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Abstract: For thermoelectric thin film, the substrate plays an important role during the growing
process and produces effects on its thermoelectric properties. Some special kinds of substrates provide
an optimal combination of influences on both the structure and thermoelectric properties. In this
work, Bi-Sb-Te films are deposited on Si substrates with different initial orientations by magnetron
sputtering in two ways: with and without a pre-coating process. The preferred orientations of
the Bi-Sb-Te films are greatly affected by the substrates, in which the thin film tends to deposit on
Si substrate with (100) initial orientation and high (015)-texture, while the (00l)-textured Bi-Sb-Te
film easily deposits on Si substrate with (110) initial orientation. The experimental and theoretical
calculation results indicate that Bi-Sb-Te film with (00l)-texture presents good electrical conductivity
and a higher power factor than that of film with (015)-texture.

Keywords: Bi-Sb-Te; monocrystalline silicon substrate; preferred orientation

1. Introduction

With the consumption of fossil fuel, thermoelectric thin film, which is an emission-
free power generation technology, has attracted more and more attention, because of its
unique transformation of heat to electric power directly and the flexible characteristic
could be applicable to the Internet of things (IoT) and integrated circuit (IC) design [1,2].
The key parameters of thermoelectric thin film are the Seebeck coefficient and electrical
conductivity, which determines the power factor (PF = S2σ), an evaluation of the output
power efficiency of the thermoelectric thin film [3]. With the progressive miniaturization of
energy and energy storage devices, this has spurred the development of thin films, which
are increasingly replacing bulk materials in applications, as the thin film can better meet
the miniaturization and flexibility requirements of its devices [2,4–6].

Recently, some new material systems, including Ag2Se, Cu2Se, Mg3Sb2 et al. showed
outstanding properties and thus performance [7–10]. For example, Ding et al. reported an n-
type Ag2Se film on flexible nylon membrane with an ultrahigh power factor
~9.9 µWm−1 K−2 at 300 K with excellent flexibility [11]. The flexible p-type Cu2Se thin
TE film with a high (0l0) preferred orientation achieved a maximum ZT of 0.42 at 275 ◦C
by the co-sputtering method [8]. However, conventional Sb2Te3-based materials are still
widely studied and extensively used in the commercial field [12–15]. In virtue of the char-
acteristics of anisotropy for Sb2Te3 material, the modulation of the preferred orientation
growth of the thin films play an important role in optimizing thermoelectric properties.
For example, the Sb2Te3 film with high (00l) orientations usually presents better carrier
mobility than that of films with (015) preferred orientations, resulting in good electrical
transport properties [16,17].
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It is widely reported that disparate synthesis approaches and substrates lead to vari-
ation in growth preferred orientation of Sb2Te3-based thin film [18–20]. Notably, plenty
of substrates could have an influence on the growth of thin film by virtue of differential
deposition energy, and lead to the lattice mismatch between the films and substrates [21,22].
Kwon et al. reported on a (001) GaAs wafer used as the substrate for growing Bi0.4Sb1.6Te3
via a metal organic chemical vapor desposition (MOCVD) approach, and a high power
factor (PF) of 15 µWm−1 K−2 was achieved [20]. Bi-Sb-Te thin film grown on disarrange-
ment substrates, such as glass or polymerized substrate show a significant difference in
performance. For instance, a unique preferred orientation of Bi0.4Sb1.6Te3 deposited on the
K9 glass ultimately realized a high power factor over 20.0 µWm−1 K−2 at room tempera-
ture, while Liang et al. reported Bi0.5Sb1.5Te3 film grown on flexible polyimide substrates
displayed a relative low value of 2 µWm−1 K−2 at 475 K [23,24]. Besides, the thermoelectric
performance could also be affected by the same substrates with different initial orientations.
Guo et al. grew Ni-based superalloy on Ni-based substrates with different initial orien-
tations of (100), (011) and (111) and presented variations in the thermoelectric properties.
Additionally, the (001) substrate tends to show stronger epitaxial growth characteristics
than others due to the specific lattice arrangement, in which six equivalent crystallographic
orientations are arrayed on the substrate surface [25]. For conventional Sb2Te3 materials,
few works have focused on the variations of microstructure and thermoelectric performance
by using the same substrate with different initial orientations. Therefore, in this work,
we fabricate Bi0.4Sb1.6Te3 films on monocrystalline silicon substrates with three kinds of
surface orientations, (100), (110) and (111), respectively. The microstructure and preferred
orientation of as-fabricated Bi-Sb-Te films are greatly affected by the initial orientation
of Si substrates and the preferred orientation, and the electrical transport properties are
investigated systematically. The higher power factor of Bi-Sb-Te films with (00l)-texture is
further confirmed than that of film with (015) preferred orientation due to its good electrical
conductivity [26].

