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Abstract: Dielectric capacitors have garnered significant attention in recent decades for their wide
range of uses in contemporary electronic and electrical power systems. The integration of a high
breakdown field polymer matrix with various types of fillers in dielectric polymer nanocomposites
has attracted significant attention from both academic and commercial sectors. The energy storage
performance is influenced by various essential factors, such as the choice of the polymer matrix,
the filler type, the filler morphologies, the interfacial engineering, and the composite structure.
However, their application is limited by their large amount of filler content, low energy densities,
and low-temperature tolerance. Very recently, the utilization of two-dimensional (2D) materials
has become prevalent across several disciplines due to their exceptional thermal, electrical, and
mechanical characteristics. Compared with zero-dimensional (0D) and one-dimensional (1D) fillers,
two-dimensional fillers are more effective in enhancing the dielectric and energy storage properties
of polymer-based composites. The present review provides a comprehensive overview of 2D filler-
based composites, encompassing a wide range of materials such as ceramics, metal oxides, carbon
compounds, MXenes, clays, boron nitride, and others. In a general sense, the incorporation of 2D
fillers into polymer nanocomposite dielectrics can result in a significant enhancement in the energy
storage capability, even at low filler concentrations. The current challenges and future perspectives
are also discussed.

Keywords: dielectric property; nanocomposites; energy storage; 2D filler; breakdown strength

1. Introduction

In recent years, there has been significant interest in the advancement of high-energy-
density storage devices due to the escalating demand for renewable and sustainable en-
ergy sources and embedded integration technology. Electrical energy storage plays a key
role in mobile electronic devices, stationary power systems, and hybrid electric vehicles
(Figure 1) [1,2]. Dielectric energy storage stands out as a highly appealing and viable
approach for energy storage and release when compared to alternative systems [3,4]. Di-
electric materials possessing exceptional electrical, mechanical, and thermal properties play
a crucial role as the primary facilitator in electrostatic energy storage devices, commonly
referred to as dielectric capacitors. This is primarily due to their distinctive ability to gener-
ate ultra-high power density, exhibit low loss, and withstand high operating voltage [5].
The enhancement of dielectric performance and energy storage density has been a primary
focus of numerous scientists and engineers in the field of energy storage research [2,6–9].
Materials with relatively high dielectric permittivity, low dielectric loss, high dielectric
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strength, low processing temperature, and high flexibility are highly needed for energy
storage [10–12].
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There is a substantial need for the development of new composites with superior
electrical energy densities since current inorganic materials and organic materials fall
significantly short of rising demands in advanced applications. Studying composites is mo-
tivated by the fact that diverse materials can be mixed to provide unique physical/chemical
properties that are very different from those of the individual components [7,13]. Polymer-
based 0–3 composites with diverse fillers are being explored for their improved dielectric
properties, ease of manufacture, and flexibility. Nanofillers including ceramics, semicon-
ductors, and conductors can boost nanocomposites’ dielectric characteristics and energy
storage performances. In the last 5 years, many different reviews have given systematic
summaries from different aspects to describe the roadmap and strategy of this field [4].
For 0–3 dielectric composites, there are five critical factors which can determine the film
quality, dielectric properties, and the energy storage performance: (i) the selection of the
polymer matrix, (ii) the type of the filler [14], (iii) morphologies and dimensions of the
filler [15,16], (iv) interfacial engineering [9,17,18], and (v) the structure of the composite [19].
Among these critical factors, as is well known, filler morphologies and dimensions have
a significant impact on how well composites operate as dielectric materials. In general,
four types of fillers can be distinguished based on their morphologies: (1) zero-dimensional,
0D (e.g., nanoparticles, quantum dots); (2) one-dimensional, 1D (e.g., nanowires, nanofibers,
and nanotubes); (3) two-dimensional, 2D (nanosheets, nanoplates, and nanoclays); and
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(4) three-dimensional, 3D (e.g., fille networks). It is widely believed that 2D fillers hold
significant potential for dielectric composites due to their ability to generate multiple micro-
lamellar structures within the composites. These structures offer two main advantages:
(i) they facilitate the development of strong Maxwell–Wagner effects, thereby enhancing
the polarization degree, and (ii) they effectively impede the expansion of breakdown routes,
leading to improved breakdown strength and energy storage efficiency. In the last 10 years,
polymer nanocomposites based on 2D nanomaterials have been widely studied. Figure 2
presents the trends in the number of articles with the keywords “dielectric” and “energy
density,” and “dielectric” and “2D” or “dielectric” and “two dimensional” published in the
refereed journals from 2012 to now.
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In this review, the recent developments and strategies of polymer-based composites
with 2D fillers are summarized (Figure 3). The fundamental and theoretical models for
dielectric composites are first discussed in Section 2 to show how to predict the dielectric
constant with the content of filler. Section 3 focuses on the selection of the polymer matrix
and how it determines the performance of the composite. Section 4 summarizes the recent
progress in achieving enhanced dielectric properties and energy storage capabilities of
2D polymer nanocomposites, including the structures and various 2D fillers. After that, a
succinct summary and some potential outcomes are given.
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Figure 3. Schematic diagram of the main topics in this review. The polymer matrix, filler dimensions,
composite structures, and interface engineering are the main four aspects of polymer-based dielectric
composites. Various 2D fillers, including high-k ceramics (reproduced with permission from [20],
Copyright 2019, Elsevier Ltd.), perovskite nanosheets (reproduced with permission from [21], Copy-
right 2020, WILEY-VCH), metal oxides (reproduced with permission from [22], Copyright 2017,
WILEY-VCH), graphene (from freepik.com), boron nitride (reproduced with permission from [23],
Copyright (2021) Science China Press. Published by Elsevier B.V. and Science China Press), clays
(reproduced with permission from [24], Copyright 2016, IOP Publishing Ltd.), transition metal
dichalcogenides (reproduced with permission from [25], Copyright (2021) Elsevier), and MXenes
(reproduced with permission from [26], Copyright (2022) Elsevier.), have been used to improve the
energy storage performance.

2. Polymer-Based Dielectric Composites
2.1. Basic Information of Dielectric Energy Storage

The performance of a dielectric material is determined by the following parameters:
dielectric permittivity (εr or k), dielectric loss (tan δ), displacement–electric field relationship
(D–E), and breakdown strength (Eb) [10–12]. The energy stored in a dielectric material
under an electric field E can be expressed by the shadow area in Figure 3, in which different
relationships between E and D are presented as Equation (1):

Udischarged = Ue =
∫

E·dD (1)

where Ue is the energy storage density, defined as the energy stored in a unit volume (J/m3).
For linear dielectrics, it is well known that the energy density of a dielectric material is
proportional to the product of permittivity and the square of the applied electric field, and
can be expressed as Equation (2).

Udischarged =
1
2

ε0εrE2 (2)
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where ε0 is the vacuum permittivity (8.85 × 10−12 F/m). Clearly, the dielectric properties
of a material can effectively described by three crucial parameters: dielectric permittivity εr,
dielectric loss tan δ, and dielectric breakdown field Eb applied on that material. Moreover,
the schematic of the discharge energy efficiency η at high field is also shown in Figure 4. η
is the ratio between the discharged energy and total energy and the loss can be calculated
by 1 − η [3,4]

Udischarged =
1
2

ε0εrE2 (3)
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According to the electric conductivity of fillers, the polymer-based 0–3 composites
can be classified into two types (Figure 5) [7,27]: (i) Dielectric–dielectric composites (DDC)
consist of dielectric materials, particularly ferroelectric ceramics, as fillers. (ii) Conductor–
dielectric composites (CDC) are composed of conducting materials, such as metals, carbon
compounds, and conducting polymers, as fillers. In recent times, there has been a notable
preference for semiconductive fillers as fillers in many applications. However, it is impor-
tant to note that these fillers can still be classified into either the DDC or CDC category,
depending on the dielectric performance of the composites as the filler content increases.
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2.2. Dielectric–Dielectric Composites

Dielectric–dielectric composites are materials that combine dielectric particles or fillers
with a polymer matrix and are specifically designed for their dielectric properties. These
composites have shown promise in various energy storage applications, especially in the
context of capacitors and energy storage devices that rely on dielectric materials to store
electrical energy efficiently. For dielectric fundamental research and applications, it is
of great interest to understand the dielectric response of a composite (or heterogeneous
dielectrics) with different dielectric fillers. The dielectric properties of a heterogeneous
dielectric are one of the earlier more interesting topics on the physics of dielectrics, which
show different trends compared to one certain phase or neat polymer matrix [7,11]. Many
mixing rules or models have been proposed to express or predict the effective dielectric
permittivity (εeff) of a system with two immiscible phases, especially for 0–3 polymer-based
composites [4]. From the aspect of mathematical analogy, many of the models/formulas
presented in this section for the calculation of the dielectric property are also valid for other
physical properties, including the electric conductivity, heat conductivity, and diffusivity of
such materials.

To explain and predict the effect of each phase on the composite dielectric properties,
it is difficult to know the detailed information of the polarization response and electric
field distribution under an external electric field [28]. It is also impossible to determine
the dielectric response of a composite to the exact microstructure of the composite. De-
tailed information about the origination and derivation of each model/formula has been
introduced in the previous review [7]. It should be mentioned that an extremely simplified
model exhibiting the parallel connection (black curve) and series connection (red curve) of
two phases has been proposed first [7]. For other models/formulas, the εeff of the composite
is expressed as a function of the composite’s composition (i.e., the content of fillers or
volume fraction of fillers, ϕ), the dielectric permittivity εm of the matrix, and the dielectric
permittivity εf of the filler materials. In some models/formulas, one other parameter related
to the filler particles, such as shape or orientation, is also used. However, it is still difficult
to simulate and predict the dielectric permittivity of a real composite. Some models are
purely empirical, while others, like the Lewis–Nielsen equation and the Maxwell–Garnett
equation, are appropriate for composites with a very low proportion of filler. Although
some parameters have been involved in the equations and can fit some experimental results
well, it is impossible to find one special formula for all composites. In recent studies,
researchers typically plot some formulas which are close to the experimental data.

Over the course of the past two decades, numerous ceramic–polymer nanocomposites
have been investigated. This is especially true when high-k ferroelectric ceramics have
been utilized, such as BaTiO3 [29–33], BaSrTiO3 [34–37], SrTiO3 [38], PbZrTiO3 [39], and
CCTO [40–42]. Ceramic fillers with nanometer-scale dimensions have a number of advan-
tages over fillers with micrometer-scale dimensions. These advantages include the ability
to reduce the thickness of the composite while keeping its flexibility; improvement of the
space charge production; increased voltage endurance; and prevention of partial discharge
deterioration. The vast majority of ceramic nanoparticles come from commercial sources;
however, some have been manufactured using solid state reactions, chemical procedures, or
even by having their size reduced through the use of high-energy ball milling [43,44]. When
it comes to questions about the storage of electrical energy, the high dielectric permittivity
and robust electrical strength of the composite materials are both essential qualities to have.
In order to avoid having a low electric breakdown field, the polymer matrix frequently has
less filler.

2.3. Conductor–Dielectric Composites

The dielectric permittivity of a 0–3 conductor–dielectric composite cannot be ex-
plained by classical mixing rules but, instead, by the percolation theory [45]. Initially,
when a modest amount of conducting filler is incorporated into a polymer matrix, the
dielectric permittivity increases marginally with increasing filler concentration. Conductive
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particles are segregated and randomly dispersed in the matrix (Figure 6a), and the matrix
dominates the associated electric characteristics of the composites. When the filler content
is close to the critical volume fraction (Figure 6b), the dielectric permittivity is multiplied
by hundreds/thousands, compared to that of the polymer matrix (Figure 6c). The critical
volume fraction is the so-called percolation threshold (ϕc), which is defined as the phase
transition from the small, isolated particles to the interconnected channels [46]. When the
concentration of conducting filler exceeds the critical concentration (ϕc), the composite
material exhibits conductivity. An additional augmentation of the filler content leads to
the formation of a more extensive network of conductive channels within the compos-
ites, resulting in the establishment of a conductive skeleton (as depicted in Figure 6d).
Consequently, the dielectric permittivity of the composites begins to exhibit a decline.
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Figure 6. The diagram illustrates the variations in the dielectric permittivity (red solid lines) of
composites as a function of concentration, with the dashed green line representing the percolation
threshold ϕc. Additionally, the microstructure of the composites is depicted, highlighting the ge-
ometric phase transition of the fillers. (a) composites with low dielectric permittivity when a low
content fillers are in the matrix, (b) local clusters of particles begin to form and dielectric permittivity
increases, (c) conductive particles create infinite conductive cluster in the matrix at a certain filler con-
tent (threshold) and the dielectric permittivity reaches the maximum value, and (d) more conductive
channels form a conductive skeleton and the dielectric permittivity starts decreasing.

