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Abstract: The interaction between metal particles and the oxide support, the so-called metal–support
interaction, plays a critical role in the performance of heterogenous catalysts. Probing the dynamic
evolution of these interactions under reactive gas atmospheres is crucial to comprehending the
structure–performance relationship and eventually designing new catalysts with enhanced properties.
Cobalt supported on TiO2 (Co/TiO2) is an industrially relevant catalyst applied in Fischer−Tropsch
synthesis. Although it is widely acknowledged that Co/TiO2 is restructured during the reaction
process, little is known about the impact of the specific gas phase environment at the material’s
surface. The combination of soft and hard X-ray photoemission spectroscopies are used to investigate
in situ Co particles supported on pure and NaBH4-modified TiO2 under H2, O2, and CO2:H2 gas
atmospheres. The combination of soft and hard X-ray photoemission methods, which allows for
simultaneous probing of the chemical composition of surface and subsurface layers, is one of the
study’s unique features. It is shown that under H2, cobalt particles are encapsulated below a
stoichiometric TiO2 layer. This arrangement is preserved under CO2 hydrogenation conditions (i.e.,
CO2:H2), but changes rapidly upon exposure to O2. The pretreatment of the TiO2 support with
NaBH4 affects the surface mobility and prevents TiO2 spillover onto Co particles.

Keywords: SMSI; dynamic surface phenomena; NAP-XPS; NAP-HAXPES; NEXAFS; cobalt nanoparticles;
in situ spectroscopy; operando spectroscopy; CO2 hydrogenation; tender X-rays

1. Introduction

Oxide-supported metal catalysts play a significant role in a wide range of industrial
chemical processes, while they are crucial to the production of sustainable and clean energy
from renewable resources [1,2]. The interaction between the metal and the support is critical
for the catalytic performance since it controls important characteristics of the catalyst, such
as the dispersion, electronic structure, and stability of the active phase [3]. Although the
strength of the metal–support interaction is influenced by many different factors, reducible
oxides are generally acknowledged to promote stronger interactions with the metal than
the non-reducible ones [3–5].
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Pt supported on TiO2 is the archetype of the so-called strong metal–support inter-
action (SMSI) systems, although other Pt-group metals on TiO2 have also been widely
investigated [3–5]. It is now well established that metal–support interactions are dynamic
and their strength may significantly vary depending on the gas environment, ranging
from simple charge transfer to more extensive mass transport and surface restructuring [6].
Therefore, a fundamental understanding of SMSI phenomena is of paramount interest for
optimizing catalytic performance and designing innovative catalytic systems.

Although the SMSI effect was initially described almost 50 years ago [7], our under-
standing of it is far from comprehensive, and it remains one of the most researched areas
in heterogeneous catalysis [3–5,8]. The recent breakthrough developments of advanced
material characterization techniques, such as environmental high-resolution transmis-
sion electron microscopy (HRTEM), allowed us to visualize the dynamic interplay at the
metal–oxide interface during operation, which was not feasible in ex situ and postmortem
studies [9–11]. HRTEM studies can observe in real time the encapsulation of metal clusters
by a thin layer of reduced titanium oxide under reducing conditions, and the formation of
a thicker titania overlayer upon subsequent oxidative treatment [9–11].

Although less studied than Pt-group metals, transition metals, such as Ni and Co
supported on TiO2, are known to undergo restructuring processes under reaction condi-
tions [10]. In particular, encapsulation of Co nanoparticles under a thin reduced titania layer
has been observed after H2 treatment of Co/TiO2 catalysts [12–14]. Deeper understanding
of these interactions is essential in order to improve the performance of such catalysts
in industrial applications. For example, Co/TiO2 is one of the most industrially applied
Fischer−Tropsch synthesis (FTS) catalysts [2,15]. FTS is used to synthesize diesel from
biomass feedstocks, among other products. As for Pt/TiO2 catalysts, microscopy techniques
are primarily used in order to visualize changes in the Co-TiO2 interface in response to
the gas phase environment [12,13,16]. However, SMSI phenomena over Co/TiO2 catalysts
have been mostly noticed by ex situ experiments in which the sample was transferred to the
microscope after reduction/oxidation gas treatments. In addition, due to the low contrast
difference between Ti and Co atoms, in situ HRTEM studies are more challenging than
those over Pt/TiO2.

Instead, X-ray photoelectron spectroscopy (XPS), due to its chemical specificity and sur-
face sensitivity, is a powerful tool to study chemical and structural transitions of Co/TiO2
upon interaction with gas atmospheres. In addition, photoemission experiments are quan-
titative and give an average information over the entire sampling geometric area (around
100 µm [17]), providing a quite representative image of the overall sample structure. The
recent development of XPS spectrometers capable of operating at pressures of a few tens of
millibars [18–20], referred to as near-ambient pressure XPS (NAP-XPS), provides new op-
portunities to study SMSI process in reaction environments. However, only a few NAP-XPS
studies exist on SMSI effects in TiO2-supported catalysts [21–23] and to the best of our
knowledge, none concerning the Co/TiO2 system.

