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Abstract: Chloride-ion batteries (CIBs) are one of the promising candidates for energy storage due to
their low cost, high theoretical energy density and high safety. However, the limited types of cathode
materials in CIBs have hindered their development. In this work, a NiTi-LDH@CNT composite is
prepared using a reverse microemulsion method and applied in CIBs for the first time. The specific
surface area and the pore volume of the obtained NiTi-LDH@CNT composites can reach 266 m2 g−1

and 0.42 cm3 g−1, respectively. Electrochemical tests indicate that the composite electrode delivers a
reversible specific capacity of 69 mAh g−1 after 150 cycles at a current density of 100 mA g−1 in 0.5 M
PP14Cl/PC electrolyte. Ni2+/Ni3+ and Ti3+/Ti4+ valence changes during electrochemical cycling
are demonstrated by X-ray photoelectron spectroscopy (XPS), while reversible migration of Cl− is
revealed by ex-situ EDS and ex-situ XRD. The stable layered structure and abundant valence changes
of the NiTi-LDH@CNT composite make it an exceptional candidate as a cathode material for CIBs.

Keywords: layered double hydroxide; carbon nanotubes; chloride ion batteries

1. Introduction

Anode : M′ + xCl− 
 M′Clx + xe− (1)

Cathode : MClx + xe− 
 M + xCl− (2)

Due to the increasing demand for various energy resources, how to efficiently store
and convert energy is the key to achieving sustainable development [1,2]. However, the
large-scale development of lithium-ion batteries, which are still the mainstream batteries
for commercialization, is hindered by high cost and the uneven distribution of lithium
metal resources [3,4]. To overcome these limitations, chloride-ion batteries (CIBs) have
been proposed as a potential alternative to lithium-ion batteries. The working principle of
the rechargeable CIBs can be described as follows:

The basic working principle of the CIBs involves the use of the chloride ion as a
shuttle between cathode and anode in a chloride-containing electrolyte. During discharge,
chloride ions migrate from the cathode and are transported to the anode through the
electrolyte. Upon charging, the reverse process occurs. CIBs are characterized by low
cost due to abundant chloride resources and a high theoretical volumetric energy density
of 2500 Wh L−1 [5,6]. Moreover, CIBs offer significant advantages in terms of safety
due to their unique dendritic-free nature. These features make them highly suitable for
large-scale energy storage applications [7]. However, the practical application of CIBs
has been hindered by the lack of suitable high-performance cathode materials. Thus, the
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development of cathode materials that can efficiently store and release Cl− is essential for
the development of high-performance CIBs [8–11].

Many materials including metal chlorides, metal oxychlorides, chloride ion-doped
conductive polymers, layered double hydroxides (LDHs) and organic electrode material
have been developed as cathode materials for CIBs. In the first study, commercial CoCl2,
VCl3, and BiCl3 [5] materials were used to demonstrate proof of principle for CIBs. The
capacity loss of the batteries is very serious due to the easy dissolution of metal chlorides in
the electrolyte. Later, metal oxychlorides such as BiOCl [12], FeOCl [13,14], VOCl [6], and
Sb4O5Cl2 [15] with stable structure were explored as cathode materials for CIBs. Compared
with metal chloride, metal oxychlorides exhibited excellent cycle stability and long cycle
life. Subsequently, conductive polymer cathode materials (PPyCl0.33 [16], PANICl0.25 [17])
attracted significant attention. Due to the low volume change during discharging and charg-
ing, the capacity retention of the conductive polymer cathodes was excellent. However, the
theoretical capacity of conductive polymer cathodes was generally low.

Layered double hydroxide (LDH) is an inorganic two-dimensional material that con-
tains anions and has a structural formula of [MII

1−xMIII
x (OH)2]z+(An−)z/n·yH2O (where

MII and MIII represent divalent and trivalent metals, respectively. An− represents in-
terlaminar anions that compensate for positively charged octahedral metal layers) [18].
The LDH has a 2D diffusion channel that allows for stable insertion/deinsertion of Cl−