Many researchers are focusing on the concentration of the filler approaching the
percolation threshold from the insulator regime (ϕ < ϕc) since the dielectric permittivity
undergoes a sharp rise to obtain the giant dielectric permittivity [47,48]. Divergence of
dielectric permittivity around the insulator regime (ϕ < ϕc) is caused by the formation
of pure conducting channels through the whole composite. This can be thought of as a
parallel link with an abnormally large capacitance. The strong nonlinearity of dielectric
permittivity near the percolation threshold is caused by the large electric response in the
thin barriers, which block off the conducting channels in the composite. For a random
binary system if we assume the pure dielectric as a matrix, it was obtained as

εe f f ∝ εm(ϕc − ϕ)−s (4)

where ϕ < ϕc and s (>0) is a critical exponent [45,47]. Clarkson outlined two primary facets
pertaining to the behavior of the dielectric permittivity in close proximity to the percola-
tion transition. The first aspect entails a power–law relationship with respect to the vol-
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ume fraction, while the second side involves a frequency-dependent behavior [49]. From
some numerical simulations and results of static systems, it was concluded that s ≈ 0.7 [50].
Equation (4) is widely used in the literature to fit the experimental results [7,11,45]. Further-
more, Equation (4) is usually normalized as

εe f f = εm

(
ϕc − ϕ

ϕc

)−s
(5)

In Equation (5), the dielectric permittivity of the composite should be the dielectric
permittivity of the matrix when there is no conducting filler added.

In recent decades, various conducting fillers have been selected, such as metal (Ag,
Ni) [51,52], carbon materials (nanotubes, fibers, graphite, graphene) [53–56], conducting
polymers [57–61], etc. The most important advantage is that using the conducting fillers
can achieve a high dielectric constant and high energy density in the low filler content
region, maintaining the high breakdown field and the mechanical performance of the
composites [45,53,62]. Researchers also discovered that the fabrication processes used
to create nanocomposites have a significant impact on the percolation threshold. Conse-
quently, research has been investigated on many types of conducting fillers with a variety
of morphologies, including nanospheres, nanotubes, nanobars, nanowires, and nanoplates.
The implementation of a homogeneous dispersion of conductive fillers, along with the
application of an insulating shell coating on such fillers, has the potential to somewhat
mitigate the rise in dielectric loss. The fabrication of composites with high permittivity
and low dielectric loss involves the preparation of metal particles that are coated with a
core–shell structure consisting of metallic oxide fillers [63]. Carbon nanotubes (CNTs) are
considered favorable options among the various conductive fillers due to their notable
attributes, including strong electrical and thermal conductivity, as well as a significant
aspect ratio [64,65]. One of the challenges associated with utilizing CNTs as fillers is the
tendency for them to form agglomerates inside the polymer matrix. Modification and func-
tionalization are widely utilized techniques for enhancing the dispersion of CNTs within
host polymers [53,66]. Recently, researchers proposed 2D conducting fillers, including
graphene, graphene oxide (GO), reduced graphene oxide (RGO), and MXene, to achieve a
uniform dispersion of conductive fillers in the dielectric matrix to maximize the composite’s
electrical properties [67], which will be discussed in Sections 4.4 and 4.6.

In summary, conductor filler-based dielectric composites hold promise for energy stor-
age applications, especially where a combination of high energy density, rapid discharge,
and lightweight materials is required. However, addressing challenges related to stability
and manufacturing complexity is crucial for their widespread adoption in various energy
storage systems. Researchers and engineers continue to explore innovative approaches to
enhance the performance of these composites.

2.4. Investigation on Polymer-Based Dielectric Composites

The investigation into polymer-based dielectric composites for energy storage is an
exciting and multidisciplinary field that combines materials science, electrical engineer-
ing, and energy storage technologies [68,69]. Polymer-based dielectric composites have
garnered significant interest due to their potential for high energy storage capabilities,
lightweight nature, and ease of processing. As shown in Figure 7, for composites with 2D
fillers, some key points must be considered during the investigation.

Polymer matrix. Polymer matrices play a crucial role in the study of dielectric compos-
ites for energy storage due to their ability to significantly enhance the overall performance
and capabilities of such composites. Dielectric composites are materials composed of two
or more distinct components with differing dielectric properties. When used for energy
storage applications, these composites store electrical energy through the polarization of
their dielectric materials in the presence of an electric field. Polymers can have excellent
electrical insulating properties and good breakdown strength, which is the ability of a
material to withstand high electric fields before experiencing electrical breakdown [70–73].
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The polymer matrix helps to isolate and protect the embedded filler materials from high
electric fields, contributing to the overall robustness of the composite. Detailed information
on various polymer matrices will be discussed in Section 3.
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Dimension of fillers. It is critical to investigate various filler materials that can be
integrated into polymer matrices for the purpose of fabricating composites. As previously
mentioned in Section 1, in addition to the polymer matrix and filler types, the size and
shape of the filler particles significantly influenced the dielectric characteristics and energy
storage performance. When comparing composites containing micro-sized ceramic fillers
to those including nano-sized ceramic fillers, it is generally observed that the latter displays
a more uniform microstructure. Additionally, these composites tend to have lower dielec-
tric permittivity, while they also exhibit a significantly lower loss and larger breakdown
field. As a result, composites with nano-sized ceramic fillers are considered more suited
for applications related to energy storage. In general, the classification of fillers can be
categorized into four distinct types. The materials under consideration include spherical
particles with zero-dimensional (0D) characteristics, wires or fibers with one-dimensional
(1D) properties, sheets or platelets with two-dimensional (2D) attributes, and clusters
or network structures with three-dimensional (3D) characteristics [74,75]. Based on the
principles of the effective medium theory, it can be posited that the dielectric permittivity is
influenced by the depolarization factor, which exhibits a significant reliance on the aspect
ratios of the ceramic fillers present inside the composite material. Composites, including
fillers with larger aspect ratios, demonstrate an increased dielectric permittivity. Conse-
quently, composites utilizing 1D fillers at lower concentrations may exhibit comparable
dielectric permittivity to composites containing 0D fillers. This, in turn, leads to a higher
breakdown field and, subsequently, a higher energy density [39]. Furthermore, the presence
of small, specialized surfaces on the fillers with a large aspect ratio led to a drop in surface
energy and a reduction in the extent of particle aggregation inside the polymer matrix. The
aspect ratio of 2D fillers is higher compared to 1D fillers, leading to an augmentation in
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both the polarization density and interfacial polarization within the conductor–insulator
system [76].

Microstructure and morphology. The microstructure and morphology of polymer-
based dielectric composites play a crucial role in determining the electrical, mechanical,
and thermal properties of composites. Achieving a uniform dispersion and distribution
of fillers within the polymer matrix is crucial for optimizing the dielectric properties [77].
Agglomerations or clusters of fillers can lead to local variations in dielectric constant
and hinder charge movement, reducing the overall effectiveness of the composite. The
interactions between the filler particles and the polymer matrix at the interface play a vital
role in determining the overall performance of the composite [17,18]. Good interfacial
adhesion ensures effective stress transfer between the matrix and the fillers, leading to
improved mechanical properties. The detailed discussion will be shown in Section 4.1.

Characterization and performance. Proper characterization can achieve the desired
performance of the composites. Dielectric measurement is to show the material’s ability
to store electric charge under an applied electric field. Higher dielectric constants are de-
sirable for energy storage applications as they indicate a higher charge storage capacity.
A lower dielectric loss indicates a higher energy storage efficiency and less heat genera-
tion. It is also important to characterize how the material’s performance changes across the
frequency spectrum and temperature range relevant to the intended application [40,48,78].
Breakdown strength is the maximum electric field that the composite can withstand before
breakdown occurs. A higher breakdown strength is crucial to prevent catastrophic failure
at high voltages. In addition, the polarization under different electric fields and the effi-
ciency and time of the charge–discharge processing are also critical to evaluate the energy
storage capability.

3. Dielectric Polymers

Polymer capacitors are more attractive for energy storage applications because they
are inexpensive and possess a high dielectric strength, high temperature stability, and
easy processing. As discussed in the introduction, a high dielectric strength plays a
critical role in achieving high energy density. In addition, for polymer-based composites,
the polymer matrix usually determines the dielectric properties, thermal properties, and
energy storage ability of proposed composites [71,79,80]. In this section, different types of
dielectric polymers are discussed, and their dielectric and energy storage performance are
summarized in Table 1.

3.1. Non-Ferroelectric Polymers for High-Temperature Film Capacitors

The D–E relationship of a linear dielectric polymer is almost linear, so there is no
polarization hysteresis loss, which is also called non-polar polymers (Figure 8), including
epoxy, polycarbonate (PC), polyethylene (PE), polyethylene terephthalate (PET), polyimide
(PI), polyester (PS), poly(methyl methacrylate) (PMMA), polypropylene (PP), polypheny-
lene sulfide (PPS), poly(vinyl chloride) (PVC), polyurethanes (PU), polytetrafluoroethylene
(PTFE), etc. [4,70,79,81]. Polyester and polyimide offer a reasonable dielectric permittivity
and have high operating temperatures. The disadvantage is their relatively high dissipation
factor, which increases with temperature and frequency [82]. The beneficial properties of
polypropylene are due to the polypropylene chain molecules, which do not have polar
groups. Polypropylene has a higher breakdown voltage than other non-polar polymers [82].
The typical energy density achievable with polypropylene film at room temperature is
1.2 J/cm3. A metallized biaxially oriented polypropylene (BOPP) was prepared with a
dielectric permittivity around 2.2 and energy density of 2.4 J/cm3 [82]. Ho et al. approached
BOPP by polymerization of the monomer by UV light [83]. The energy density reached
5 J/cm3 and the breakdown strength increased 5% from 650 MV/m. Chung and cowork-
ers synthesized a family of cross-linked polypropylene thin film. The high breakdown
strength (650 MV/m) and energy storage capacity (5 J/cm3) was obtained due to the cross-
linking effect [84]. Nevertheless, it has been observed that the conduction loss becomes
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more prominent at higher applied fields in numerous commonly utilized linear dielectrics,
such as BOPP. Qing Wang’s group focused on polymers of which the dielectric proper-
ties exhibit considerable stability over a large frequency and temperature range, such as
poly(ether ether ketone) (PEEK) and poly(phthalazinone ether ketone) (PPEK) [85,86]. Both
of the polymers showed a higher dielectric permittivity (3–4), higher breakdown strengths
(>400 MV/m), and higher energy density (>3 J/cm3) compared to many other high-
performance polymers, indicating that they are promising candidates for high-temperature
capacitor applications.
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for selected linear polymers and modified linear polymers: polypropylene (PP) [82], polyester
(PET) [82], polycarbonate (PC) [82] polyphenylenesulfide(PPS) [82], biaxially oriented polypropylene
(BOPP) [83], polyimide (PI) [81], poly(ether ketone ketone) (PEKK) [85], poly(phthalazinone ether
ketone) (PPEK) [86], aromatic polyurea (ArPU) [87], aromatic polythiourea (ArPTU) [88], meta-
phenylene polyurea (m-phPU) [89], poly(arylene ether urea) (PEEU) [90], modified poly(4-methyl-1-
pentene) [91], poly(propylene-co-hexen-6-ol) [92].