Herein, we present a synchrotron-based near-ambient pressure X-ray photoelectron
and absorption study of cobalt catalysts supported on pure and NaBH4-modified TiO2 [24],
in H2, CO2:H2, and O2 gas atmospheres. This work is unique in the field of SMSI in-
vestigations in that soft and hard X-rays are coupled to extend the analysis depth of the
photoemission process by an order of magnitude (from about 2.5 to 25 nm). The results
show a dynamic response of the catalysts to the gas phase environment and reveal critical
differences between pure and NaBH4-modified Co/TiO2 catalysts.

2. Materials and Methods
2.1. Catalysts Preparation

Initially, commercial TiO2-P25 (Evonik) was partially reduced using NaBH4 as the
reducing agent, leading to the incorporation of Na and B promoters. More specifically,
known amounts of NaBH4 were dissolved in ethanol in a rotavapor flask and then TiO2-
P25 powder was added to the solution. The resulting mixture was stirred for 1 h (25 ◦C,
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500 mbar) and subsequently, the ethanol was removed using a rotavapor (80 ◦C, 150 mbar
for 30 min and then 75 mbar for 30 min). Next, the sample was dried overnight at 120 ◦C
in a static oven and then treated in a tubular oven under argon at 320–370 ◦C for 15 min.
Afterwards, the resulting blue product was recovered under Ar and then washed three
times with distilled water, followed by washing with absolute ethanol. Finally, the product
was dried for 15 h at 150 ◦C under argon. Textural, chemical, and crystallite properties of
the TiO2 and m-TiO2 supports are given in Table S1.

Subsequently, modified and unmodified TiO2 were used to prepare 10 wt% Co-based
catalysts by conventional incipient wetness impregnation. To do so, the TiO2 supports
were placed in a Schlenk flask and degassed for 2 h under vacuum at 150 ◦C (oil bath
temperature). After cooling down at room temperature, an aqueous metal precursor
solution (Co(NO3)2·6H2O) was added under vacuum and continuous stirring. The resulting
mixture was sonicated for 30 min, followed by 30 min of stirring. The sonication/stirring
sequence was repeated 4 times. The mixture was dried for 24 h at 80 ◦C followed by 12 h
at 120 ◦C in a static furnace. Finally, the powder was calcined for 4 h at 460 ◦C under
Ar. Hereafter, the unmodified and modified catalysts will be referred to as Co/TiO2 and
Co/m-TiO2, respectively. The bulk atomic concentration (at%) of the various catalysts’
components, as calculated by inductively coupled plasma optical emission spectroscopy
(ICP-OES) measurements, was 9.6 at% Co for Co/TiO2 and 8.0 at% Co, 1.4 at% Na, and
0.2 at% B for Co/m-TiO2. Because of the low contrast difference between Ti and Co, electron
microscopy could not be used to assess the size and distribution of Co particles. Instead,
the cobalt crystallite size was determined from XRD measurements using the Scherrer
equation. The quantification of the metallic Co crystallite size of the reduced catalysts was
not possible due to the overlap of various crystallographic phases. In the case of calcined
catalysts, the crystallite size of Co3O4 was determined to be around 37 nm and 44 nm for
Co/TiO2 and Co/m-TiO2, respectively.

2.2. Spectroscopic Measurements

Near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and near-ambient
pressure hard X-ray photoelectron spectroscopy (NAP-HAXPES) combined with near edge
X-ray absorption fine structure spectroscopy (NEXAFS), were applied to probe the surface
state of the pre-reduced Co/TiO2 and Co/m-TiO2 catalysts. Experiments were performed
at the new CAT branch of the dual-colour Energy Materials In-Situ Laboratory (EMIL)
beamline (CAT@EMIL) at the synchrotron radiation facility BESSY II of the Helmholtz
Zentrum, Berlin [17,25]. A specificity of the CAT@EMIL beamline is the possibility to use
soft and hard X-ray radiation (in our case, 4.9 keV, thus in the energy border between tender
and hard X-rays) provided by two undulators, UE48 and CPMU17,monochromatized by
plane-grating monochromator (PGM) and a double crystal monochromator (DCM), respec-
tively, and focused to the sample position by means of a set of optical mirrors in a single
experiment. The variability of the incident photon energy permits non-destructive depth
profiling from the extreme surface to the subsurface. The experimental station hosts SPECS
PHOIBOS 150 NAP analyzer with a 2D-CMOS detector.