during electrochemical cycling without significant volume change. Several LDHs with
interlayer spacing between 0.761 nm and 0.783 nm (much larger than the ionic radius of
Cl− 0.181 nm), including CoFe-Cl LDH [19], NiMn-Cl LDH [20], Ni2V0.9Al0.1-Cl LDH [21],
NiFe-Cl LDH [22], CoNi-Cl LDH [23] and NiTi-Cl LDH [24], have been investigated as
cathode materials for CIBs (Table 1). In 2019, CoFe-Cl LDH [19] was prepared by a co-
precipitation method and reported for the first time as a CIB cathode material. At a current
density of 100 mA g−1, a reversible specific capacity of 160 mAh g−1 was maintained
after 100 cycles in 0.5 M Bpy14Cl-PP14TFSI-PC electrolyte. In 2020, NiMn-Cl LDH [20]
was also synthesized by a co-precipitation method and employed in a CIB system. At a
current density of 50 mA g−1, a reversible specific capacity of 130 mAh g−1 was obtained
after 150 cycles in 0.5 M Bpy14Cl-PC electrolyte. Soon after, Ni2V0.9Al0.1-Cl LDH [21] was
synthesized by a hydrothermal method followed by an ion-exchange process. At a current
density of 200 mAg−1, Ni2V0.9Al0.1-Cl LDH cathode delivered a reversible specific capacity
of 113.8 mAh g−1 after 1000 cycles in 1 M Bpy14Cl-PP14TFSI-PC electrolyte. In the same
year, NiFe-Cl LDH [22] was also synthesized by a hydrothermal method combined with an
anion-exchange process. At a current density of 100 mA g−1, the NiFe-Cl LDH cathode
exhibited a reversible specific capacity of 130 mAh g−1 after 100 cycles in 0.5 M Bpy14Cl-PC
electrolyte. Additionally in 2020, CoNi-Cl LDH [23] was synthesized by ion-exchange of
as-prepared CoNi-Br LDH. A reversible specific capacity of 83 mAh g−1 remained after
50 cycles in 0.5 M Bpy14Cl-PC/[PP14][NTf2] electrolyte. In 2023, Han et al. [24] performed
high-throughput screening computation of layered double hydroxides as cathodes for
chloride ion batteries. They found that Ti-containing LDHs were screened as the most
promising cathodes through the theoretical voltage calculation. Although some progress
has been made in LDHs, the current LDHs for CIBs usually possess much larger particle
size (micro size) and consist of multilayers. Additionally, the preparation process for
LDHs is usually complicated, N2 gas protection is usually mandatory for the conventional
co-precipitation method.

Moreover, to the best of our knowledge, all the reported cathode materials contain
elemental chlorine. Herein, a new chlorine-free cathode material, NiTi-LDH@CNT, was
prepared by a facile reverse microemulsion method and developed as a cathode material
for CIBs. Unlike the conventional co-precipitation method, the preparation of LDH by
the reverse microemulsion method does not require the passage of N2 gas throughout the
experiment. The specific surface area and pore volume of the NiTi-LDH@CNTs prepared
by the reverse microemulsion method are as high as 266 m2 g−1 and 0.42 cm3 g−1, respec-
tively, which is beneficial for sufficient contact between the electrode and electrolyte and
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promotes the electrochemical performance. In the following, we will discuss the synthesis,
characterization, and electrochemical performance of NiTi-LDH@CNTs as a CIB electrode
material.

Table 1. Electrochemical performance of reported LDHs as a Cl− storage electrode in CIB.

Cathode Materials Electrolyte Current Density Cycling
Performance References

CoFe-Cl LDH 0.5 M BpyCl-
PP14TFSI-PC 100 mA g−1 160 mAh g−1 after

100 cycles
[19]

NiMn-Cl LDH 0.5 M Bpy14Cl-PC 50 mA g−1 130 mAh g−1 after
150 cycles

[20]

Ni2V0.9Al0.1-Cl LDH 1 M Bpy14Cl-
PP14TFSI-PC 200 mA g−1 113.8 mAh g−1 after

1000 cycles
[21]

NiFe-Cl LDH 0.5 M Bpy14Cl-PC 100 mA g−1 130 mAh g−1 after
100 cycles

[22]

CoNi-Cl LDH 0.5 M Bpy14Cl-
PC/[PP14][NTf2] 200 mA g−1 83 mAh g−1 after 50

cycles
[23]

NiTi-Cl LDH 0.5 M PP14Cl in PC 200 mA g−1 131.8 mAh g−1 after
200 cycles

[24]

This work 0.5 M PP14Cl in PC 100 mA g−1 69 mAh g−1 after 150
cycles

2. Experimental
2.1. Synthesis of NiTi-LDH and NiTi-LDH@CNTs

To prepare NiTi-LDH, a reverse microemulsion method was used [25–27]. A mixture
of 1.1 mL water, 50 mL iso-octane, and 1.80 g SDS was added to a three-mouth flask with
constant stirring. This was followed by the addition of 1.5 mL 1-butanol until a transparent
reverse microemulsion was formed. Ni(NO3)2·6H2O (0.004 mol) and TiCl4 (0.001 mol)
were then added to the above microemulsion, followed by adding 1.2 g urea to form a
blue-green solution. The mixture was heated in an oil bath at 110 ◦C and continuously
stirred for 27 h. The resulting product was then centrifuged and washed several times
using a mixed solvent of ethanol and water (volume ratio of 1:1), and dried in a vacuum
oven at 60 ◦C for 24 h.