As discussed in the previous section, BOPP exhibited a low dielectric permittivity and
low operating temperature due to its low melting temperature (<140 ◦C). Some alterna-
tive dielectric polymers, such as polycarbonate (PC), poly(ethylene terephthalate) (PET),
and poly(phenylene sulfide) (PPS), can work at higher temperatures (>125 ◦C) but still
suffered from their low dielectric permittivity [93]. It is necessary to synthesize a polymer
possessing two criteria: the ability to (i) present as strongly dipolar to enhance the dielectric
permittivity and (ii) make dipoles follow the applied field easily to avoid high loss [94].
Recently, some polar polymers or functionalized polymers have been fabricated to increase
the dipole moment, eliminate the polarization hysteresis loss, and achieve high-energy-
density storage, especially for high-temperature film capacitors [95]. The polarization
mechanism in strongly dipolar polymer materials is primarily governed by orientation
polarization. This phenomenon can be effectively characterized by the Frohlich model,
which takes into account the short-range interaction between molecules and the resulting
deformation polarizations [89]. As illustrated in Figure 8, compared to linear polymers,
the modified polymers with an introduced polar group exhibit a larger dielectric constant
and higher energy density. Researchers reported a series of polar polymers that have a
very-high-energy-density storage, such as aromatic polyuria (ArPU), aromatic polythiourea
(ArPTU) [87,88,96], meta-aromatic polyuria (meta-PU) [94,97], poly(arylene ether urea)
(PEEU) [90], and poly(acrylonitrile butadiene styrene) (ABS) [98]. For example, meta-PU
was synthesized via a green route which modified the molecular structure in the polyurea
systems by controlling the dipolar density and dipole moment. A high storage electrical
energy density of 13 J/cm3 and efficiency of 91% can be achieved at 670 MV/m. Compared
to ArPU and ArPTU, meta-PU has a higher dipole moment and higher dipole volume
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density at the same electrical field. Poly(arylene ether urea) (PEEU) was synthesized via
replacing the CH2 group in ArPU by the more polar ether group, which resulted in an
increased dielectric permittivity of 4.7 and energy density of 13 J/cm3. Most importantly,
PEEU exhibited excellent thermal stability up to 250 ◦C and discharged energy density
of 9 J/cm3 at 120 ◦C. Recently, Zhang et al. synthesized a new family of ion-containing
poly(4-methyl-1-pentene) (PMP) copolymers [91,99], which have a high thermal stability
(up to 160 ◦C), a high energy density (35 J/cm3) at a high breakdown strength (1300 MV/m),
and a high charge/discharge energy efficiency (>90%). The remarkable synergy between
the high energy density and low dielectric loss in zwitterions-grafted copolymers can be
attributed to the covalent bonding that restricts ion polarization and the effective charge
trapping facilitated by the zwitterions, as previously demonstrated. The present study
introduces an innovative approach to attain a substantial energy density and mitigate
dielectric loss in polymer dielectrics.

3.2. Ferroelectric Polymers and Blend Polymer Matrix

Ferroelectric polymers have been widely used in various electronic applications,
including actuators, acoustic transducers, and artificial muscles [100,101]. Poly(vinylidene
fluoride) (PVDF) was the first electroactive polymer and is commonly chosen as a polymer
matrix, it has been studied intensively in last 20 years [2,4,102,103]. It exhibits good
mechanical and electric properties, such as piezoelectricity and ferroelectricity which
exhibits both significant piezoelectric and ferroelectric properties. In this section, a summary
on the energy storage behavior of ferroelectric polymers is given, including pure PVDF,
PVDF-based copolymers, and PVDF-based terpolymers [10,104].

Zhang’s group studied the energy storage of PVDF in the α, β, and γ forms [105]. The
presence of a high remnant polarization in β-PVDF is attributed to the D–E loop, which is
defined by an all-trans polymer chain configuration. The observed disparity in remnant
polarization between γ-PVDF and α-PVDF may be attributed to the TTTG conformation,
which exhibits a greater level of polarity compared to the TGTG chain conformation. The
energy density (1.5 J/cm3) and loss under low electric fields of PVDF in its three crystal
forms have been shown to be identical. The γ phase samples have a maximum discharged
energy-storage density of 14 J/cm3 due to their ability to withstand the highest breakdown
field of 500 MV/m. Thakur et al. developed a novel approach to alter the surface properties,
which can enhance the performance of energy storage systems and find applications in
many fields [106]. A green aqueous functionalization of PVDF through dopamine is used
to significantly enhance the dielectric properties, which results in a novel material for
possible applications.

A number of (PVDF)-based polymers have been studied many years, such as poly(vinylidene
Fluoride-Trifluoroethylene) [P(VDF-TrFE)], poly(vinylidene fluoride-chlorotrifluoroethylene) [P(VDF-
CTFE)], poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)], and P(VDF-TrFE-CFE) ter-
polymers [2,4,102,103]. The presence of hysteresis in ferroelectric materials can be attributed to the
energy barrier encountered during the reversal of the polarization direction. Ferroelectric polymers
exhibit significantly elevated levels of losses as a result of the delayed switching of dipoles in re-
sponse to the alternating electric field. Hence, it may be concluded that the P(VDF-TrFE) copolymer
is unsuitable for the purpose of electrical energy storage. Guan et al. reported that the P(VDF-TrFE)
93/7 copolymer can have an energy density around 18 J/cm3 under 350 MV/m [107]. It was found
that a high energy irradiation can introduce defects, such as chain scission, the formation of double
bonds, etc. The irradiated P(VDF-TrFE) behaves like a relaxor, with a transition temperature much
lower than unirradiated copolymers [108,109].

In order to enhance the characteristics of electrical energy storage, it is imperative to ad-
dress two crucial concerns. The first pertains to the mitigation of dielectric and ferroelectric
losses within ferroelectric polymers. The second involves gaining a comprehension of the
underlying dipole reorientation and switching mechanism in the reaction to an alternating
electric field. One potential strategy for confinement involves modifying conventional fer-
roelectrics to exhibit relaxor-like ferroelectric behavior, characterized by smaller hysteresis



Nanomaterials 2023, 13, 2842 13 of 45

loops. Extensive research has been conducted on a novel copolymer, P(VDF-CTFE), which
exhibits a remarkable combination of high electric energy density and discharge speed. The
energy density of this copolymer has been shown to reach impressive levels, ranging from
17 to 25 J/cm3, as investigated by numerous research organizations [110,111]. It was first
studied in 2006 by Q. M. Zhang’s group that a highly recoverable energy storage density of
17 J/cm3 was realized in P(VDF-CTEE) 91/9 mol.% at 575 MV/m [112]. Zhou et al. reported
that a higher density of Ue~25 J/cm3 can be obtained under a breakdown field >700 MV/m
by further improving the film processing conditions and copolymer film quality. The films
were prepared from a standard extrusion-blown process at 190–250 ◦C [110]. Q. Wang’s
group studied the effect of the crystal structure on the polarization reversal and energy
storage of P(VDF-CTFE) [111]. With different quenching and annealing temperatures,
different crystallines can be obtained with different breakdown fields. Different crystallite
structures can affect the dipole orientation behavior, which plays a vital role in determining
and improving the high-field dielectric performance. Another PVDF-based copolymer with
a higher electrical breakdown field is P(VDF-HFP) [107,113,114]. Zhou et al. achieved an
electrical energy density that was higher than 25 J/cm3 of P(VDF-HFP) 95.5/4.5 at room
temperature, which represents a one order of magnitude improvement over the widely
used state-of-the-art BOPP capacitor films [113]. Wang Qing’s group obtained an energy
density around 27 J/cm3 of P(VDF-HFP) 96/4 [107]. They also studied the energy storage
of P(VDF-HFP) films with different crystal orientations by using different preparation
and processing methods [114]. As shown in Figure 9, P(VDF-HFP) films with multiply
treatments exhibited larger energy density at the same electric field compared to PVDF or
P(VDF-CTFE) polymers.
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Figure 9. Summary of) energy density at different electric fields for selected linear polymers and
modified linear polymers: PVDF [82], quench PVDF [105], dopamine-modified PVDF [106], P(VDF-
CTFE)91/9 by extrusion at 190–250 ◦C [110], P(VDF-CTFE) by quenching in liquid N2 [111], P(VDF-
CTFE) by cooling to R.T. then annealing at 110 ◦C [111], P(VDF-HFP) 96/4 by solution casting and
uniaxial stretching [107], P(VDF-HFP) 95.5/4.5 by extrusion and stretching at 110 ◦C [113], P(VDF-
HFP) by solution casting [114], P(VDF-HFP) by solution casting, stretching and annealing [114],
P(VDF-HFP) by melt-pressing, quenching, and stretching [114], P(VDF-TrFE-CFE) 63/37/7.5 by
suspension polymerization [115], P(VDF-TrFE-CTFE) 88.0/5.2/6.8 by direct polymerization [116],
P(VDF-TrFE-CTFE) 65.6/26.7/7.7 [117], P(VDF-TrFE-CTFE)-g-PS (14 wt.%) [107], P(VDF-TrFE-CTFE)
80/18/2-g-PEMA (22 wt.%) [118], P(VDF-CTFE) 91/90-BA (10%) [119], α-VDF oligomer-P(VDF)
80/20 [120].

Aside from that, there are many groups that proposed the use of a blend polymer ma-
trix (BPM), mixing PVDF-based ferroelectric polymers with other linear dielectric polymers.
Extensive research has been conducted on both ferroelectric relaxation and conduction
at high fields in order to address the issue of substantial energy dissipation in ferroelec-
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tric polymers based on PVDF. Subsequent studies have revealed that the restriction of
relaxation-induced high loss can be achieved through the grafting or combination of mix-
able polymers, specifically poly(methyl methacrylate) (PMMA) and polystyrene (PS). For
example, the integration of mixable polymethyl methacrylate (PMMA) into copolymers
based on polyvinylidene fluoride (PVDF) has noted to diminish dipole alignment along the
electric field. This adjustment may not significantly affect the discharged energy density,
but it could substantially elevate it [121–123]. Most notably, the crystal phase transition
from the desirable phase to the undesirable phase of PVDF that is generated by a high elec-
tric field can be avoided with the use of PMMA. As a result, PMMA has seen widespread
use as a material for the modification of PVDF-based copolymers in the production of
energy storage capacitors. Thermoplastic polymers have the characteristic of being able
to undergo melting and subsequent processing, making them suitable for utilization in
polymer film capacitors as these capacitors are currently fabricated using processes that
are compatible with the melt processability of thermoplastic polymers. The efficacy of
crosslinking thermoplastic polymers in enhancing their physical properties has been well
established. The enhancement of various properties, such as hardness, stiffness, wear and
impact resistance, thermal stability, and insulation strength, can be observed when PE or
PMMA undergoes crosslinking, resulting in the formation of crosslinked polyethylene.
This material has proven to be highly effective as an insulation material in high-voltage
power systems. Furthermore, it has been observed that crosslinking enhances the tensile
stress, breakdown strength, and capacitive performance of ferroelectric polymers [124].

In summary of this section, the large-scale fabrication of ultra-thin, high-temperature
dielectric films of a high quality will be the future trend for all organic dielectric capacitors.
How to obtain high power densities, a fast charge–discharge speed, and great stability at
elevated temperatures (>150 ◦C) is the main task in this research field. On the one hand,
controlling the exponential increase in electrical conduction with temperatures will contain
the degrades of the capacitive performance at elevated temperatures [125]. On the other
hand, new ultra-thin film fabrication technology is needed to improve the quality of the
film because the performance of dielectrics highly rely on the fabrication methods and
environmental conduction [126]. These pioneer works will lead the future work for the
scale-up preparation of ultra-thin dielectric films and the minimization of capacitors under
extreme environments.

4. Polymer-Based Composites with 2D Fillers

Recently, 2D fillers have exhibited superior potential in improving the energy storage
performance of polymer nanocomposites [127] (Figure 3), including low-k 2D nanofillers
(e.g., montmorillonite nanosheets) [128,129], high-k 2D nanofillers (e.g., BaTiO3, TiO2, and
NaNbO3) [20,130,131], and other graphene-like 2D layered nanomaterials (i.e., molyb-
denum disulfide, MXene, and hexagonal boron nitride) [132]. During the process of
breakdown, it is possible to conceptualize 2D fillers as conductive barriers that have the
ability to restrict the movement of charge and impede the progression of electrical treeing.
Additionally, the utilization of 2D materials possessing a significant specific surface area
has the potential to facilitate the dispersion of fillers in a direction perpendicular to the
applied electric field. This dispersion mechanism, in turn, contributes to the mitigation of
the local electric field gradient, ultimately resulting in an improvement in the breakdown
strength of dielectric polymer composites. In this section, polymer-based composites with
various 2D fillers are discussed and summarized.