The two catalysts were initially reduced ex situ at 350 ◦C in 1 bar 40% H2/Ar flow
for 4 h. The reduced powder was pressed into pellets and mounted on a sapphire sample
holder between a stainless-steel back-plate and a lid with 5 mm hole. To guarantee the
repeatability of the treatment conditions, the two catalysts were put together, in close
proximity, on the sample holder (Figure S1). The sample stage was heated from the rear
by an IR laser. Gases were introduced into the analysis chamber via calibrated mass flow
controllers (Bronkhorst). The gas phase composition was monitored by a differentially
pumped quadrupole mass spectrometer (QMS, Pfeiffer PrismaPro) connected to the sample
chamber through a leak valve. The NAP-XPS spectra were measured with a PGM (Bestec
GmbH, Berlin, Germany) and a 60 um exit slit. The NAP-HAXPES was measured with a
DCM (Bestec GmbH, Berlin, Germany) using Si (111) crystal pair.
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The two catalysts were first annealed in front of the spectrometer nozzle for 30 min at
350 ◦C under 5 mbar H2 before being cooled to 200 ◦C to record the spectra in H2. Then, the
gas atmosphere was changed to a CO2:H2 (1:2) mixture with an overall pressure of 2.5 mbar
and the temperature was raised to 250 ◦C where a new set of spectroscopic measurements
was recorded. Finally, the CO2:H2 mixture was replaced by 1 mbar O2 and the temperature
further rose to 350 ◦C in order to obtain the characteristic spectra of the oxidized catalysts.
The NAP-XPS, NAP-HAXPES, and NEXAFS spectroscopic measurements were carried out
consecutively on each sample while maintaining stable gas and temperature conditions.

Quantification of the elements was performed after normalization of the XPS spectra
intensities by considering the photon flux and the atomic subshell photoionization cross
sections. The photoionization cross sections and the inelastic mean free paths (IMFPs) of
photoelectrons were obtained by the SESSA (Simulation of Electron Spectra for Surface
Analysis) software (version 2.2) [26]. The incident photon flux was measured based on the
sample drain current of a cleaned Au foil. The binding energies (BE) of the photoemission
peaks presented here are referred to the Fermi edge cut-off position, measured using the
same photon energy with the core-level spectrum measured just before. Unless otherwise
stated, the accuracy of BE calibration was estimated to be ±0.1 eV. The XPS spectra were
analyzed using CasaXPS software (Casa Software Ltd., version 2.3.25). After linear or
Shirley background subtraction, the B 1s, Na 1s, and O 1s spectra were fitted by symmetric
Gaussian–Lorentzian line shapes, while constrains on the width and the relative BE position
of the fitting components were applied.

The excitation photon energy of the NAP-XPS core-level spectra was selected in
such a way that the emitted photoelectrons have comparable kinetic energies (KE). Two
sets of NAP-XPS spectra with two different KE (about 180 and 450 eV) were measured,
corresponding to two analysis depths (a.d.) of about 2.5 and 5 nm, respectively (the
information depth is considered to be 3 times the IMFP) [27]. For all NAP-HAXPES
experiments discussed in this work, the photon energy was fixed to 4900 eV (information
depth about 25 nm).

The Co L3,2- and Ti L3,2-edge NEXAFS spectra were measured in the total electron yield
(TEY) mode, using a Faraday cup installed in the first aperture of the analyzer electrostatic
lenses. In general, the analysis depth of NEXAFS measurements in the TEY mode ranged
between 5 and 10 nm [28].

3. Results and Discussion
3.1. Chemical State Measured in H2 and CO2:H2 Gas Atmospheres

Figure 1 shows the Co and Ti 2p core level and valence band spectra of the two
catalysts measured at 200 ◦C in 5 mbar H2 and at 250 ◦C in a 2.5 mbar CO2:H2 mixture.
The peak shape and the binding energy of the Co 2p3/2 peak at 778 ± 0.1 eV (Figure 1a)
is characteristic of metallic Co [29,30]. The two catalysts have almost identical Co 2p3/2
spectra, suggesting that the modification of TiO2 support by NaBH4 does not notably affect
the cobalt chemical state. In addition, Co 2p3/2 seems unaffected after switching the gas
atmosphere to the CO2:H2 mixture, as validated by the NEXAFS data (vide infra). The
Ti 2p spectra (Figure 1b) are composed of two peaks at 459.1 eV and 464.8 eV, which are
ascribed to Ti 2p3/2 and Ti 2p1/2 in TiO2, respectively. The Ti 2p peaks of both samples are
identical in H2 and CO2:H2 atmospheres and correspond to the Ti4+ ions of stoichiometric
TiO2 [22]. It is interesting that there are no evident peak features at the low BE side of the
Ti 2p that could be ascribed to Ti3+ formation [22]. This shows that TiO2 is not reduced
under the present hydrogen treatment, a result which is consistent with our NEXAFS Ti
L-edge spectra (vide infra).
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Figure 1. (a) Co 2p3/2, (b) Ti 2p, and (c) valence band (VB) NAP-XPS spectra of Co/m-TiO2 (black
lines) and Co/TiO2 (red lines) catalysts measured under 5 mbar H2 at 200 ◦C (dark-colored lines)
and 2.5 mbar CO2:H2 at 350 ◦C (light-colored lines). Spectra are normalized to the same height to
facilitate peak shape comparison. The excitation photon energies for each spectrum (in blue) are
selected so as to give photoelectrons with kinetic energies around 180 eV. The estimated analysis
depth of the presented spectra is about 2.5 nm (calculated as 3 times the inelastic mean free path of
the photoelectrons).