2. Materials and Methods

The Bi0.4Sb1.6Te3 target was prepared by combining the mechanical alloying (MA) and
spark plasma sintering (SPS) methods; the detail of the synthesis process can be found
in our previous work [23]; the composition of the target was detected as Bi0.41Sb1.60Te2.99
by Energy Dispersive X-ray Detector (EDX). Precursor powder was prepared by the ball
milling process (QM-3SP2), using high-purity Bi (Aladdin, 99.99%), Sb (Aladdin, 99.99%),
and Te (Aladdin, 99.99%) for 10 hours under the protection of an Argon atmosphere. After
that, the precursor powder was filled in the graphite die with diameter Φ = 60 mm, then
consolidated by SPS (LABOX-325) at 400 ◦C with a soaking time of 5 min. Three kinds of
monocrystalline silicon substrates with orientations of (100), (110), and (111) were used. The
monocrystalline silicon substrates with the dimension of 10 × 20 × 1 mm3, were cleaned
using a semiconductor silicon wafer remote chemical analysis (RCA) cleaning method [27].
The depositing process of Bi0.4Sb1.6Te3 thin film on monocrystalline silicon substrates was
employed by the magnetron sputtering technique. The ultimate pressure of the chamber
was set as 1.0 × 10−3 Pa, and the fixed distance between the target and substrate was
80 mm. Heretofore, we also studied the working vacuum degree, rate of Argon flow, and
sputtering power. We controlled the working vacuum at 2 Pa and 40 sccm of the Ar gas
flow. The polished Bi0.4Sb1.6Te3 target was set with a DC (direct current) sputtering source,
adjusted 15W of power. The thickness of the thin film was controlled by regulating the
deposited time. The thickness of Bi-Sb-Te thin film was formed at about 600 nm with the
base temperature of 200 ◦C, and the thin films deposited showed minor component bias
from the target. As a routine manipulation of sputtering, the Bi-Sb-Te films were prepared
via two different processing approaches, one of which an addition of a pre-coating process
is applied. During the pre-coating process, a seed layer (Bi-Sb-Te) of the target film was
deposited for 10 min with a thickness of about 100–150 nm. To simplify, two batches of
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films named as Si(hkl)_S and Si(hkl) were abbreviated for films with the pre-coating process
and direct deposition films, separately.

An energy dispersive X-ray spectroscope (EDS) equipped with the scanning electron
microscope were used to detected the chemical composition and surface morphology of
films (Zeiss, Oberkoche, Germany). The crystal structure and preferred orientations of films
were obtained via X-ray diffraction (XRD) equipment (Rigaku, Tokyo, Japan). The Seebeck
coefficient and electrical conductivity apparatus (Nezsch, Selb, Germany ) were applied
to measure the electrical transport properties of the thin films. The carrier concentration
and mobility could be measured by utilizing a Van der Pauw Hall measuring instrument
(Nanometrics, Milpitas, CA, USA).

Density functional theory (DFT) calculations were performed to investigate the electri-
cal transport properties of Sb2Te3 compound along two selected crystallographic planes
of (001) and (015). The band structures of Sb2Te3 [001] and Sb2Te3 [015] are achieved by
using the Vienna Ab Initio Simulation Package (VASP) [28–30]. The calculations were done
by utilizing the plane-wave pseudopotential formalism. The ion-electron interaction is
modeled with the help of the projector-augmented wave (PAW) method for Sb and Te
atoms [31]. Cut-off energy for the wave function is set to 450 eV. The generalized gradient
approximations (GGA) with the Perdew-Burke-Ernzerhof potential (PBE) are implemented
for the exchange-correlation function [32]. The structures are relaxed until forces on each
atom become less than 0.10−5 eV/Å, and the criterion for energy convergence is set as
1.0 × 10−6 eV. The structure of Sb2Te3 [015] is modeled by 3 × 1 × 1 supercells containing
9 Sb and 6 Se sites. A Monkhorst-Pack k-point mesh of 13 × 13 × 1 is used, including
Γ-points for the Brillouin zone sampling of the cell in the initial self-consistent field (SCF)
step. The electronic energy band is plotted based on a 100 k-points grid.