4.1. Structures of the Composites

Polymer-based dielectric composites for energy storage can come in various structural
configurations, including single-layer, sandwich, and multilayer arrangements
(Figure 10) [15,19,133]. Each configuration has its own advantages and is suited for specific
applications. For 2D fillers, the structure is critical to the energy storage performance due
to the geometry of the 2D filler itself [67].
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In a single-layer structure, the composite consists of a homogeneous mixture of the
polymer matrix and filler materials. The filler materials are dispersed throughout the
polymer matrix, creating a uniform material with enhanced dielectric properties. This
structure is relatively simple to fabricate and is suitable for applications where a moderate
increase in energy storage capacity is required. The most widely used fabrication methods
are solution casting and spinning coating, followed by thermal treatment [25]. The interface
between the polymer matrix and filler materials is critical for the performance of the
composite [19]. A well-adhered and uniform interface ensures efficient charge transfer and
reduced internal electric field concentrations. This leads to enhanced dielectric properties
and breakdown strength. The coupling agent plays a role in improving this interface by
promoting adhesion and compatibility [5]. A coupling agent is often used to improve
the compatibility between the polymer matrix and the fille materials. It helps to enhance
the adhesion and interaction at the matrix–filler interface, resulting in improved overall
properties of the composite. Coupling agents can be silanes or other surface-modifying
agents that have functional groups that are compatible with both the polymer and the
filler, including the -OH group [134], dopamine [135], metal oxides [136], PM7F [137], and
other agents.

The sandwich structure involves two different designs: one is to place a layer of the
composite with 2D fillers between two layers of polymer layers (0-x-0), and the other one
is to place a layer of the polymer matrix between two layers of composites with 2D fillers
(x-0-x), as shown in Figure 10b [138]. Here, 0 means 0 vol.% of the filler and x means x
vol.% of the 2D filler in the matrix. Recently, many researchers have investigated both
structures and made a comparison between them [139,140]. The multilayered structure
means the composite is composed of more than three layers. The utilization of multilayer
structural materials has emerged as a potential approach for enhancing the breakdown
strength [141], with a particular emphasis on the development of high energy storage
performance dielectrics. This strategy has proven to be crucial in advancing the exploitation
of such materials [77].

4.2. High-k 2D Platelets and Nanosheets
4.2.1. Lead-Free Ceramics

For dielectric composites as 2D ceramic fillers, extensive research has been conducted
on lead-free piezoelectric ceramics due to their environmental tolerance, biocompatibility,
and ease of fabrication [35,142–144]. Furthermore, these ceramics demonstrate a compar-
atively lower permittivity in comparison to ceramics containing lead. This characteristic
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offers several advantages: (i) it mitigates the dielectric mismatch between the fillers and
the matrix, (ii) it eliminates any remnant polarization, and (iii) it extends the breakdown
path while preventing charge migration. These factors collectively contribute to the en-
hancement of the breakdown strength. The utilization of these additives presents a fresh
methodology for augmenting the energy storage density of composite films under condi-
tions of comparatively modest electric fields. The investigation of composites containing
2D ceramic fillers has received considerably less attention in studies compared to compos-
ites with 1D ceramic fillers. This disparity can be attributed to the restricted commercial
accessibility and challenges associated with the manufacturing of composites incorporating
2D ceramic fillers. Researchers discovered that the dielectric permittivity and disintegration
strength can be simultaneously enhanced by adding a small amount of 2D filler, resulting
in multiple attempts. According to the findings of these studies, the geometry of the 2D
fillers played a significant role in the concomitant enhancement. When using 2D fillers with
a high dielectric permittivity, it is desirable to obtain a high energy density at a relatively
low electric field, given these achievements.

The most popular high-k and lead-free materials are BaTiO3 [145], SrTiO3 [146,147],
Ba/SrTiO3 [137,148], and BiFeO3 [149]. Wen et al. reported BT/PVDF composites using 2D
platelets, which were prepared and investigated in this work (Figure 11a–d) [20]. The com-
posites were fabricated using a straightforward method, including a solution casting and
quenching treatment, without the use of a multiple-layer architecture or surface chemical
treatment. The composite exhibited notable enhancements in both dielectric characteristics
and energy storage capability in comparison to the original PVDF material. The composite
film, which contained a little amount of BT (1 wt.%), demonstrated a significant discharge
energy density of 9.7 J/cm3 at an electric field strength of 450 MV/m. This value is twice
as high as that of pure PVDF and nearly five times higher than the discharge energy den-
sity of the leading commercially available BOPP film. Moreover, composite films exhibit
exceptional cycle stability and fatigue resistance. The simulation also provided insights
into the local electric field and local polarization distribution of the composite material.
The energy performance of the material in question is comparable to or exceeds that of
several previously documented composites containing 0D BT particles, 1D BT nanowires,
and two other 2D dielectric fillers [150]. The dielectric characteristics and energy storage
capacity of composites consisting of 2D ceramic platelets were explored by D. Zhang and
colleagues through fabrication and experimentation. For example, (Na0.5Bi0.5)0.93Ba0.07TiO3
(NBBT) platelets, with a size of 5 µm and thickness of 0.2–0.5 µm, were used as the filler in
a P(VDF-HFP) polymer matrix. By combining different routes, the film exhibited a high
discharged energy density of 10 J/cm3 at 258 MV/mm [151]. The researchers also con-
ducted an investigation on a nanocomposite consisting of P(VDF-TrFE-CTFE) and BaTiO3
platelets. This nanocomposite was generated using a three-step molten salt process and was
subsequently modified using a unique RAFT polymerization method [145]. The composites
containing 15 vol.% BaTiO3 platelets achieved an energy density of 1.26 J/cm3 under the
influence of an electric field of 60 kV/mm. Additionally, the researchers incorporated two
distinct components, namely graphene sheets and BaTiO3 platelets, into the PVDF polymer
matrix. This resulted in the achievement of a significantly high permittivity value of 66.2,
while simultaneously attaining an exceptionally low dielectric loss of 0.048 [152]. Gao’s
group investigated the influence of plate-like (Ba0.6Sr0.4)TiO3 on the dielectric properties of
a PVDF polymer [137]. The findings of the study indicated that the plate-like particles had
a favorable alignment and consistent directionality within the PVDF matrix. The obtained
values for the energy storage density were 6.36 J/cm3, while the dielectric loss was found
to be 0.042, indicating an ultra-low level.
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Besides the BaTiO3-based ceramics, other types of lead-free ceramics, such as NaNbO3
(NN) and K0.5Na0.5NbO3 (KNN), are also excellent lead-free ferroelectric ceramics with
relatively high dielectric constants of ∼300 at 1 kHz [153]. Combined with the trilayered
architecture, the 2D NN/PVDF composites illustrate a high discharge energy density of
13.5 J/cm3 at 400 MV/m (Figure 11e–h) [131], and P(VDF-HFP) composites with core–shell
NaNbO3@Al2O3 platelets obtained an enhanced discharge energy density of 14.59 J/cm3 at
400 MV/m [136]. This achievement can be ascribed to the utilization of high-aspect ratio 2D
NN/KNN platelets, as well as the development of trilayered architecture composite films.
These films consist of two outer layers made of high dielectric constant NN/PVDF, while
the middle layer is composed of high-breakdown-strength pristine PVDF. This finding
is further supported by the investigation of another set of KNN/PVDF composites [154].
In addition, bismuth-layered structures, like Na0.5Bi4.5Ti4O15 [135], and SrBi4Ti4O15 [155],
which easily form plate-like particles from the molten salt method, have also been used as
the filler because of their relatively low dielectric permittivity. The reduction in dielectric
mismatch between the filler and the polymer matrix leads to a decrease in the distortion of
the electric field at the interface, resulting in an improvement in the electric breakdown
strength. An exemplary composite material consisting of 2D SrBi4Ti4O15 nanosheets
demonstrated a high energy storage density of 11.69 J/cm3 and a discharge efficiency of
78.94% [155].

4.2.2. Perovskite Nanosheets

Besides the non-polar characteristic of the layered ferroelectric materials (e.g., CaBi4Ti4O15,
SrBi4Ti4O15) discussed in Section 4.2.1, another type of 2D perovskite oxide nanosheets
(Ca2Nb3O10) have recently introduced a new platform for dielectric energy storage [156–158].
Few studies have examined its application as efficient fillers for polymer nanocomposite
capacitors, which are more commonly employed as all-inorganic free-standing dielectric
capacitors [159]. When the total number of free electrons hits a certain level, a complete
dielectric breakdown takes place. Therefore, reducing the kinetic energy of energetic electrons
is one way to raise the Eb while suppressing the quantity of secondary electrons. Increasing
the breakdown strength of polymer nanocomposites is a major problem in achieving a high
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energy density and good dependability under high voltages. By including negatively charged
Ca2Nb3O10 nanosheets with a thickness of approximately 1.5 nm (Figure 12a), Bao et al. hy-
pothesized that they might considerably increase their breakdown strength and energy storage
and, thus, obtained PVDF-based nanocomposite capacitors which exhibited the highest energy
density (36.2 J/cm3) and a significantly improved breakdown strength (792 MV/m) among
all flexible polymer-based dielectrics (Figure 12b,c) [21]. The same significant improvements
in the breakdown strength and energy density of polystyrene-based nanocomposites serve as
proof that the method is generalizable. Phase-field simulations show that the local electric field
created by the negatively charged Ca2Nb3O10 nanosheets sandwiching the positively charged
polyethyleneimine is responsible for the further enhanced breakdown strength. This local
electric field suppresses the secondary impact-ionized electrons and obstructs the breakdown
path in nanocomposites. The outcomes indicate a brand-new potential of flexible capacitors
with high energy densities. In addition, Shen et al. fabricated a polymer nanocomposite,
P(VDF-HFP)/Ca2Nb3O10, with a storage energy of 35.9 J/cm3, which mainly benefitted from
an improved breakdown strength of 853 MV/m [160]. Meanwhile, to assess the energy storage
capacity, a machine learning technique was planned in this work (Figure 12d). They discov-
ered that the breakdown strength of polymer nanocomposites could be greatly enhanced
by the parallel perovskite nanosheet’s preference for blocking and then driving charges to
migrate along with the interfaces in the x-y plane. Besides the Ca2Nb3O10, another group
synthesized a novel ferroelectric Sr2Nb2O7 nanosheet via a simple two-step hydro-thermal
reaction to generate an increase in polarization [121]. A significantly improved Weibull break-
down strength of 602.5 MV/m and a resulting high discharge energy density of 28.39 J/cm3

was obtained. Very recently, besides CNO nanosheets and multilayer structures, interfacial
engineering, which uses bidirectional-matched aluminum oxide interface transition regions
between polyimide and CNO nanosheets, was proposed [161]. The successful creation of the
bm-interface was demonstrated by a multitude of experimental and characterization results.
These findings indicate that the interface has an inherent ability to hinder the movement
of carriers and the conduction of electricity in the composites. The composites exhibited
exceptional energy storage capabilities in both conventional and high-temperature situations.

4.2.3. Metal Oxides

From an energy storage standpoint, the integration of nanoparticles, with permittivity
values in the range of hundreds or even thousands, into polymers, which typically exhibit
permittivity values below ten, may not be advantageous in terms of attaining a substantial
enhancement in energy density [162]. Due to the significant disparity in permittivity
between the filler and the polymer matrix, the primary factor contributing to the augmented
dielectric permittivity is the heightened average field within the polymer matrix, while
the filler phase retains a minimal amount of stored energy. Moreover, the existence of a
substantial disparity in permittivity between the two phases gives rise to a profoundly
non-uniform electric field, leading to the formation of a composite material with a much
reduced effective breakdown strength. Due to these reasons, many metal oxides have
been used as fillers to improve the energy storage performance, including TiO2 [162–165],
ZrO2 [166–168], Al2O3 [169], SiO2 [170], Fe3O4 [171], ZnO [172–174], and SnO2 [175].