The valence band (VB) is dominated by the Ti 3d and O 2p states between 10 eV and
3 eV [31] and the characteristic Co 3d sharp cut-off at the Fermi level [32]. The relative
height of the two distinct features at 5.2 and 7.2 eV is sensitive to the type of TiO2 polymorph
(a-TiO2 (anatase) or r-TiO2 (rutile)) [31]. The VB spectra of the Co/TiO2 and Co/m-TiO2
catalysts look alike, confirming the core-level spectra, which indicated that the two catalysts
have identical Co and Ti oxidation states. In addition to that, the stability of the two features
corresponding to Ti 3d and O 2p states indicates that there is no phase transition of TiO2
under the reaction conditions employed.

The presence of B 1s and Na 1s photoemission peaks (Figure 2) indicates that Na and
B remain on Co/m-TiO2 sample surface after the NaBH4 treatment. Previous reports have
shown that the BE of the B 1s is sensitive to the boron local chemical environment [33–36].
In particular, the B 1s peak of anionic B2− (i.e., TiB2 or CoB) and cationic B3+ (i.e., B2O3)
appears around 187.5 eV and 193 eV, respectively, while B occupying substitutional or
interstitial TiO2 sites is found between 190 and 192 eV [33–36]. Under H2, the BE of B 1s
peak was measured at 192.3 ± 0.1 eV (Figure 2a), which suggests that B most probably
forms an oxide, rather than being integrated in the TiO2 structure by substitution of TiO2
sites. Moreover, the BE at 192.3 eV is significantly lower than that reported for the common
B2O3 oxide, indicating that boron is partially reduced forming a substoichiometric oxide
(e.g., boron suboxide, B6O). The low width (1.35 eV) and the symmetry of the peak shape
under H2 is a sign that this is the unique boron oxidation state. Under CO2:H2, the B 1s
peak becomes broader and shows an asymmetry at the high BE side (Figure 2b). Curve
fitting of the B 1s suggests the presence of an additional B 1s peak at 193.3 eV, which is
compatible with oxidation of B-suboxide to B2O3. This indicates the affinity of B towards
the CO2 present in the reaction mixture, which is considered a mild oxidant. One should
note here that the QMS results showed negligible H2O production under the low-pressure
conditions employed suggesting that CO2 is the only oxidant present in the gas phase.
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Figure 2. B 1s core level spectra of Co/m-TiO2 catalyst measured under (a) 5 mbar H2 at 200 ◦C and
(b) 2.5 mbar CO2:H2 at 350 ◦C. Na 1s spectra of Co/m-TiO2 catalyst under (c) 5 mbar H2 at 200 ◦C
and (d) 2.5 mbar CO2:H2 at 350 ◦C. Spectra are normalized to the same height to facilitate peak shape
comparison. The Na 1s spectra were recorded at 3 different excitation photon energies corresponding
to 3 different analysis depths (a.d.) (indicated in blue).

The Na 1s spectra in H2 (Figure 2c) show a single symmetric peak at 1072.5 eV, which is
characteristic of Na2O and/or ionic Na species bound to the surrounding support through
–O–Na linkages [37,38]. For the sake of convenience, the two species mentioned above are
abbreviated as NaOx. The formation of sodium carbonate or hydroxide species is unlikely,
since in that case, the Na 1s would appear at a considerably lower BE [39]. When the
catalyst is exposed to CO2:H2 (Figure 2d), an evident shoulder appears at the low BE side
of the Na 1s peak. The Na 1s curve fitting shows the presence of an additional Na 1s
component shifted by 1 eV towards a lower BE (1071.5 eV). This peak has been previously
assigned to sodium titanate species [40,41]. The depth-dependent Na 1s spectra included
in Figure 2d clearly show surface enrichment of the 1071.5 eV peak as compared to the one
at 1072.5 eV. This signifies that sodium titanates are formed on top of NaOx species.