To synthesize NiTi-LDH@CNTs, the same reverse microemulsion method was used
with the addition of 50 mg carbon nanotubes to the microemulsion. The mixture was
sonicated for 1 h before the addition of urea.

2.2. Materials Characterization

X-ray diffraction (XRD) data were acquired from a Rigaku SmartLab diffractometer
with Cu Kα radiation (λ = 0.15418 nm). The Fourier transform infrared spectroscopy
(FTIR) was carried out using a Thermo Scientific Nicolet iS20 Spectrometer in the wave
number range from 400 to 4000 cm−1. Thermogravimetric analyses (TGA) were carried
out at a ramp rate of 10 ◦C min−1 under an air atmosphere using the NETZSCH STA449F3
instrument. The morphologies of the samples were monitored using a field-emission
scanning electron microscope (ZEISS Ultra 55) at an accelerating voltage of 5 kV, the
compositions of the samples were explored by an energy dispersive X-ray spectrometer
attachment (Oxford Instrument). Nitrogen adsorption/desorption measurements were
performed on a Micromeritics 3Flex surface characterization analyzer. The carbon content
in the NiTi-LDH@CNTs was determined by an Elementar unicube elemental analyzer.
X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Thermo
Scientific K-Alpha spectrometer with Al Kα X-rays as the excitation source.

2.3. Preparation of the Anode

Since the NiTi-LDH herein is a Cl¯ free material, the LiCl/Li anode must be pre-
pared prior to electrochemical characterization. For the preparation of LiCl/Li anode,
the Li‖FeOCl battery was first assembled with a mixture of 0.5 M PP14Cl in PP14TFSI as
electrolyte. The FeOCl material was prepared by a thermal decomposition method previ-
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ously reported [28]. The FeOCl electrode was prepared by mixing 80 wt% FeOCl, 10 wt%
acetylene black and 10 wt% polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone
(NMP). The obtained slurry was cast onto a graphite foil current collector with a thickness
of 150 µm. After drying under vacuum at 80 ◦C for 12 h, a round electrode with a diameter
of 19 mm was punched out. The load weight of FeOCl is ~3 mg. Then the assembled
Li‖FeOCl battery was subjected to full discharge to 1.6 V at 10 mA g−1. After the discharge
is completed, the battery was disassembled and the lithium foil was wiped with clean glass
fiber to remove the residual electrolyte.

2.4. Electrochemical Measurements

CR2032 coin cells were assembled with the as-prepared NiTi-LDH or NiTi-LDH@CNT
as the cathode material, Celgard 2400 membrane as the separator, and the as-prepared
LiCl/Li as the anode. The cathode was prepared by mixing 60 wt% NiTi-LDH or NiTi-
LDH@CNTs, 30 wt% Super P, and 10 wt% PVDF in NMP. The obtained slurry was spread
onto a stainless-steel foil current collector with a thickness of 150 µm. After drying under
vacuum, a round electrode with a diameter of 12 mm was punched out. The electrolyte
was a mixture of 0.5 M PP14Cl in PC. The specific capacity was calculated based on the
mass of NiTi-LDH.

Electrochemical impedance spectroscopy (EIS, 100 kHz to 10 mHz, 10 mV) and cyclic
voltammetry (CV, 1.2 to 3 V, 0.1 mV s−1) measurements were performed on the BioLogic
(VMP3) electrochemical workstation. The EIS data was fitted with Zview software. Gal-
vanostatic discharge and charge measurements were conducted on the Neware battery test
system in a voltage range of 1.2–3 V.