Although many articles have reported dielectric composites with metal oxides, there
are still limited publications on 2D metal oxides. Sheng et al. successfully exfoliated a ZrO2
nanosheet from ZrClO2·8H2O powders through a simplified process and fabricated PVDF/ZrO2
nanocomposites [176]. The reduced leakage current and increased Young’s modulus of the
composites achieved a much improved energy density of 11.03 J/cm3 at a breakdown strength
of 519 MV/m. After that, 2D titanium dioxide (TiO2) nanosheets [130] and monolayer titania
(Ti0.87O2) nanosheets [22] were introduced as the filler separately, in 2018 (Table 2). Both of
these composites exhibited an improved breakdown strength (>570 MV/m) and large efficiency
(>60%). Especially, it can obtain an energy density of 21.1 J/cm3 in a single layer of PVDF with
titania monolayers, which represents an enhancement of 1758% over the BOPP (1.2 J/cm3 at
640 MV/m), as shown in Figure 13a–d. For high-temperature capacitor applications, the
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alumina, as a representative linear dielectric material, features stable chemical and thermal
properties, a large band gap (~9 eV), and an excellent insulation performance [177]. Wang’s
group systematically studied the influence of varied morphologies of Al2O3 fillers (nanoparticles,
nanowires, and nanoplates) on the dielectric performance [178]. Besides the advantages of
the metal oxides, the increased insulation is initially ascribed to the orientation of 2D metal
oxide nanosheets along the in-plane directions perpendicular to the external electric field, which
results in an increase in path tortuosity in the electrical treeing process (Figure 13e–g). When
polymer chains are bonded to metal oxide nanosheets, their mobility is diminished, which
inhibits the transfer of charge carriers through the polymer chains’ loose mobility. The increased
insulation contributes to both the increased failure strength and the reduced dielectric loss.
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Table 1. The parameters of energy storage of polymers.

Polymer Preparation or Treatment Thickness εr tan δ Eb Ue Pm Ref.

(µm) (MV/m) (J/cm3) (C/m2)

A: Non-Ferroelectric polymer

Polypropylene (PP) - 10 2.2 <0.02 640 2.4 - [82]

Polyester (PET) - 3 3.3 <0.5 570 1–1.5 - [82]

Polycarbonate (PC) - 2.8 <0.15 528 0.5–1 - [82]

Polyphenylenesulfide (PPS) - 3.0 <0.03 550 1–1.5 - [82]

Biaxially oriented polypropylene (BOPP) metallized and UV irradiation 7 2.2 - 720 5 - [83]

Poly(propylene-co-p(3-butenyl)styrene) cross-linking reaction 10 3.0 - 650 >5 0.013 [84]

Polyimide (PI) spin-coated 2.5 3.4 - 300 1–1.5 - [81]

Poly(ether ketone ketone) melt pressing under pressure 25 3.6 0.003 450 3 0.008 [85]

Poly(phthalazinone ether ketone) (PPEK) chemical reaction/hot pressing 20–40 3.5 <0.01 450 3.9 - [86]

Aromatic polyurea thermal vapor deposition and
annealing 2.5 4.2 0.005 800 >12 0.035 [87]

Aromatic polythiourea microwave-assisted
polycondensation 1–5 4.5 <0.002 1000 22 0.045 [88]

Meta-phenylene polyurea (m-phPU) polycondensation 1–5 5.7 0.017 1000 >20 0.038 [89]

Poly(arylene ether urea) (PEEU) thermal polycondensation - 4.7 0.008 700 13 0.035 [90]

Modified poly(4-methyl-1-pentene) Ziegler–Natta and hot press and
stretch 10 5.0 0.015 612 >7 0.027 [91]

B: PVDF based co-, tri-polymer

PVDF 12 590 2.4 [82]

PVDF quench γ-PVDF 20–30 500 14 0.09 [105]

PVDF dopamine modified 20–30 32 <0.002 140 2.7 - [106]

P(VDF-TrFE) 93/7 80–100 12.6 <0.01 350 18 0.11 [107]

P(VDF-CTFE) 91/9 extrusion at 190–250 ◦C 10 13 0.03 600 25 0.13 [110]

P(VDF-CTFE) quench in liquid N2 then anneal
at 25 ◦C 15–25 400 8 0.065 [111]
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Table 1. Cont.

Polymer Preparation or Treatment Thickness εr tan δ Eb Ue Pm Ref.

(µm) (MV/m) (J/cm3) (C/m2)

A: Non-Ferroelectric polymer

P(VDF-CTFE) cooling to R.T then anneal at
110 ◦C 15–25 500 10 0.08 [111]

P(VDF-HFP) 96/4 solution cast and uniaxial
stretching 8 <0.01 600 27 0.08 [107]

P(VDF-HFP) 95.5/4.5 extrusion and stretch at 110 ◦C 3–11 12 - 700 >25 - [113]

P(VDF-HFP) solution cast at RT 15 5.6 0.07 550 20 0.07 [114]

P(VDF-HFP) solution cast and stretching and
annealing 8 9.6 <0.05 550 22 0.085 [114]

P(VDF-HFP) melt-pressing and quench and
stretching 20 12.2 0.03 500 20 0.07 [114]

P(VDF-TrFE-CFE) 63/37/7.5 suspension polymerization 10–15 50 <0.2 400 9 0.09 [115]

P(VDF-TrFE-CTFE) 88.0/5.2/6.8 Direct polymerization 20 10 - 500 10.3 0.086 [116]

P(VDF-TrFE-CTFE) 65.6/26.7/7.7 30–40 60 - >500 >13 0.1 [117]

C: Ferroelectric polymers–polymer composites

P(VDF-TrFE-CTFE)-g-PS (14 wt.%) hot press at 240 ◦C and quench
and stretched 80–100 9 <0.01 500 21 0.08 [107]

P(VDF-CTFE)97/3-g-PS (34 wt.%) hot press and quench and stretch 80–100 5 0.006 600 10 0.025 [179]

P(VDF-TrFE-CTFE)80/18/2-g-PEMA (22
wt.%) quench at 0 ◦C 20 6.5 <0.05 550 14 0.075 [118]

P(VDF-CTFE)91/90-BA (10%) ultraviolet radiation - - 400 22.5 0.12 [119]

PC/PVDF multilayers 50/50 0.38/12 3/12 <0.03 600 11 - [180]

PVDF/PMMA (40 wt.%) quench at 0 ◦C 20 6 0.05 400 6 - [181]

α-VDF oligomer-P(VDF) 80/20 uniaxial pressure to eliminate
defects 2 4.9 - 868 27.3 0.162 [120]
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Table 2. The dielectric properties and energy storage performance of composites with 2D fillers.

2D Filler Polymer Size of Filler Thickness
(µm)

Coupling
Agent Structure Content εr tan δ

Eb
(MV/m)

Ue
(J/cm3)

η
(%) Ref.

High-k ceramics

BaTiO3 P(VDF-TrFE-CTFE) L: 10 µm, T: 10 µm - PM7F Single layer 15% 90.2 0.1 60 1.26 74.2 [145]
BaTiO3 PVDF R: 3–8 µm, T: 0.2–0.5 µm 10 - Single layer 0.3% 11.9 <0.04 450 9.7 55 [20]
SrTiO3 PVDF R: 3–15 µm, T: 0.2–0.3 µm - dopamine Single layer 1 wt.% 10.66 - 357 9.48 57.2 [146]

Ba0.6Sr0.4TiO3 PVDF R: 3–8 µm, T: 0.1 µm 100 PM7F Single layer 40% 62.2 0.042 29 6.36 - [137]
NaBiBaTiO3 P(VDF–HFP) L: 5 µm, T: 0.2–0.5 µm 10 PVP 30-1-1-1-30 1–30% 25.3. 0.05 258 14.95 90 [151]

NaNbO3 PVDF L: 2–5 µm, T: 0.1–0.5 µm 15 PDA 3-0-3 3% 11 ~0.04 400 13.5 71 [131]
NaNbO3 P(VDF-HFP) L: 1–5 µm, T: 0.1–0.5 µm 10 Al2O3 Single layer 3% 12 <0.05 440 14.59 70.1 [136]

K0.5Na0.5NbO3 PVDF L: 17–40 µm, T: 0.4–3.5 µm 20 - 0-3-0 3% 12 <0.05 350 14.5 80.2 [154]
Na0.5Bi4.5Ti4O15 PVDF L: 15–20 µm - dopamine Single layer 1 wt.% 16 0.1 300 9.45 52.3 [135]
SrBi4Ti4O15 PVDF R: 1 µm, T: 0.25 µm 15 - 0-5-0 5% 13 <0.05 385 11.69 78.9 [155]
Ca2Nb3O10 PVDF L: 150 nm, T: 1.5 nm 12 - Single layer 2.1 wt.% 10.5 - 792 36.2 61.2 [21]
Ca2Nb3O10 P(VDF-HFP) L: 37.4 nm, T: 3 nm - - Single layer 0.1% - - 853 35.9 - [160]
Ca2Nb3O10 PVDF L: 100 nm, T: 1.7 nm 11 - Sandwich 11 <0.05 710 25.1 80 [182]
Sr2Nb2O7 PVDF L: 35 nm, T: 3 nm 9 - Single layer 5 wt.% 11 <0.05 600 28.4 71 [121]

Metal oxides

ZrO2 PVDF L: 20–40 µm, T: 20 nm - - Single layer 1 wt.% 10 <0.04 519 11.03 67.4 [176]
Ti0.87O2 PVDF L: 15–20 µm, T: 1.2 nm 10 - Single layer 1 wt.% 12 <0.03 650 21.1 60 [22]

TiO2
PMMA/P(VDF-

HFP) R: ~200 µm, T: 6 nm 10 dopamine Single layer 5 wt.% 10 ~0.04 570 13.0 63 [130]

Montmorillonite

MMT PVDF - 20 - Single layer 0.2 wt.% 28 0.032 873 24.9 >60 [24]

Na+/MMT PVDF - 30 ionic
liquid Single layer - 15 <0.02 100 5.5 81 [183]

Na+/MMT polypropylene T: 20–25 nm - - Single layer 0.4 wt.% 3.75 <0.01 530 5.2 94.9 [184]
MMT PVDF - 15 - 460 7.26 69 [185]

Transition metal dichalcogenides

MoS2 PVDF D: 1–2 µm - - Single layer 0.4% 11.3 0.07 200 2.3 ~72 [186]
Bi2Te3 PVDF R: 0.4–1 µm, T: 0.1 µm - Al2O3 Single layer 10 vol.% 140 0.05 50 - - [76]
Bi2Te3 P(VDF-HFP) R: 0.4–1 µm, T: 0.1 µm - SiO2 Single layer 10 vol.% 70.3 0.058 <500 - - [187]
MoS2 PI L: 1 µm 18 - Single layer 1 vol.% 3.3 <0.02 395 3.35 >80 [188]
MoS2 Chitin L: 2 µm 15 - Single layer 5 wt.% ~9.8 ~0.025 350 4.91 >80 [189]
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Table 2. Cont.

2D Filler Polymer Size of Filler Thickness
(µm)

Coupling
Agent Structure Content εr tan δ

Eb
(MV/m)

Ue
(J/cm3)

η
(%) Ref.