The O 1s and C 1s spectra are presented in Figure 3. The peak at 530.3 ± 0.1 eV, due
to lattice TiO2 species [42], dominates the O 1s spectra of the two catalysts (Figure 3a).
No discernible differences can be observed in the O 1s peaks of the two catalysts, thereby
hindering the ability to differentiate between the contributions of B and Na oxides in the
overall peak. Nevertheless, curve fitting of the O 1s peak allows us to distinguish a small
O 1s component at 531.6 ± 0.2 eV, typically connected to surface C=O and/or surface
adsorbed −OH groups [42]. Since the contribution of C=O is minor in the C 1s peak (vide
infra), the component at 531.6 eV should be mainly attributed to −OH species. This is
confirmed by depth-dependent O 1s data (Figure S2), which demonstrate a decrease in
the 531.6 eV component at deeper analysis depths. In the case of the Co/TiO2 sample, the
fraction of the OH-peak increases and shifts to higher BEs in CO2:H2 suggesting a higher
abundance of oxygenated species in this case.
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H2 at 200 ◦C and 2.5 mbar CO2:H2 at 350 ◦C. The O 1s spectra are normalized to the same height
while those of C 1s are not.

The C 1s peak at 284.6 ± 0.1 eV (Figure 3b) is due to C-C and C-H carbon bonds
of adventitious hydrocarbons, as could be anticipated for samples that have previously
been exposed to air. Notably, the amount of carbon species is more important for Co/TiO2
than Co/m-TiO2 suggesting that the NaBH4 treatment influences the reactivity of TiO2
towards carbon. The C 1s spectra in H2 and the CO2:H2 mixture appear very similar, apart
from a decrease in the peak intensity under reaction conditions, which is translated to less
adsorbed carbon. A small feature at the high-BE side of the C 1s peak in CO2:H2 can be
attributed to the formation of C-O and/or hydroxy species. However, the absence of a peak
at around 290 eV can safely exclude the formation of carbonates [43].

The Co and Ti L-edge X-ray absorption spectra (Figure 4) provide fine details about the
electronic and geometric structure of Co and Ti. The Co L-edge (Figure 4a) is composed of
two peaks (i.e., Co L3- and L2-edges) due to the spin–orbit coupling of the Co 2p states. The
sharp rising edge of Co L3 with the intense maxima at 778.7 eV, as well as the absence of
fine structure features at the high photon energy side of the peak, are typical characteristics
of metallic Co states [22,30]. Notably, the Co L-edge of the two catalysts is similar and
appears to be unaffected by the gas phase conditions, confirming the NAP-XPS results.

The Ti L-edge spectra are included in Figure 4b. The edge splits into two peaks due
to the spin–orbit coupling of the Ti 2p states, similar to the Co L-edge. Note that the
peak intensity ratio between the two peaks around 460 eV (indicated by the arrows in the
figure) is sensitive to the TiO2 crystal symmetry. In particular, the lower photon energy
spectral feature is considerably greater in height for a-TiO2 compared to r-TiO2 [22,44].
The Ti L-edge absorption profiles in Figure 4b, including the peak features around 460 eV,
correspond to previously reported spectra of a-TiO2 [22,44]. Notably, all the Ti L-edges
are comparable in terms of spectral line shape and peak excitation energies, suggesting
that the valence state and phase of Ti are not affected by the gas atmosphere, which is
consistent with the NAP-XPS results (Figure 1). Please note that, while a-TiO2 is obviously
the dominant surface state based on VB photoemission and Ti L-edge absorption spectra,
the existence of minor quantities of r-TiO2 cannot be ruled out since their spectroscopic
features are obscured by the strong signal of the dominant a-TiO2 phase.
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and 2.5 mbar CO2:H2 at 350 ◦C (light-colored lines).

In summary, the analysis of the spectroscopic results reveals that Co stays metallic
and TiO2 is completely oxidized under the employed H2 and CO2:H2 conditions. The
comparability of spectroscopic data from Co/TiO2 and Co/m-TiO2 samples indicates that
modification of TiO2 by Na and B does not influence the surface chemical state or the
electronic structure of Co/TiO2 catalyst. Although the CO2:H2 mixture induces further
boron oxidization and promotes sodium titanate formation compared to their state in H2,
it has no effect on Co or TiO2. These findings are more consistent with a static surface
configuration than the well-documented dynamic evolution of SMSI systems. This can be
justified by the chemical potential of the gas phase, which is highly reducing in both H2
and CO2:H2 atmospheres. Therefore, below, we investigate the surface dynamics under
oxidative conditions by changing the gas environment to O2.