3. Results

Figure 1a shows the XRD patterns of Si(100)_S, Si(110)_S, and Si(111)_S thin film,
which engages a pre-coating process to grow a seed layer of Bi-Sb-Te film. All the patterns
of Si(100)_S, Si(110)_S, and Si(111)_S films could be well-indexed as the precise phase
of Bi0.4Sb1.6Te3 (PDF#72-1836), and no second phase is observed. Due to the different
orientations of Si substrates, the preferred orientation of the films is different, which can
be clearly seen in the expanded peaks of (003) and (015), as shown in Figure 1b,c. For the
Si(100)_S sample, the film exhibits a strong (015) peak, while the other two films show
equal intensities between (00l) and (015) peaks. This can be attributed to the dissimilar
interface energy variation of Bi-Sb-Te films on different substrates, resulting in the diverse
lattice mismatches.
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To determine the preferential orientations of as-deposited films, the Lotgering factor
(F), also known as the orientation factor, of (00l) and (015) planes is calculated and displayed
in Table 1. For example, the computation of the F(00l) orientation factor can be estimated
by the equations:

F =
P − P0

1 − P0
(1)

P =
I(00l)

∑ I(hkl)
(2)

P0 =
I0(00l)

∑ I0(hkl)
(3)

where I0(00l) and ∑ I0(hkl) represent the intensity of standard data (PDF#72-1836) of total
(00l) diffraction intensity and the whole intensity of diffraction, respectively. While I(00l)
and ∑ I(hkl) are the corresponding diffraction intensities of the samples. The range of F is
between 0 and 1. The closer to 1, the stronger the orientation is. The F(015) of Si(100)_S
film is 0.74, while values of F(015) for Si(110)_S and Si(111)_S are 0.26 and 0.32, respectively,
confirming the significant effect of the initial orientations of substrates during growing of
the Bi-Sb-Te films.

Table 1. Room temperature thermoelectric properties and orientation factors of Si(100)_S, Si(110)_S,
and Si(111)_S thin films.

Sample Conductivity
(S/cm)

Seebeck
(µV/K)

Carrier Concentration
(1019/cm3)

Carrier Mobility
(cm2/V∗s)

PF
(µw/cm∗K2) F (00l) F (015)

Si(100)_S 45 136 3.14 8.96 0.83 0.12 0.74
Si(110)_S 132 111 0.87 94.86 1.62 0.59 0.26
Si(111)_S 116 115 2.27 31.94 1.53 0.48 0.32

The electrical transport properties of Si(100)_S, Si(110)_S, and Si(111)_S films are
measured at room temperature and shown in Table 1. Due to the different preferred
orientation growth of Bi-Sb-Te films, the variation in the thermoelectric properties can
be easily distinguished. As shown in Table 1, Si(100)_S films with high (015) orientation
present higher S and lower σ than that of Si(110)_S and Si(111)_S films, which shows the
(00l) preferred orientations. This result is commonly reported in this system, as the Bi-Sb-Te
films with (00l) preferred orientation can provide a faster track for transferring carriers,
that is higher carrier mobility can be achieved as shown in Table 1. Although the Si(100)_S
possesses the better S, the unassailable high σ of Si(110)_S and Si(111)_S films emerge as the
major factor that contributes to higher power factors. However, the PF ~1.62 µwcm−1 K−2

achieved by Si(110)_S film is relatively low in comparison with other reported Bi-Sb-Te
films due to its undeveloped electrical transport properties [20,24,33,34].

As mentioned above, the preferred orientations and thermoelectric properties of as-
fabricated Bi-Sb-Te films are greatly affected by the initial orientation of Si substrates.
However, a seed layer of Bi-Sb-Te film is deposited by the pre-coating progress, which
seems to impair the influence of Si substrates during the growth of Bi-Sb-Te films. To
further investigate the role of monocrystalline silicon initial orientations, we skip the pro-
coating process and deposit the Bi-Sb-Te film at the beginning of sputtering. Figure 2
shows the XRD patterns of the Bi-Sb-Te films, which were directly deposited on the Si
(100), (110), and (111) substrates, respectively. As shown in Figure 2, the XRD patterns
also correspond with the standard card of Bi-Sb-Te without any second phases. For the
preferred orientation of samples, the calculated F(015) is 0.54 for Si(100) film, maintaining
the high (015) preferred orientation growth on the Si substrate with (100) orientation. The
(00l) orientation is enhanced, when the Bi-Sb-Te is deposited on Si substrate with (110)
orientation, as the F(00l) of Si(110) film is 0.67. The enhanced F(015) of Si(111) film is also
observed in the XRD pattern. These results can be further confirmed in the extended view
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of (003) and (015) peaks (Figure 2b,c). Hence, the preferred orientations of Bi-Sb-Te films are
greatly influenced by both the initial orientations and surface conditions of Si substrates.
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Figure 3 shows the FESEM images of surface and cross-section microstructures for
Si(100), Si(110), and Si(111) films. For Si(100) film, the grains are stacked in an irregular way,
while most of the grains become organized and tiled parallel to the substrate for Si(110)
film. These are consistent with our previous results that the morphology of randomly
arranged grains is often indicative of (015) growth orientation [35] and the booming of
grains parallel to the substrate normally represents an increase in the F(00l) as described
in XRD patterns (Figure 2a). Obeying this morphologically rule, the growth of gains of
Si(111) presents fewer grains parallel to the substate agreeing with lower (00l) preferred
orientation. The cross-section images for three films with similar thickness ~630 nm are
shown in Figure 3b,d,f. The grains are closely stacked with variable arrangement, further
confirming the different growing condition for Bi-Sb-Te film on these Si substrates.