MoS2 g-PMMA/PI T: 1–2 µm MMA Single layer 3 wt.% 4.2 0.015 450 8.6 61.7 [190]

MoS2 P(VDF-CTFE-DB) R: 3–5 µm, T: 0.2–0.5 µm 15 ZnO Single layer 2 wt.% 12.9 0.047 300 7.2 83 [25]

Graphene-based fillers

Graphene P(VDF-TrFE-CFE) L: 0.1–0.4 µm, T: 1.6 nm ~20 HBPE-g-
HFBA Single layer 0.1 wt.% ~15 ~0.04 250 5.0 78.1 [191]

Graphene P(VDF-CTFE) L: 0.2–0.6 µm, T: 1.3 nm 12 HBPE-g-
PTFEMA Single layer 0.8 vol.% 24.8 0.06 250 4.6 62 [192]

GO P(VDF-HFP) T: 1 nm 29 - Sandwich 2 wt.% ~11 ~0.1 300 10 77 [193]

BNNS

BNNS P(VDF-TrFE-CFE) L: 0.4 µm, T: 10–70 nm - - Single layer 12 wt.% 38 0.03 650 20.3 78 [194]
BNNS PMMA L: 0.4 µm, T: 2 nm - - Single layer 12 wt.% ~3.6 0.044 473 3.5 86 [195]
BNNS PVDF L: 0.5–1 µm, T: 2–10 nm 30 -OH Single layer 6 wt.% 11.1 ~0.014 517 13.1 - [134]
BNNS PVDF L: 1–2 µm, T: 2 nm 10 - Single layer 8 wt.% 8.3 <0.05 486 7.25 - [196]
BNNS PVDF L: <3 µm, T: 3.9 nm 12 - Sandwiched 0.16 vol.% ~11 <0.07 612 14.3 73 [197]
B16-BN PVDF L: 1 µm, T: 1.5–2.5 nm 25 -OH Single layer 8 wt.% 9.6 <0.03 436 9.8 - [198]
BNNS PEI L: 1 µm, T: 2.7 nm 10 -hydroxyl Single layer 4 vol.% ~3.3 <0.02 700 7.67 93.6 [199]
h-BN P(VDF-CTFE) L: ~0.4 µm, T: 1.5 nm 15 - Sandwiched 0.4-0-0.4 35.1 <0.03 300 9.1 62.8 [140]
BNNS P(VDF-TrFE-CFE) - 5–10 NH2/Epoxy Matrix free 18 wt.% ~32 <0.05 742 31.8 72.7 [23]
BNNS P(VDF−HFP)/PMMA L: ~0.1–0.2 µm, T: 5 nm 25 lysozyme Single layer 5 wt.% ~10 <0.06 500 14.9 71 [122]
BNNS Cellulose L: 0.6 µm, T: 1.3 nm - - Single layer 10 wt.% ~7 0.02 370 4.1 75 [200]
BNNS Cellulose - - –COO− Single layer 4 vol.% ~8 <0.03 384 3.9 66 [201]
BNNS Chitin L: ~0.5 µm, T: 3.3 nm 15 - Single layer 6 wt.% 7.1 0.018 450 8.7 90 [202]

Ti3C2TX (MXene)

Ti3C2TX PVDF T: 2–4 µm 45 - multilayer 2-1-0.1 20 0.04 350 12.5 >60 [203]
Ti3C2TX PVDF - 22 - multilayer 4:5 41 0.028 300 7.4 [204]
Ti3C2TX PI - 5 - Single layer 0.5 wt.% 3 <0.02 648 8.67 84.1 [26]
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interfaces of clay minerals, resulting in a higher polarization, improved dielectric perfor-
mance, and breakdown strength [24,185,212–214]. Ghosh et al. made the discovery that 
intercalation could occur in PVDF/clay nanocomposites without the need for chemical 
treatment. This phenomenon was attributed to the vulnerability of the long hydrocarbon 
chain ligands typically employed in surface modification. The low dielectric constant of 
these ligands, in contrast to the high dielectric constant of the PVDF matrix, rendered them 
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Figure 13. Nanocomposite capacitors with significantly enhanced energy density and breakdown
strength utilizing a small loading of monolayer titania. (a) AFM image and (b) the corresponding
height profiles of TOMLs. (c) energy density calculated from D−E loops, and (d) charge–discharge
efficiency of PVDF/TOML nanocomposites with different filler contents as a function of the electric
field. Reproduced with permission from [22], Copyright 2017, WILEY-VCH. Scalable polymer
nanocomposites with record high-temperature capacitive performance enabled by rationally designed
nanostructured inorganic fillers. (e) The predicted breakdown path evolution. (f) Discharged energy
density and (g) charge–discharge efficiency of high-temperature dielectric polymers and the c-BCB
nanocomposites measured at 200 ◦C. Reproduced with permission from [178], Copyright 2019,
WILEY-VCH.

4.3. Montmorillonite

Layered silicates (such as montmorillonite and laponite clays) have been employed as
fillers to make polymer-based composites with superior qualities due to their abundance in
nature, low cost, distinctive lamellar structure, high cation exchange, water-swelling capacity,
and adaptable interlayer spacing [205]. Montmorillonite (MMT) is the most common silicate,
which consists of many layers packed parallel to one other to create lamellae of around 1 nm
in thickness and several micrometers in length. It indicates that each lamella has a high length-
to-thickness ratio, which enables the passage of energy from the inorganic to the organic
phase and back. Many studies have demonstrated that polymer nanocomposite materials
have improved mechanical and dielectric characteristics [206–208], especially to improve the
electroactive phase, enhance the polarization, and increase the tensile strength of PVDF-based
polymers [209–211].

Recently, a research group examined the improvement of the energy storage capability
because they found that adding MMT is beneficial to the breakdown strength of PVDF
nanocomposites because of the superior mechanical reinforcement effect and nanometric
interfaces of clay minerals, resulting in a higher polarization, improved dielectric perfor-
mance, and breakdown strength [24,185,212–214]. Ghosh et al. made the discovery that
intercalation could occur in PVDF/clay nanocomposites without the need for chemical
treatment. This phenomenon was attributed to the vulnerability of the long hydrocarbon
chain ligands typically employed in surface modification. The low dielectric constant of
these ligands, in contrast to the high dielectric constant of the PVDF matrix, rendered
them susceptible to the applied voltage, facilitating intercalation [24] (Figure 14a–d). The
composites exhibited superior dielectric properties and great energy storage performance
(24.9 J/cm3 at 873 MV/m). This work’s simplification and extensibility provide a cost-
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effective approach to achieving better Eb and Ue. These characteristics provide a realistic
design for flexible and transparent nano-dielectric materials with a high dielectric response
and exceptional energy storage performance.
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Figure 14. Improved breakdown strength and electrical energy storage performance of PVDF/
unmodified montmorillonite clay nano-dielectrics. (a) Structure of MMT, 2:1 layered silicate showing
two tetrahedral sheets of silicon oxide fused to an octahedral sheet of aluminum hydroxide and
platelet structure. (b) TEM image of the PCN1 film where intercalation is indicated by marked
regions. (c) Measured discharged energy density and (d) efficiency of all samples. Reproduced
with permission from [24], Copyright 2016, IOP Publishing Ltd. Effect of Na+ MMT-ionic liquid
synergy on electroactive, mechanical, dielectric, and energy storage properties of transparent PVDF-
based nanocomposites. (e) Schematic representations showing the dispersion states of Na+ MMT
in PVDF matrix and the mechanism of IL contribute to the exfoliation of Na+ MMT, (f) discharged
energy density, and (g) charge–discharge efficiency at 100 MV/m of PVDF and PVDF-based blends.
Reproduced with permission from [183], Copyright 2020, Elsevier.

Although many investigations have been performed, it was found that the improve-
ment of the dielectric properties was limited by (i) the poor compatibility between the
MMT and the polymer matrix, and (ii) the weak polarization of MMT. Some researchers
believed that ion and liquid modification of MMT could improve the performance. Con-
sequently, different ions, such as Li+- and Na+-modified MMT, were prepared and the
related dielectric nanocomposites were investigated [183,184,215]. In addition, ionic liquid
as an addition, along with ion modification, played a critical role in enhancing the energy
storage properties (Figure 14e–g) [183]. For example, the PP-g-MAH nanocomposite film
with an optimized org-MMT content of 0.4 wt.% possessed an excellent discharged energy
density of 5.21 J/cm3 under 530 MV/m with a high efficiency of 94.9% [184]. Due to
the interfacial chain movement constraint of PP-g-MAH, the incorporation of org-MMT
somewhat decreased the nanocomposite’s dielectric constant. Alternatively, org-MMT
increased the nanocomposite’s tensile strength by inhibiting the growth of electrical trees.

In summary, MMT as a low-cost and easy-processing filler is a good candidate com-
pared to other 2D fillers. The mechanisms behind the improved energy storage capability
are that (i) the interaction between PVDF-based polymers and MMT may decrease the
mobility of the PVDF chains, thereby inhibiting charge transport through the loose amor-
phous region, and (ii) the MMT can perform as an insulating barrier to prevent current
conduction in the PVDF matrix, thereby inhibiting charger carrier mobility and reducing
leakage current.
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4.4. Graphene-Based Nanosheets

The primary focus of research in the field of dielectric materials revolves around
enhancing the dielectric constant and breakdown strength, while concurrently upholding a
high level of charge/discharge efficiency. Hence, it is imperative to augment the mechanical
characteristics of the polymer material while simultaneously preserving its electrical insu-
lating capabilities, specifically its low dielectric loss. In the context of these applications,
the incorporation of conductive two-dimensional carbon fillers, such as graphene, has
been found to enhance mechanical performance. However, it has been observed that the
inclusion of these fillers has a negative impact on dielectric characteristics. Graphite can be
exfoliated to produce graphene, which is a single two-dimensional sheet. It has exceptional
qualities, including being incredibly light, mechanically robust, thin, electrically conductive,
and very strong. Graphene has, so far, found wide-ranging uses in the electronics, pharma-
ceuticals, composites, coatings, sensors, and energy industries. Graphene was employed as
a conductive filler in the production of polymer-based nanocomposites with elevated per-
mittivity, owing to the interfacial polarization that occurs between the fillers and the matrix.
Liu et al. employed the technique of in situ polymerization to fabricate materials with a
high dielectric permittivity. The topic of interest pertains to the study and development
of nanocomposites comprising graphene and polyimide materials [216]. The dielectric
permittivity had a significant enhancement with the augmentation of graphene content.
Fan et al. fabricated nanocomposites consisting of graphene and PVDF with a multi-layered
architecture [217]. The nanocomposites exhibited a remarkably low percolation threshold
of 0.0018 in terms of volume percent of graphene, which stands as the most minimal value
documented among PVDF-based nanocomposites. At a graphene volume percentage of
0.00177, the nanocomposites exhibited a significantly elevated dielectric permittivity of
340 at a frequency of 100 Hz. Upon surpassing the percolation threshold, the dielectric
permittivity experienced a subsequent increase, reaching a substantial value of 7940 at a
frequency of 100 Hz. However, it is noteworthy that this increase in dielectric permittivity
was accompanied by a significant rise in dielectric loss. The study conducted by Wang et al.
presents a noteworthy investigation whereby a three-dimensional aerogel was employed
as a template for the synthesis of graphene/poly(vinyl alcohol) nanocomposites [218].
The inclusion of poly(vinyl alcohol) as a barrier in graphene aerogel/poly(vinyl alcohol)
nanocomposites effectively prevents direct contact between the conductive skeletons. This
results in a notable improvement in the dielectric properties of the composites. Specif-
ically, the dielectric permittivity of these nanocomposites can reach a value as high as
1059, while the dielectric loss is remarkably low, measuring only 0.08. In a separate study,
Zhang and colleagues conducted an emulsion polymerization process to graft varying
quantities of polystyrene (PS) onto reduced graphene oxide (rGO-PS). Subsequently, they
incorporated the resulting rGO-PS into a PS matrix, thereby producing nanocomposites of
PS/rGO-PS [219].

However, compared to nanoparticles with the same loading, 2D nanosheets could
percolate more easily, which is why there were limited reports on the energy storage
of the composites with graphene-based nanosheets. Some groups used fluoro-HBPE as
a polymer stabilizer to achieve a homogeneous distribution of graphene and reduced
graphene oxide (rGO) and obtain an energy density around 5 J/cm3 at a low electric field
(~250 MV/m) [191,192]. In many recent works, researchers usually mix graphene or rGO
with the second filler and then introduced this in the polymer matrix.

4.5. Boron Nitride Nanosheet Fillers

Boron nitride nanosheets (BNNS), isolated from hexagonal boron nitride (h-BN) and
referred to as “white graphene”, have drawn much attention because of their similar structure
to graphene. BNNS have been widely used in a wide range of applications, from the fields
of automotive, aerospace, healthcare and medical, and energy storage to electrical engineer-
ing [220,221]. BNNS have a wide band gap of (~5.6 eV) and excellent electrical insulation
properties, including a high bulk resistivity (1013 Ω·cm) and low dielectric loss, which are
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proving to be particularly promising in terms of an enhanced electric field, increased energy
density, and improved dielectric reliability [222,223]. In addition, under extreme conditions at
high temperatures, most capacitors have a low energy storage efficiency and reduced energy
density, so it is of great importance to develop capacitors with high charge and discharge
efficiencies at high temperatures. It was found that BN nanomaterials have a superior fracture
strength (165 GPa), high Young’s modulus (0.8 Tpa), high thermal stability (800 ◦C in the
air), excellent coefficient of thermal expansion (−2.72 × 10−6 K−1), and outstanding thermal
conductivity (300–2000 W·m−1·K−1) [224]. Recently, the introduction of BNNS exfoliated from
BN particles into different polymer matrixes has been demonstrated to achieve an outstand-
ing dielectric performance and ultra-high energy density, especially for high-temperature
applications [225,226].

