.1 280

To further confirm the reliability of our fabricated C-PSCs, the steady-state efficiency
of C-PSC fabricated on TiO2/ZrO2 is measured in ambient air under a constant bias of 0.8 V
near the maximum power point. As shown in Figure 8a, our device presents a stable current
density of 17.55 mA cm−2 under continuous illumination for 400 s, and the corresponding PCE
is 14.04%. In comparison, the original TiO2-based device produces only 12.83% steady-state
PCE under the same test condition, with a current density of 16.04 mA cm−2 (Figure 8b).
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Since the stability of PSC is one of the most critical concerns for the future commercial-
ization of the devices, we have also recorded the stability of C-PSCs prepared on TiO2/ZrO2
to verify the long-term endurance in ambient air conditions with a temperature of 25 ◦C
and humidity of 50 RH%. As shown in Figure 9, the Voc slightly increases during the
stability test, while Jsc and FF first increase and then show a decreasing trend. The PCE
increases from an initial 13.96% to the highest of 15.24%, and finally drops to 12.41% after
being stored for 11,520 h (480 days), demonstrating the outstanding stability of C-PSCs,
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which is among the first class of state-of-the-art devices [18,32]. The better performance
during storage may be ascribed to the better contact attained between the perovskite layer
and the carbon CE [43]. We further investigated the thermal stability of our unencapsulated
devices by placing them on a heating plate at 85 ◦C in an environment with a humidity of
50%. Figure S3 shows the variation in PCE with heating time. The PCE initially improved
slightly; however, it reduced to 81% of the initial value after 120 h of continuous heating.
This may be caused by the decomposition of perovskite material in unencapsulated devices
triggered by the high-humidity environment.
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4. Conclusions

In summary, ZrO2, Al2O3, and SiO2 are successfully used as insulating TOP layers
for air-processed, highly efficient and stable C-PSCs. These common insulating materials
can effectively separate TiO2 ETL and carbon electrodes, thus efficiently inhibiting carrier
recombination caused by shunting. The main reason for the variation in improving the
performance of C-PSCs lies in the morphology of insulating layers, which affects the
infiltration and growth of perovskite material. We achieved the best performance of C-
PSCs with a PCE of 14.96% using TiO2/ZrO2 as a scaffold layer, indicating that ZrO2
is the most suitable insulating layer for the system of C-PSCs. Moreover, our C-PSCs
show outstanding long-term stability, maintaining 88.9% of their initial efficiency after
11,520 h storage in ambient air. This work is promising for high performance carbon-based
HTM-free perovskite solar cells via the optimization of insulation materials. The high
efficiency and stability in our TOP layer passivated C-PSCs offer a step towards the future
commercialization of this low-cost photovoltaic technology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13192640/s1, Figure S1: The N2 adsorption–desorption
isotherms and corresponding pore size distribution curves (inset) of (a) TiO2, (b) ZrO2, (c) Al2O3
and (d) SiO2; Figure S2: Histograms of solar cell efficiencies were collected from 40 cells with
ZrO2 TOP; Figure S3: Environmental thermal stress (85 ◦C in a heating panel) with high humidity
(40–60%) conditions.
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