3. Results
3.1. Structural Characterization and Compositional Analysis of NiTi-LDH and NiTi-LDH@CNT
Materials

The XRD patterns of NiTi-LDH, NiTi-LDH@CNTs and CNTs are shown in Figure 1a.
The diffraction peaks of NiTi-LDH and NiTi-LDH@CNT samples prepared through the
reverse microemulsion method are notably broad and weak, indicating the poor crystallinity
of the synthesized material. The NiTi-LDH sample herein prepared following the procedure
described by Zhao et al. [25–27], was supposed to be composed of a monolayer or fewer
layers. There are two characteristic peaks at 2θ = 34◦ and 2θ = 60◦, which correspond to
(012) and (110) crystal planes of NiTi-LDH, respectively [29,30]. The characteristic peak of
CNTs at 26◦ is retained for the NiTi-LDH@CNT material, indicating successful synthesis of
the composite material.

Fourier transform infrared spectroscopy of NiTi-LDH, NiTi-LDH@CNTs and CNTs
are shown in Figure 1b. The characteristic peaks at around 3435 cm−1 and 1631 cm−1

correspond to the stretching vibration of O−H bonds caused by surface adsorption of
water and interlaminar crystalline water. The peak at 1386 cm−1 is attributed to the
symmetric stretching vibration of CO2−

3 ions in the NiTi-LDH interlayer [29,30]. The
broad band at around 700 cm−1 corresponds to the M–O (metal–oxygen) stretching and
bending vibrations, proving the formation of NiTi-LDH@CNT materials [19–24]. The M–O
stretching and bending vibrations can be more easily discerned in the Raman spectrum of
NiTi-LDH@CNT with an obvious absorption band at 689 cm−1 (Figure S1). Meanwhile,
the weak peaks observed at 2923 cm−1 and 2850 cm−1 are associated with the stretching
vibrations of CH2 and CH3. These two peaks should be related to the adsorption of some
dodecyl sulfate anion (sodium dodecyl sulfate was used as surfactant in this work) on the
surface of NiTi-LDH [26,27].
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Figure 1. (a) XRD patterns and (b) FT-IR spectra of the CNT, NiTi-LDH and NiTi-LDH@CNT materials.

Thermogravimetric analyses were conducted on NiTi-LDH, CNTs, and NiTi-LDH@CNTs,
and the results are presented in Figure 2. The water contents for the NiTi-LDH and NiTi-
LDH@CNTs are determined by the mass loss at 200 ◦C to be 14.5 wt% and 13.9 wt%,
respectively [20]. The weight loss at around 350 ◦C for the NiTi-LDH is attributed to
the removal of the hydroxyl group on the NiTi-LDH layer plate, as well as the interlayer
cyanate and carbonate anions [31]. The content of CNTs in the NiTi-LDH@CNT composite
was calculated by the mass loss in the temperature range of 550–650 ◦C to be approximately
15 wt%. The carbon content is consistent with the result obtained from the elemental
analysis (Table S1).
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Figure 2. Thermogravimetric analysis (TGA) for (a) CNT, NiTi-LDH, and (b) NiTi-LDH@CNT
composite samples.

Field-emission scanning electron microscopy (FE-SEM) was used to observe the mor-
phology of the prepared NiTi-LDH, CNT, and NiTi-LDH@CNT composites. The CNTs
with a diameter less than 50 nm and a length of several micrometers are entangled with
each other (Figure 3a). The FE-SEM image of NiTi-LDH (Figure 3b) shows that many
nanoparticles assembled with each other to form an agglomerate morphology. NiTi-LDH
nanoflake with thickness of around 10 nm was also discerned. By comparing the FE-SEM
image of blank CNTs and the FE-SEM images of NiTi-LDH@CNT composite (Figure 3c,d),
it can be seen that NiTi-LDH nanoparticles are attached to CNTs and compound well
with CNTs.
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The nitrogen adsorption/desorption isotherms and pore size distributions of the
prepared NiTi-LDH and NiTi-LDH@CNTs are shown in Figure 4. Both samples display
typical type-IV isotherms (Figure 4a,c), demonstrating a mesoporous structure. The de-
tailed parameters are listed in Table 2. The specific surface area and pore volume of the
NiTi-LDH sample are 118 m2 g−1 and 0.12 cm3 g−1, respectively. When NiTi-LDH was com-
pounded with CNTs, the specific surface area and pore volume of the composite increased
to 266 m2 g−1 and 0.42 cm3 g−1, respectively. Based on the pore size distribution curves
(Figure 4b,d), the average pore size of the NiTi-LDH@CNT composite and NiTi-LDH are
6.3 nm and 4.6 nm, respectively.

Table 2. Physical data for the as-prepared NiTi-LDH and NiTi-LDH@CNT materials.