BNNS have been composited with different polymers for dielectric energy storage
materials, such as PVDF [227], P(VDF-TrFE-CTFE) [194], crosslinked bisbenzocyclobutene
(c-BCB) [228], poly(methyl methacrylate) (PMMA) [195], cellulose [200], polyimide [226],
and polyetherimide (PEI) [199]. In contrast to conventional polymer nanocomposites,
which typically require organic functionalization of the inorganic filler’s surface to achieve
a uniform distribution within the organic phase, it has been observed that the polar nature
of B-N bonds facilitates the dispersion of BNNS in polar organic solvents and polymer
matrices characterized by high polarity, such as fluoropolymers and biopolymers. The
preparation of BNNS typically involves the utilization of h-BN using the solution exfolia-
tion technique. In the usual procedure, a quantity of 1 g of hexagonal boron nitride (h-BN)
will be evenly distributed within a volume of 100 milliliters of N,N-dimethylformamide
(DMF) with intense stirring, followed by sonication. The upper transparent layer was
thereafter subjected to centrifugation and afterwards dried under vacuum conditions in
order to acquire the precipitated product of BNNS [194,195]. For example, Li et al. used
the solution exfoliation method to produce P(VDF-TrFE-CFE)/BNNS and PMMA/BNNS
nanocomposites, respectively, which could be applied at high temperatures [194,195]. The
thickness of BNNS obtained by solution exfoliation is 2 nm and the transverse dimension
is 400 nm. It was found that the uniform dispersion of BNNS on the PMMA surface
greatly improved the thermal conductivity and capacitance of the nanocomposites. The
experimental results show that the discharged energy density can reach up to 20.3 J/cm3

from the 15 mm thick terpolymer nanocomposite with 12 wt.% of BNNS at 650 MV/m in
P(VDF-TrFE-CFE)/BNNS composites, and 3.5 J/cm3 at 473 MV/m with 86% efficiency in
PMMA/BNNS composites. Chen et al., using the same method, prepared PEI nanocom-
posite films containing two-dimensional hydroxyl-functionalized boron nitride nanosheets
(h-BNNS) [199]. The experiments utilized polyetherimide (PEI) with a high glass transition
temperature (Tg), moderate dielectric constant (εr~3.2), low loss, and good mechanical
strength as a polymer matrix. The nanocomposite films exhibit a great breakdown strength
(Eb~700 MV/m) at room temperature, high discharge energy density (~7.67 J/cm3), and
high discharge efficiency (~93.6%). In addition, the nanocomposites exhibit excellent
thermal stability at 500 MV/m and 150 ◦C, with a discharge energy density of 3.43 J/cm3.

Very recently, Huang’s group proposed a matrix-free method to efficiently reduce the
effects of electron multiplication while improving the mechanical modulus and thermal
conductivity of the polymer [23]. This method involves chemically attaching an amino-
containing polymer to BNNS surfaces to form an electron barrier layer. The nanocomposites
were able to significantly improve the break-down strength and significantly reduce leakage
current, which led to a striking rise in discharge energy density. As shown in Figure 15, an
ultra-high energy density (31.8 J/cm3) at a high breakdown strength (Eb = 742 MV/m) was
achieved, exhibiting good repairability by reversible chemisorption. The rationale behind
this phenomenon is twofold: (i) the surface electron barrier layers of the BNNS exhibit
a pronounced repulsive and obstructive influence on high-energy electrons when the
BNNS are oriented perpendicular to the electric field, and (ii) the interconnected molecular
networks within the nanocomposites substantially enhance the Young’s modulus while
preserving elongation at the break.
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China Press. Published by Elsevier B.V. and Science China Press.

For the development of BNNS nanomaterials, however, there are still numerous
concerns and obstacles. Examples include the low chemical reactivity of BNNS, its weak
contact with the matrix polymer, and its inhomogeneous dispersion on the matrix polymer.
The incorporation of inorganic fillers must be handled with care as the interface and
flaws caused by incompatibility between two materials can significantly increase dielectric
loss and degrade breakdown performance. The chemical alteration of the raw BNNS
surface poses challenges in directly introducing an electron barrier layer due to its inert
molecular composition. The most frequently employed technique involves the chemical
modification of filler surfaces, which can be achieved through processes such as grafting
organic surfactants or applying a thin layer of polymers onto the particle surfaces.

4.6. Transition Metal Dichalcogenides (TMDs)

Recently, unlike graphene, most interesting and exciting 2D material transition metals
are dichalcogenides (TMDs), such as molybdenum disulfide (MoS2), tungsten disulfide
(WS2), and bismuth telluride (Bi2Te3), which have been explored intensively with the
aim of achieving a good performance for various kinds of applications [229–231]. The
TMD sheets exhibit a 2D shape and an ultra-thin thickness, and they display distinct
physical, chemical, and electrical properties in comparison to their bulk counterparts.
These materials possess a high band gap of 1.8 eV, rendering them chemically stable and
capable of modifying the dielectric constant under the influence of an external electric field.
Despite these characteristics, they do not introduce electrical conductivity to the polymer
matrix. Moreover, they have the potential to enhance mechanical properties such as the
elastic modulus, strength, toughness, and fatigue resistance.

Elsik et al. studied the dielectric and mechanical properties of polymer composites
with a small amount of MoS2 nanoplatelets [232]. The authors exfoliated bulk MoS2 into
nanoflakes, which were then dispersed in epoxy polymers, and characterized the tensile
and fracture properties of the prepared composites. The mechanical properties of the epoxy
were effectively enhanced by loading very low (below 0.2% by weight) fractions of MoS2
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nanoplatelets, demonstrating the significant potential of two-dimensional transition metal
dihalides as reinforcing additives in polymer composites. Although it is the first work
studying composites with TMD fillers, this work did not discuss the electric breakdown
and energy storage. Jiang’s group first reported that MoS2 superstructures can significantly
influence flexible ferroelectric polymer composites, and two important studies are exhibited
in this work [186]. Similar to the behavior observed in 2D fillers, composites based on MoS2
superstructures also display electrical behavior that is reminiscent of percolation, wherein
a notable increase in dielectric constant is observed in close proximity to the percolation
threshold. Furthermore, when MoS2 superstructures are subjected to mild loading, the
resulting composites demonstrate a remarkable ability to endure strong electric fields and
display a substantial increase in electric polarization. As a consequence, there is a notable
enhancement in the capacity for electrical energy storage. For example, at an electric field
of 200 MV/m, the total stored energy density of the composites with 0.4% MoS2 flower
are 4.1 and 2.3 J/cm3, respectively. Although the value is much lower compared with
other composites with 2D fillers, it is a good start and provides more insight in this type
of composite.

In recent years, many groups have also focused on composites with MoS2 fillers,
mainly focusing on the surface modification [190], different matrixes (PI, Chitin) [188,189],
and hybrid fillers with conducting fillers (PPy Aluminum flake, ZnO, etc.) [25,233–236].
Within the single-layered composites, as shown in Figure 16a–d, Li et al. synthesized the
MoS2 nanosheets coated with a PMMA layer using the SEP method to fabricate MoS2-g-
PMMA nanosheets [190]. The dielectric constant of MoS2-g-PMMA/PI (MPP-3%) reaches
4.2, which is 20% higher than that of a pristine PI film, while the energy density reaches
8.6 J/cm3 at room temperature and 3.92 J/cm3 at 150 ◦C, which is 40% higher than the high-
est energy density of a pristine PI film. This is a much better result than what researchers
have found before for high-temperature capacitor applications. The MoS2-g-PMMA/PI-
based nanocomposite has a lot of potential for use as a high-temperature capacitor. Chen
et al. investigated chitinous/MoS2 nanocomposite dielectric films, using the biodegradable,
renewable, and biocompatible chitin, which is a natural polymer with an extremely high an-
nual production [189]. The researchers successfully dissolved chitin in a low-temperature
freeze–thaw cycle using a new environmentally friendly solvent, aqueous KOH/urea,
and the experimental results showed that chitin has great potential for dielectric energy
storage applications [237]. The study used the same method to dissolve chitin and the
results showed that the dielectric constant and breakdown strength of the chitin/MoS2
nanocomposite increased, while the dielectric loss remained low. At a content of 5 wt.%,
the composite film achieved a charge/discharge efficiency of over 80% and a breakdown
strength of 350 MV/m, resulting in a high discharge energy density of 4.91 J/cm3. Wen
et al. prepared mixed semiconductor nanofillers with different ratios of molybdenum
disulphide (2D) nanosheets and zinc oxide (0D) nanoparticles using a wet chemical route
and ultrasonic mixing, as shown in Figure 16e–i [25]. The P(VDF-CTFE-DB)/ZnO@MoS2
nanocomposites containing 2 mol% filler on the study surface exhibited a high power
density and excellent fatigue reliability. The hybrid fillers can effectively improve the
dielectric properties, breakdown field, and energy storage properties. P/ZnO@MoS2
composites with a 2 wt.% have a high energy density (7.2 J/cm3), high power density
(0.17 MW/cm3), and high charge/discharge efficiency (83%). In addition to MoS2, Bi2Te3
has also been investigated as a conductive nanofiller for enhancing the dielectric char-
acteristics of nanocomposite films. This is due to the favorable electrical conductivity
and significant aspect ratio exhibited by 2D hexagonal nanoplates of Bi2Te3. Cheng et al.
coated the Bi2Te3 with SiO2 and Al2O3 to effectively improve the dielectric properties and
energy storage performance [76,187]. In addition, similar to composites with BNNS fillers,
composites with TMDs also have good thermal stability. The energy storage performance
at elevated temperatures is summarized in Section 5.
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Figure 16. Two dimensional MoS2 nanosheet-based polyimide nanocomposite. (a) Transmission elec-
tron microscopy (TEM) image of the MoS2-g-PMMA nanosheets. (b) Scanning electron microscopy
(SEM) image of the surface morphology. (c) Dielectric constant and dielectric loss of nanocomposite
films with various MoS2 concentrations. (d) Energy density of the MoS2-g-PMMA/PI nanocomposite
films with various concentrations at room temperature. (e) Charge–discharging efficiency of the
pristine PI, MPP-3%, and MP-3% films at room temperature. (f) Comparison of the energy density of
the MoS2-g-PMMA/PI (where PI is polyimide) nanocomposite with various concentrations at 150 ◦C.
Reproduced with permission from [190]. Copyright (2021), WILEY-VCH. Polymer nanocomposites
using hybrid 2D ZnO@MoS2 semiconductive nano-fillers. (g) Image and (h) cross-section SEM images
of 2 wt.% P/ZnO@MoS2-b composite film. (i) HRTEM image of the lattice structure of ZnO@MoS2.
(j) Frequency-dependent dielectric constant of ZnO@MoS2 composites samples. (k) Udischarge and
(l) η at different E for P/ZnO@MoS2-b samples. Reproduced with permission from [25], Copyright
(2021) Elsevier.
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In summary, the role of the TMDs’ filler, which can improve the dielectric con-
stant and maintain the relatively low dielectric loss, is ascribed to the following aspects:
(1) morphology—exfoliated nanoplates with large aspect ratios, (2) electric aspect—high
band gap and a tunable dielectric constant, (3) breakdown—efficient conduction barri-
ers limiting charge migration toward electrodes, and (4) mechanical aspect—enhanced
reinforcing additives with good tensile and fracture properties. However, there are still
some limitations and bottlenecks in the current research; as such, few studies have so far
investigated the effect of MoS2 nanosheets on the dielectric properties of polymer compos-
ites. (1) It is difficult to exfoliate thinner two-dimensional layers, (2) the environmental
pollution issue during the preparation of TMDs, and (3) there remains a low energy density
and breakdown field compared to other 2D fillers. Two methods can be interpreted to
enhance the breakdown field and energy storage. The first is to use an insulating layer of
metal oxides between the TMD and polymer matrix to prevent the accumulation of charge
carriers at the interface. The coated 2D fillers in the matrix operate as nucleating agents to
encourage the creation of nonpolar crystals in the region of the fillers; as the mobility of
dipoles is constrained in these crystals, the reorientation of dipoles becomes more challeng-
ing and requires a stronger electric field. Another potential approach involves employing
many layers and high-aspect-ratio 2D fillers across these layers. This strategy aims to
establish effective conduction barriers that restrict the movement of charges towards the
electrodes and obscure the formation of electric trees during breakdown.