3.2. Surface Transformation upon Exposure to O2

The surface transformation of the reduced samples in an O2 atmosphere is examined
next. Figure 5 shows the NAP-XPS and NEXAFS spectra of Co/m-TiO2 and Co/TiO2
recorded in 1 mbar O2 at 350 ◦C. The Co 2p photoemission peaks (Figure 5) become broader
and shift to higher BEs in O2 compared to the previously recorded spectra in CO2:H2. This,
together with the presence of the low intensity satellite feature around 790 eV, suggests
complete oxidation to Co3O4 [22,29,30]. This is supported by the NEXAFS Co L-edge in
Figure 5 (top, right), which is typical of a bulk Co3O4 spinel structure [22,29,30]. The Ti 2p
and Ti L-edge spectra look identical to those recorded in CO2:H2, which indicates that the
a-TiO2 phase is preserved in O2. The analysis of the B 1s and Na 1s peaks reveals that the
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proportion of the components at 193.3 eV and 1071.5 eV is enhanced in O2 compared to
CO2:H2. (see Figure 2). This supports the hypothesis that the presence of oxidants in the
gas environment, including mild oxidants like CO2 (Figure 2), promotes the synthesis of
Na-titanate and B2O3.
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Figure 5. Co 2p3/2, Ti 2p, B 1s, Na 1s, valence band (VB) NAP-XPS, and Co and Ti L3,2-edge spectra
of Co/m-TiO2 (blue lines) and Co/TiO2 (magenta lines) catalysts measured in 1 mbar O2 at 350 ◦C.
The excitation photon energies for each NAP-XPS spectrum (shown in blue) are selected so as to
produce photoelectrons with kinetic energies around 180 eV. The estimated information depth is
about 2.5 nm (calculated as 3 times the inelastic mean free path of the photoelectrons). The presented
spectra are normalized to the same height.

The spectra of the valence band region confirm the interpretation of the core level
peaks. More specifically, the distinct feature appearing at around 2 eV is due to Co 3d
states [45], which upon cobalt oxidation are shifted 2 eV below the Fermi edge. On the
contrary the features at 10 eV–3 eV region, corresponding primarily to Ti 3d-O 2p states,
are identical to those found in H2 and H2:CO2 (Figure 1) confirming the NEXAFS findings.
The O 1s spectra of the two samples become significantly broader in O2 compared to the
previous reduced state (the FWHM of the O 1s peak increases from around 1.3 to 1.8 eV) and
shifts by about 0.2 eV to lower BEs. These changes can be understood by the appearance
of a new O 1s component due to Co3O4; however, the absence of clear spectral features in
the O 1s peak makes O 1s curve fitting ambiguous, and therefore will not be attempted in
this case.
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3.3. Effect of the Gas Atmosphere on the Surface Composition

Due to its high surface sensitivity, photoemission spectroscopy is a powerful tool to
quantify the atomic concentration at the very surface. Figure 6 compares the surface atomic
composition of the Co/m-TiO2 and Co/TiO2 catalysts in reducing, reaction, and oxidizing
gas environments calculated from the NAP-XPS data. The bulk concentration based on the
ICP-OES analysis is included for comparison. In the NAP-XPS calculations, it is assumed
that the sample is homogeneous over the analyzed depth. Noteworthily, for layered
samples (as will be discussed later) this approximation overestimates the concentration
from the top layer relative to that of the layers below. Therefore, one should be cautious
when comparing the absolute values of the NAP-XPS and ICP-OES results. Nevertheless,
the quantitative NAP-XPS analysis can be used for comparisons to reveal modifications of
the surface composition as a function of the gas environment.
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Figure 6. Comparison of atomic concentrations determined from NAP-XPS spectra (analysis depth
2.5 nm) acquired in H2, CO2:H2, and O2 atmospheres at the temperatures indicated at the bottom of
the graph for (a) Co/TiO2 and (b) Co/ TiO2 catalysts. For comparison, the bulk atomic concentrations
from ICP-OES measurements are presented. Above the black bars, the atomic concentration of cobalt
is indicated.

In H2 and CO2:H2 atmospheres, the Co surface concentration of Co/TiO2 (Figure 6a)
is about half of that found by ICP-OES, indicating that the surface is enriched with TiO2.
However, when the gas environment is changed to O2, the Co concentration increases
significantly, greatly beyond that of ICP-OES. This reflects a dynamic response of the
surface composition to the gas atmosphere, with TiO2 segregating over Co in reducing
conditions, and Co re-emerging back on the surface in an oxidizing atmosphere.

Significant differences between bulk and surface compositions were also found for
Co/m-TiO2 (Figure 6b). In particular, in H2 and CO2:H2, the surface contains about 3 times
less Co and almost 25 times more Na and B compared to the bulk concentration of these
elements. This is a sound evidence that Na and B are the dominant elements on the sample
surface. The surface concentration of Co, Ti, and B increase in O2 compared to the previous
state in CO2:H2, at the expense of Na. As shown in Figure 5, this is accompanied by
enhancement of the component related to Na-titanate species. Thus, when exposed to
oxidizing conditions, a portion of the TiO2 support interacts with NaOx at the surface to
create Na-titanates. This is not necessarily a solid-state reaction, but might simply be due
to sodium migration within the TiO2 lattice. As was showed earlier, Na+ ions may be
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introduced into the TiO2 host without damaging the anatase structure or altering the TiO2
oxidation state [46].