Samples Total Pore Volume
(cm3 g−1)

Average Pore
Diameter (nm)

BET Specific
Surface Area

(m2 g−1)

NiTi-LDH 0.12 4.6 118

NiTi-LDH@CNTs 0.42 6.3 266
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3.2. Electrochemical Performances

The Cl¯ ion storage performance of NiTi-LDH and NiTi-LDH@CNTs were investi-
gated with LiCl/Li as anode and 0.5 mol L−1 PP14Cl/PC as electrolyte. LiCl/Li anode was
prepared by fully discharging the assembled Li‖FeOCl coin cell. During this process, Cl
ions migrate from FeOCl throughout the electrolyte to the metallic Li and react with the
metallic Li to form LiCl. Since metallic Li is in excess, the LiCl/Li anode was therefore
obtained. Figure S2 displays XRD and EDS maps of the as-prepared FeOCl, which are in
agreement with our previous reports [16,32]. Moreover, Figure S3 displays the flower-like
morphology of FeOCl. The successful preparation of LiCl/Li anode was confirmed by the
XRD pattern as displayed in Figure S4b. Figure 5a,b depicts the CV curves of NiTi-LDH and
NiTi-LDH@CNT electrodes in the voltage range of 1.2–3 V at 100 mA g−1. The CV curves of
both electrodes exhibit an almost rectangular shape with no obvious redox peaks, implying
a dominant capacitive storage mechanism [33]. The oxidation peak at 2.3 V corresponds to
Cl− entering the LDH interlayer, and the reduction peak at 1.4 V corresponds to Cl− coming
out of the LDH interlayer. Consistent with the CV curves, the galvanostatic charge and
discharge curves for both electrodes (Figure 5c,d) displayed no obvious charge–discharge
plateaus. The initial discharge specific capacity for NiTi-LDH and NiTi-LDH@CNT com-
posites are 288 mAh g−1 and 498 mAh g−1, respectively. The addition of CNTs in the
composites resulted in a higher reversible specific capacity of 69 mAh g−1 after 150 cycles,
compared to 28 mAh g−1 of pure NiTi-LDH (Figure 5e). The NiTi-LDH@CNT electrode has
a larger specific surface area and higher electronic conductivity, which makes it render a
higher discharge capacity. In addition, the rapid capacity decay during the first 20 cycles for
the NiTi-LDH@CNT electrode may be ascribed to its large surface area, which facilitates the
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formation of more SEI layer due to the increased side reaction with the electrolyte during
continuous cycling. Furthermore, Coulombic efficiency of NiTi-LDH@CNT electrodes can
reach 99%. It is worth noting that the capacity contribution from CNTs can be negligible
(Figure S5).
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In order to study the electrochemical kinetics of pure NiTi-LDH and NiTi-LDH@CNT
electrodes, EIS measurements were performed. The resulting Nyquist curves (Figure 6a)
display arcs and straight lines at high and low frequencies, respectively. The arc at high
frequency represents the combined contribution from the contact resistance and the charge
transfer resistance. The equivalent circuit model shown in the inset of Figure 6a was
used to fit the EIS plots. The fitting results are listed in Table 3. Rc and Rct are contact
resistance and charge transfer resistance, respectively. CPE1 and CPE2 are constant phase
elements, W1 is Warburg impedance, and RS is solution resistance. The Rct value of the
pure NiTi-LDH electrode was 136 Ω, while the Rct value of NiTi-LDH@CNTs was 95 Ω.
The smaller Rct value of NiTi-LDH@CNTs indicates a faster charge transfer. Moreover, the
higher the slope of the straight line at low frequency is, the smaller the diffusion resistance
is. Compared with NiTi-LDH, a higher slope of the straight line for the NiTi-LDH@CNT
electrode signifies an enhanced ion diffusion rate.
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Table 3. Fitted impedance parameters for the as-prepared NiTi-LDH and NiTi-LDH@CNT cathodes.