4.7. MXene

MXene nanomaterials with graphene-like structures and advantageous conductivity
have been produced and studied [238,239]. MXenes are 2D transition metal carbides and/or
carbonitrides and have received increasing attention from scholars since their discovery
in 2011 [240]. The general chemical formula of MXenes is Mn+1XnTx (“M” stands for early
transition metal, “X” is carbon and/or nitrogen, “T” is a surface termination, x is the number
of termination groups and n = 1–3). Some typical surface functional groups (Tx) are reported
as O, OH, and F (Figure 17a). These surface terminations make the surface hydrophilic
and molecularly polar so that MXenes mix well with aqueous solutions and a variety
of polar organic solvents, such as dimethylformamide (DMF) and dimethylacetamide
(DMAc) [241]. Subsequently, more than 30 MXenes were created, each exhibiting unique
features based on different M and X elements and their respective ratios [242]. At the same
time, two-dimensional MXene materials have great potential for batteries, capacitors, and
electromagnetic shielding devices due to their high aspect ratio and high conductivity
(Figure 17b) [243–246]. In dielectric research, Ti3C2Tx MXene nanosheets, which have a
higher Young’s modulus and lower conductivity than graphene oxide nanosheets, have
been used to enhance the breakdown characteristics of filler components [247].

Tu et al. first investigated the effect of Ti3C2Tx doping into PVDF polymer nanocom-
posites to prepare high-k polymer nanocomposites [248]. At a frequency of 1 kHz and with a
loading of 10.7 wt.% MXene, the dielectric constant was measured to be 1424. Additionally,
the dielectric loss was found to be 0.35. It is worth noting that this represents the highest
dielectric constant achieved while maintaining a dielectric loss below one. The aforemen-
tioned group has successfully devised a technique to augment the dielectric constant of
MXene/P(VDF-TrFE-CFE) composites by the manipulation of flake dimensions and the
concentration of surface functional groups [249]. The dielectric permittivity of the compos-
ite, which incorporates a large area (4.5 µm) of MXene flakes, exhibits a notable increase,
reaching a value as high as 105 in close proximity to the percolation limit. Nevertheless,
the magnitude of the loss is significantly elevated, surpassing a threshold greater than ten.
To mitigate the loss, the establishment of a well-organized configuration of MXene within
the polymer matrix can effectively optimize the dielectric constant while simultaneously
minimizing the dielectric loss. In the case of PVA/10.0 wt.% MXene, it was shown that
high dielectric constants of up to 3166 accompanied by a low dielectric loss of 0.09 were
achieved. These values surpass the previously reported dielectric data for MXene/polymer
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nanocomposites, particularly when considering the frequency range [250]. Recently, many
MXene-based dielectric composites have been reported, most of which focused on achieving
an ultra-high dielectric constant with low filler loadings but near the percolation thresh-
old, such as a dielectric constant of 439 with a loss of 0.53 in MXene/acrylic resin [251],
a dielectric constant of 539 with a loss of 0.06 in MXene/P(VDF-HFP) [252], a dielectric
constant of 11,800 with a loss of 1.31 in MXene/PVC [253], a dielectric constant of 23.7
with a loss of 0.11 in MXene/PDMS [254], and a dielectric constant of 82.1 with a loss of
0.2 in MXene/PVDF [255]. However, because the energy storage performance was mainly
determined by the low loss and low conductivity, most of the study still focused on the
high dielectric permittivity [256–259] instead of investigating the energy storage capacity.
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Figure 17. Enhanced breakdown strength and energy density over a broad temperature range in
polyimide dielectrics using oxidized MXenes filler. (a) Schematic diagram of the fine structure of the
polyimide-based nanocomposites and the possible occurrence of the internal charge. (b) Discharge
energy densities and efficiency of the polyimide-based nanocomposites at different electric fields.
(c) Variation diagram of maximum discharge energy density and (d) efficiency with varied filler
contents. Reproduced with permission from [26], Copyright (2022) Elsevier.

Although most of the studies on MXene-based nanocomposites focused on a high
dielectric permittivity, there were still some reports on the energy storage capability. It
should be mentioned that, usually, a multilayer-structure is a critical design for obtaining a
good performance from MXene-based nanocomposites. Feng et al. endeavored to achieve
a delicate equilibrium between high-k and high breakdown characteristics, resulting in the
development of a novel gradient sandwich structure of a MXene/fluoropolymer nanocom-
posite [203]. The simultaneous enhancement of high-k features and a high breakdown
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strength in the inhomogeneous multi-layered PVDF-based composite with a concentration
gradient of MXene can be attributed to the improved interface polarization between adja-
cent sub-layer interfaces, in addition to the MXene/PVDF interface polarization and the
interface barrier effect between the adjacent two sub-layers. The sandwich composite, in
its original state, had a permittivity value of 26 at a frequency of 100 Hz. Additionally, it
demonstrated a breakdown strength of 350 MV/m and an energy density (efficiency) of
12.5 J/cm3 at the aforementioned breakdown strength. In their study, Li et al. employed
the layer-by-layer hot-press technique to obtain a significantly improved dielectric constant.
This enhancement can be attributed to the interfacial polarization that occurs between the
PVDF and MXene materials [204]. The application of MXene onto PVDF results in the
formation of a multilayer film, which exhibits an expanded surface area that facilitates
enhanced charge accumulation at the interfaces. This augmentation in charge accumu-
lation contributes to an increase in the polarization of the multilayer film, known as the
Maxwell–Wagner–Sillars (MWS) polarization. The 4MXene/5PVDF film that was artifi-
cially produced demonstrated a dielectric constant of 41, a minimal dielectric loss of 0.028,
and a comparable breakdown strength of 284 MV/m. The observed outcomes in energy
storage can be attributed to two factors: One notable effect of a stronger interface barrier
between the adjacent sub-layers in a sandwich-structured composite is the enhancement
of the composite’s high breakdown strength. This is achieved by effectively limiting the
growth of electric trees throughout the entire thickness of the sandwich composite when
subjected to a high applied field. Conversely, the polarization of the MWS (Metallically
Conductive MXene-Wrapped Single-Walled Carbon Nanotubes) arises between the MXene
and the polymer, as well as between the neighboring sub-layers, hence contributing to
the enhanced high permittivity of the composite material. Very recently, research still
tried to achieve a high energy density in a single-layer film. PI-based nanocomposites
with two-dimensional alkylene oxide as a filler exhibited significantly enhanced capacitive
properties at high temperatures, as shown in Figure 17. Yu et al. introduced a Ti3c2TX
colloidal solution directly into the PI matrix using an in situ polymerization method, which
greatly improved the breakdown strength [26]. The largest discharged energy density
of 8.67 J/cm3 and efficiency of 84.1% are achieved at 648 kV/mm in 0.5-wt.% oxidized
MXenes/PI nanocomposites at room temperature (Figure 17c,d). The incorporation of
layered filler in composites results in an enhanced interface between the polymer and the
filler, which leads to the accumulation of charges at the interface, subsequently giving
rise to a pronounced interfacial polarization. Consequently, the ongoing escalation of the
interface results in the dominance of interface polarization, leading to an enhancement
of the dielectric constant. It is plausible that the charge accumulated on the surface of
oxidized MXene is effectively taken and dispersed by MXene possessing a lower Fermi
level. This study helps to further investigate the preparation of high-performance dielectric
polymer-based composites in a wide temperature range.

In summary, the fatal leakage current and conduction losses of composites are caused by
the extremely high conductivity of MXene, which is not suitable for energy storage. However,
there are still three strategies to make this combination more suitable for energy storage,
including introducing ceramics fillers, using a multi-layer structure, and oxidation of the
MXene surface. The purpose of all of these methods is to reduce the leakage current and
increase the breakdown strength to enhance the energy density of polymer-based composites.

5. Concluding Remarks and Outlook

Significant progress has been achieved in the field of polymer-based dielectric compos-
ites and ultra-thin 2D material research during the past decade, including a wide range of
investigations, from fundamental scientific inquiries to the development of state-of-the-art
technological applications. The integration of 2D filler materials with energy storage ap-
plications has made notable progress, highlighting the influential role that dimensionality
plays in shaping the fundamental characteristics of nanomaterials and their diverse array
of practical uses. In this comprehensive review, we have systematically classified the latest
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advancements in the field of research under consideration. These advancements have been
categorized based on several key aspects, such as the fundamental dielectrics involved,
the significant influence of the polymer matrix, the diverse range of 2D fillers utilized,
the methods employed for dielectric characterizations, the energy storage performances
observed, and the promising potential applications that have garnered attention. However,
there are still some limiting factors that hinder them in practical applications.

Firstly, the preparation of various 2D fillers is lacking. Various advanced synthetic
processes can be employed to produce ultra-thin 2D nanomaterials, each possessing their
own distinct advantages and limitations. The exciting aspect lies in the capacity to pro-
duce ultra-thin 2D nanomaterials that possess diverse structural attributes, including size,
thickness, crystallinity, crystal phase, defect, doping, strain, and surface property. These
properties offer significant advantages across a wide range of applications. Nevertheless,
the discovery and production of ideal 2D fillers, particularly heterogeneous nanofillers or
2D core–shell fillers, may be hindered until a versatile and efficient method for fabricating
free-standing 2D materials is developed.

Secondly, the practical application of 2D material polymer composites is hindered
by the significant constraint of high dielectric loss resulting from their raised dielectric
constants. The occurrence of dielectric loss in high-k materials is frequently attributed
to several factors, including significant polarization, sluggish relaxation, the presence
of conducting channels, as well as strain and stress, especially caused from graphene
structure-based 2D fillers. The aforementioned paradox is frequently encountered in 2D
polymer nanocomposites to a greater degree in comparison to their polymer equivalents.
The preservation or enhancement of the charge–discharge efficiency in nanocomposites
is associated with the insulating properties of these nanofillers. These nanofillers act as
insulating barriers, impeding current conduction and minimizing leakage. The intriguing
phenomenon exhibited by nanocomposites consisting of insulating 2D fillers seems to have
resolved the paradox discussed before. Nevertheless, further investigations are required to
comprehensively analyze and quantify these discoveries. The core–shell construction tech-
nique, while demonstrating enhanced efficiency, is often characterized by time-consuming
processes, limited yields, and high costs. Furthermore, considering that the dielectric prop-
erties of the matrix are generally negligible due to the substantial influence of conducting
fillers on composites, it is possible to modify several types of polymer matrices in order to
attain a strong compatibility with fillers.

Thirdly, another significant challenge encountered in the field of creating 2D polymer
nanocomposites pertains to the intricate nature of interactions occurring at the interface
between the polymer and nanofiller. Additionally, there is limited comprehension regarding
the impact of various factors such as size, shape, edge effects, and nanofiller volume on
these interactions. For instance, in the case of composites, the inclusion of 2D nanofillers
between polymer layers seems to exhibit superior dielectric characteristics compared to
composites where 2D nanosheets are scattered isotopically. Composites containing 2D
nanosheets or nanoplates have a superior performance compared to those incorporating
nanoparticles. While the in-plane polarization generated by the form has been proposed
as the cause, additional research is necessary to comprehend the impact of shapes prior
to their utilization in actual contexts. The complexity of interface science increases when
many polymers and various 2D materials are present as theoretical investigations typically
focus on a single polymer and a single 2D material.

In summary, the achievement of high energy storage applications requires careful
attention to design concerns since it involves finding a delicate balance between permittivity,
dielectric loss, and breakdown strength. Solving the above challenges is essential for both
fundamental science and practical applications. It is anticipated that these challenges, in
conjunction with recent significant advancements in high-performance polymers and 2D
materials, as well as ongoing fundamental research on dielectric phenomena, will likely
result in the creation of scalable, high-performance dielectric materials for the design of
energy storage devices.
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