3.4. Depth Distribution of the Catalyst Components

By taking advantage of the tunability of synchrotron radiation, one can vary the
kinetic energy of photoelectrons and in turn the information depth of the measurements.
This approach, usually referred to as depth-profiling, allows the quantification of the
composition at various depths, which is particularly useful in cases of layered surface
morphologies as is obviously the case here. The combination of NAP-XPS and NAP-
HAXPES enables the excitation photon energy to be varied between 370 and 4900 eV,
thereby extending the sample depth from 2.5 to 25 nm. More details about the relationship
between photon energy and analysis depth can be found in the Supplementary Material.

Figure 7a shows the evolution of Co and Ti %at for Co/TiO2, as a function of the
analysis depth measured at 200 ◦C in 5 mbar H2. The Ti atomic fraction is clearly enhanced
at the surface (up to 5 nm) compared to the subsurface measurement (25 nm), which can
be associated with the encapsulation of Co under a thin TiO2 overlayer (shown in the
graphical illustration in Figure 8). This finding is consistent with the low surface fraction of
Co compared to the bulk concentration shown in Figure 6a. This is a classical manifestation
of SMSIs between Co and TiO2, where the support, in a partially reduced state, migrates
onto Co particles during the reduction process [12]. Despite the fact that the SMSIs are
frequently accompanied by partially reduced TiO2 species (e.g., Ti3+) [12,22], in our case,
the Ti 2p and Ti L-edge spectra did not show any evidence of reduced TiO2 for all analysis
depths. This implies that this configuration existed prior to the NAP-XPS studies, most
likely happening during the ex situ reduction pretreatment at 1 bar (see Section 2.1), which
is much more aggressive than the reducing conditions in the NAP-XPS chamber. Under the
CO2:H2 reaction conditions, the depth profile measurements are qualitatively similar to
those presented above under H2, suggesting no significant surface reconstruction during
reaction, in agreement with the findings of Figure 6a.
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In the O2 atmosphere (Figure 7b), the trend between the two elements is reversed
compared to H2, with the Co fraction strongly increased near the surface (2.5 nm) but
stabilized when deeper layers are probed. This is a clear indication that the thin TiO2
overlayer on Co, which manifested in H2 and CO2:H2 atmospheres, retreats under oxidative
conditions and cobalt is exposed on the surface (Figure 8). The reversibility of the TiO2
spillover effect, where Co is oxidized and segregates above TiO2, has been suggested in
early SMSI literature [9]. However, to our knowledge this is one of the rare cases where the
reversibility of the SMSI effect is evidenced in situ with a method other than microscopy.

Figure 7c shows the depth distribution of Co, Ti, Na, and B for the Co/m-TiO2
sample under H2. The enhanced concentration of Na and B at the more surface-sensitive
measurements (i.e., 2.5 and 5 nm) implies that these elements are not equally distributed
within the catalyst volume, but preferentially situated on its surface, above Ti and Co
(Figure 8). This interpretation agrees with the high surface concentration found for Na and
B as compared to the bulk concentration, as shown in Figure 6b.

When the Co/m-TiO2 sample is annealed in O2 (Figure 7d), the Co and Ti evolution
with analysis depth remains qualitatively similar to that observed in H2, meaning that B
and Na are still dominating the extreme surface. However, a comparison of the Co %at
between H2 and O2 atmospheres reveals that there is more Co under O2 for all analysis
depths, comparable to the finding for Co/TiO2. The rise in Co percentage under O2 should
be linked to the decrease in Na %at. This may be caused by either a drop in the thickness of
the Na layer over the Co3O4 particles or its full disappearance. The latter scenario is rather
improbable due to the fact that depth profiling measurements (Figure 7d) clearly show that
it is Na %at which is enhanced at the outer surface compared to the subsurface, and not Co.
One can assume that boron oxides are also preferentially located at the extreme surface,
since B %at has a similar evolution with Na as a function of the analysis depth (Figure 7d).
Therefore, as shown in Figure 8, we propose that the Na and B surface overlayer formed
under reducing conditions is maintained under O2 but decreases in thickness. One should
mention here that depth profile measurements cannot distinguish if the overlayer above
cobalt is dense or has a certain porosity that would allow access to gases during reaction.
The two morphologies (i.e., porous or dense Na and B surface overlayer) are expected to
lead to radical differences in the catalytic performance. In particular, a dense surface layer
will block the access of the reactants to cobalt, thus decrease the number of active sites and
consequently the catalytic activity. On the contrary, in case of a porous overlayer, not only
cobalt sites remain accessible to the reactants, but the additives can also act as promoters,
enhancing the catalytic turnover.