Sample Rs (Ω) Rc (Ω) Rct (Ω) CPE1-T CPE1-P CPE2-T CPE2-P W1-R W1-T W1-P

NiTi-
LDH 6.55 22.82 136 2.03 ×

10−5 0.86 2.50 ×
10−5 0.81 749.2 4.02 0.65

NiTi-
LDH@
CNTs

4.91 7.37 95 1.71 ×
10−5 0.92 1.61 ×

10−5 0.85 142 0.42 0.64

The rate performance of pure NiTi-LDH and NiTi-LDH@CNT electrodes were further
studied. As shown in Figure 6b, the reversible specific capacities of NiTi-LDH@CNT
composites at 100, 200, 300, 400 and 500 mA g−1 are 191, 74, 54, 42 and 33 mAh g−1,
respectively, which are higher than 81, 31, 15, 11 and 9 mAh g−1 of pure NiTi-LDH.
When the current density returns to 100 mA g−1 again, the average discharge specific
capacity of the NiTi-LDH@CNT cathode is 94 mAh g−1, while the average discharge
specific capacity of pure NiTi-LDH is 43 mAh g−1. The enhancement of rate performance
for the NiTi-LDH@CNT cathode could be attributed to the improved conductivity caused
by the introduction of carbon nanotubes.

3.3. Analysis of Chlorine Storage Mechanism

X-ray photoelectron spectra (XPS) were performed to investigate the chlorine storage
mechanism during the charging and discharging process of NiTi-LDH@CNT composite
electrodes. In Figure 7a, a distinct pair of Ni 2p1/2 and Ni 2p3/2 peaks in the Ni 2p XPS
spectrum of the as-prepared electrode appeared, along with the satellite peaks at 880.4 eV
and 861.8 eV. [20,22]. Upon charging, a new Ni 2p peak doublet located at higher binding
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energies of 877.1 and 858.4 eV emerged, which can be assigned to Ni3+ species [27,34–36].
Upon the following discharge, the Ni 2p signals belonging to the Ni3+ species disappeared.
In Figure 7b, two pairs of distinct Ti 2p1/2 and Ti 2p3/2 peaks are visible in the Ti 2p
XPS spectrum. Deconvolution peaks of Ti 2p3/2 at 459.5 eV and 458.7 eV are assigned
to Ti4+ and Ti3+ states, respectively [24]. During the charging process, the signals of Ti4+

intensified while the signals of Ti3+ weakened, indicating that the average valence of Ti
increased [37,38]. During the discharging process, the relative intensity of Ti3+ and Ti4+

signals were restored to the original state. In Figure 7c, the Cl 2p peak doublet at 198.7 (Cl
2p3/2) and 200.5 eV (Cl 2p1/2) came out during the charge process, providing proof for the
Cl¯ entering the LDH layer [16,39]. The reversal of this change demonstrates the excellent
oxidation/reduction reversibility of NiTi-LDH@CNTs as a CIB cathode material.
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electrochemical states.

Figure 8 depicts the FE-SEM images and the corresponding energy-dispersive X-ray
spectroscopy (EDS) results of the NiTi-LDH@CNT cathode during the 10th cycle. The EDS
data (Figure 8b,e) reveals that there is an increase in the Cl element content during charging,
indicating that chloride ions are inserted into the LDH gallery. During discharge, the Cl
element content decreases, suggesting that the Cl¯ ions are extracted from the LDH gallery.
The higher brightness of Cl mapping for the charged sample over the discharged sample
further verified the insertion/extraction of Cl into/from the LDH interlayers.
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In addition, we have conducted ex-situ XRD studies on the anode side during the 10th
cycle and the results are presented in Figure 9. Upon fully charging to 3 V, the characteristic
diffraction peak of LiCl disappeared, indicating the release of Cl¯ from Li metal [20]. Upon
fully discharging to 1.2 V, the characteristic diffraction peak of LiCl appeared, signifying the
migration of Cl¯ back to the anode side to form LiCl. These findings confirm the reversible
shuttle of chloride ions between cathode and anode.
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4. Conclusions

CIBs have been regarded as one of the alternatives to conventional lithium-ion batteries
due to the natural abundance of chloride resources in seawater, dendrite-free anodes upon
cycling and high theoretical volumetric energy density. In this work, NiTi-LDH@CNT
composite has been prepared by a reverse microemulsion method. We preliminarily
investigated its chloride ion storage performance. When coupled with LiCl/Li anode,
the NiTi-LDH@CNT composite cathode in PP14Cl/PC electrolyte delivered a reversible
specific capacity of 69 mAh g−1 after 150 cycles at a current density of 100 mA g−1. The
incorporation of CNTs significantly improved the electronic conductivity and dispersity of
electroactive material, resulting in better electrochemical performance. The electrochemical
mechanism was comprehensively revealed by ex-situ XPS, EDS and ex-situ XRD. This work
provides an innovative avenue for the design of CIB cathode materials. Finally, although
CIBs are one of the promising energy storage devices, it should be mentioned that there
is still a potential risk of release of toxic chlorine gas upon overcharge from the practical
point of view.
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