Based on the above experimental phenomena, we draw the conclusions that the
Si(100) substrate tends to grow highly (015)-textured Bi-Sb-Te film while Si(110) substrate
is inclined to have (00l)-textured ones independent of the pre-coating process. On the other
hand, it is widely reported that more deposited energy is needed to grow (00l)-textured
Bi-Sb-Te film than that of (015)-textured film [17,22]. The Si(100) substrate seems to possess
a larger interface lattice mismatch with Bi-Sb-Te structures, leading to the bigger interfacial
energy than that of the Si(110) substrate for growing the Bi-Sb-Te film [21]. Hence, to
conquer the high interfacial energy, the Si(100) substrate is likely to grow (015)-textured
film but not (00l)-textured under the same deposition conditions.

In Figure 4, we compare the thermoelectric performance as well as the orientation
factors of typical Si(100) and Si(110) films, which present (015)-textured and (00l)-textured
characteristics, respectively. As shown in Figure 4a, Si(100) film with a dominant (015)-
texture possesses a larger S (~160 µV/K) and lower σ (~70 S/cm) than the Si(100) film,
which is in good agreement with the results mentioned above and reported in the pre-
vious literature [36]. The remarkable σ (~200 S/cm) contributes to a better power factor
(~4 µW/cmK2). The origin of high σ can be easily understood as the carrier mobility of
Si(110) film is one order higher than that of the Si(100) sample (Figure 4b), which consists of
a highly (00l) preferred orientation, as shown in Figure 4c. Furthermore, density functional
theory (DFT) calculations were performed to roughly compare the electrical transport
behavior of a simple Sb2Te3 structure, which shares the same crystal structure with the
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as-fabricated Bi-Sb-Te films, along two selected crystallographic planes of (001) and (015),
and the crystal structures can be observed in Figure 4e. The calculated detail can be found
in the experimental section and the calculated band structures are presented in Figure 4d,f.
By comparing with the band structure of Sb2Te3 (001), it is observed that the bands near the
Fermi level of the Sb2Te3(015) structure show a flat characteristic, indicating the significant
variation in its density of state. This usually leads to an increase in effect mass (m*) and large
Seebeck coefficient [37–39]. The calculations indirectly support the fact that Sb2Te3-based
films with preferred orientation of (015) should have a higher Seebeck coefficient than
that of (00l)-textured film; it is also consistent with the results in Figure 4a. Furthermore,
we estimated the m* of Si(100) and Si(110) films based on the single parabolic band (SPB)
model [40]; the m* values of Si(100) and Si(110) films are 1.31 m0 and 0.60 m0, respectively,
shown in Figure 4b. The result is also consistent with the experimental S in Figure 4a.
Based on the SPB model, the thermoelectric materials with high µmd*3/2 are considered to
have high electrical transport properties, where md* is estimated by the product of m* and
degree of degeneracy [41]. Hence, the better power factor achieved by Si(110) film is mainly
attributed to its high carrier mobility while maintaining decent S. This work explores a way
to deposit Bi-Sb-Te films with variable preferred orientation on different initial orientational
Si substrates by magnetron sputtering. To reveal the correlation between the preferred
orientation and electrical transport properties of Sb2Te3 based films, more exploration is
needed in the future.
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Figure 4. (a) Seebeck coefficient S, electrical conductivity, σ and power factor PF; (b) Carrier concen-
tration n, mobility µ and m* (c) F(015), F(00l) of Si(100), and Si(110) thin films. (d,f) Electrical band
structures of (e) two crystal models of Sb2Te3 based on the electrical transport along planes (001)
and (015).

4. Conclusions

To summarize this work, we grew the Bi-Sb-Te films on Si substrates with different
initial orientations by using a magnetron sputtering method from the lab-made Bi0.4Sb1.6Te3
target. As a result, with or without a pre-coating process, the highly (015)-textured Bi-Sb-Te
film was easier to grow on Si substrate with (100) initial orientation, while the (00l)-textured
Bi-Sb-Te films tended to grow on Si substrate with (110) initial orientation. Based on the
experimental and theoretical calculation results, the film with (00l)-texture presented better
electrical conductivity than that of (015)-textured films due to its high carrier mobility,
resulting in a better power factor. This work provides a way to investigate the effects of the
substrate initial orientation on the growth conditions and thermoelectric performance of
Sb2Te3 based thin film.
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