The aforementioned analysis suggests that the modification of the TiO2 support by
Na and B does not affect the chemical state of the cobalt catalyst, but plays a significant
role in the arrangement between Co and TiO2 by preventing TiO2 migration over cobalt.
At this stage, it is not clear if the lower surface mobility on m-TiO2 is due to the lower
reducibility of this support. Under the reduction conditions employed in the NAP-XPS
experiment, TiO2 was quite stable for both samples. In addition, H2-TPR measurements



Nanomaterials 2023, 13, 2672 13 of 16

were not conclusive about the effect of Na and B in the reducibility of the TiO2. In any
case, XPS is the method of choice here since H2-TPR lacks the sensitivity to detect surface
reduction of TiO2, which is critical to identifying SMSIs.

Overall, the goal of this study was to examine the evolution of Co/TiO2 catalysts in
reactive gas atmospheres while also contributing to our understanding of metal–support
interaction mechanisms. The observed surface restructuring accompanied by changes
in cobalt phase, seen while switching between reducing and oxidative gas atmospheres,
are likely to alter the catalyst’s reactivity. According to our findings, a thin TiO2 layer is
anticipated to develop on top of the cobalt during H2 activation of calcined catalysts. This
layer will affect the cobalt particle growth and the accessibility of the reactants over cobalt
sites. However, whether the geometric and electronic structure of pre-reduced Co/TiO2
catalysts is maintained throughout reaction conditions, or the catalyst undergoes additional
alterations, remains open. The measurements in the CO2-FTS-relevant conditions (i.e.,
CO2:H2 mixture at 250 ◦C) presented in this paper, suggest that the cobalt chemical state
and atomic concentration remain rather stable. In contrast, we found a noticeable change in
the chemical state of B and Na in CO2-FTS conditions for Co supported on NaBH4-modified
TiO2. In particular, the presence of CO2 in the gas phase oxidizes boron and triggers an
interaction at the Na-TiO2 interface. This trend implies that under realistic high-pressure
FTS reaction conditions, B2O3 and Na-titanates may be the dominating surface species over
the Co/m-TiO2 catalyst. Furthermore, our findings imply that when cobalt is oxidized,
for example by H2O production under FTS conditions, unmodified catalysts experience
considerable surface restructuring, which is not the case with Co/m-TiO2. Although these
findings provide important insights into dynamic surface modifications, it is impossible to
predict how the catalytic performance will be modified based solely on these data. Before
attempting to connect surface states with catalytic performance, further information about
the active phase features, such as nanoparticle size, shape, and exposed facets, is necessary.

4. Conclusions

In summary, in this work, we combined NAP-XPS, NAP-HAXPES, and NEXAFS
spectroscopies to explore the in situ interaction of two Co/TiO2 catalysts with H2, CO2:H2,
and O2 atmospheres. We found that cobalt is reduced to the metallic state under the
employed H2 and CO2:H2 conditions, while it is readily transformed to spinel Co3O4 upon
switching to O2. On the contrary, the titania chemical state and structure are not affected
by the gas treatment with the a-TiO2 phase dominating the surface. The treatment of
TiO2 with NaBH4 left significant amounts of Na and B residuals on the surface even after
Co deposition in the aqueous metal precursor solution. The restructuring of the Co-TiO2
interface under operating conditions was directly observed by quantitative analysis of
photoemission results combined with depth-profiling measurements. It was shown that,
under reduction conditions, cobalt particles are encapsulated below a stoichiometric TiO2
layer. This arrangement seems to be preserved under the employed CO2 hydrogenation
conditions, but rapidly changes upon exposure to O2. The pretreatment of the TiO2 support
with NaBH4 affects the surface mobility of TiO2 and, to a large extent, prevents spillover
onto cobalt. However, in this case, cobalt is covered under a Na and B layer, probably
formed upon reduction. To a large extent, this layer is preserved upon O2 exposure, despite
a notable decrease in its thickness. Our findings highlight the dynamic behavior of the
Co-TiO2 interface in reducing and oxidizing gas atmospheres, which is of particular interest
to understand the performance of these materials in catalytic applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13192672/s1, Table S1: Textural, chemical, and crystallite
properties of TiO2 supports; Figure S1: Photograph of the sample holder and details about the rela-
tionship between photon energy and analysis depth. Figure S2: The O 1s spectra of Co/TiO2 catalysts
measured in 2.5 mbar CO2:H2 at 350 ◦C with 3 different excitation photon energies corresponding
to 3 different analysis depths (a.d) (indicated in blue). Spectra are normalized to the same height to
facilitate peak shape comparison. Refs. [47,48] are cited in Supplementary Materials.
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