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Abstract: The circular economy concept is leading environmental engineering in the search for “End-
of-Waste” criteria. Untreated waste residue results from drinking water treatment plants, causing
severe environmental issues, and its reuse is essential. In this regard, this investigation introduces
the beneficial reuses of alum sludge cake to close the loop between sludge waste generation and
reuse. Considering alum sludge as a resource for dewatering instead of its categorization as a
waste reflects an “End-of-Waste” approach. Alum sludge cake was thermally calcined at 400 ◦C
and named thermally treated alum sludge cake (TAS-cake). In this study, TAS-cake decorated with
magnetite with a percent weight of 5 to 1%, respectively, was labeled as TAS-cake@Fe-(5-1). X-ray
diffraction (XRD) and morphologies were applied to characterize the hybrid composite. A Fenton-
based hybrid composite was applied to extrude water from alum sludge for 7 min of conditioning
time. Furthermore, the factorial design based on response surface methodology (RSM) was applied
to optimize the operational variables. TAS-cake@Fe-(5-1) and hydrogen peroxide revealed 1.2 g/L
and 740 mg/L doses at pH 3.0, showing pronounced performance and revealing the highest capillary
suction time (CST) reduction, which reached 53%. A temperature increase also showed a pronounced
enhancement effect on the sludge dewaterability that reached 72% when 55 ◦C was applied. Thus,
such a novel conditioner is a promising candidate for alum sludge conditioning.

Keywords: end-of-waste; aluminum-based sludge; conditioning; dewatering; magnetite; circular
economy; drinking water treatment

1. Introduction

In conventional drinking waterworks plants through water purification steps, Al salts
are applied as coagulants, leading to high concentrations of aluminum in the treatment
residuals, producing so-called “Alum Sludge”. The result is annual waste generated around
the world [1,2]. Alum sludge-based waste discharged into open land areas is a common
criterion in some places. This is leading to a massive contamination of the soil and ecosys-
tem [3]. Thus, environmental engineering and academia are searching for a solution to
overcome such waste disposal criteria.

Initially, prior to sludge handling and discharge, reducing its volume via dewatering
is a must. It is a necessity to reduce its volume by improving the interior dewaterability
performances. The common technique is to use commercial polyelectrolytes for sludge
conditioning based on organic polymers to enhance the dewatering performance [4]. In
this regard, numerous sludge-conditioning techniques have been applied according to
the literature. For instance, a cationic polyacrylamide stabilizer is successfully used as a
conditioner [5] and polyaluminum chloride [6] as a polyelectrolyte conditioner [7]. Also,
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thermal treatments and sonication combined with a chemical conditioner have been in-
vestigated [8,9]. Additionally, the combination of coagulation/flocculation technology
through the application of various coagulants/flocculants has been also applied [10,11].
However, the practical application needs extra research since the use of chemicals makes the
process expensive, especially the use of fresh chemicals, and some other chemicals are toxic
such as polyelectrolytes. Thus, advanced oxidation processes as environmentally friendly
methodologies have been introduced. Therefore, selecting the appropriate conditioner is
a prerequisite.

On the other hand, with ever-increasing worldwide concern, it is essential to intro-
duce environmentally non-hazardous techniques instead of the various available toxic
substances. Additionally, environmentally friendly advanced oxidation methodologies
have been applied for alum sludge conditioning as an environmentally non-hazardous
technique [12,13]. To date, Fenton’s reaction has been the superior conditioner for various
sludge treatments [14,15].

The Fenton reaction is applied in various forms as an oxidation system and represents
a promising candidate conditioner. The system is based on iron ions in incorporation
with H2O2 to produce highly reactive species that oxidize the sludge particles [16–20]. In
recent decades, the application of nanoparticles has shown superior oxidation efficiency.
Such nanoscale particles include magnesium [3,20], magnesium/aluminum layered double
hydroxide [19], zerovalent iron [18] and waste comprising sawdust [17].

However, with the fresh chemicals used, the system is still a concern, and such
limitations hinder the process applications [21]. One major global consideration is the
replacement of fresh chemicals using environmentally friendly materials or waste sub-
stances [22]. From this concept, examining new substances valorized from waste streams
is attracting scientists’ attention [23,24]. Also, cradle-to-cradle waste administration is
important for a green environment [25,26]. Thus, there is limited progress in searching for
greener materials, especially for sludge management [27].

The classical Fenton system is suggested as the simplest and has been applied to
treat various types of wastes, especially wastewater, with limited publications dealing
with alum sludge dewatering [28–30]. Due to its various limitations, including sludge
formation and high remnant metal ions, it has not been applied so far [31]. To overcome
the system boundaries, the novelty of using the source of metals from a waste stream
conjugated with an environmentally non-hazardous material is explored through the use
of aluminum-based sludge [32]. This process could avoid the use of extreme chemicals
since it depends on several metal ions from the waste effluent.

Herein, this study aims to introduce a novel strategy for alum sludge conditioning and
dewatering performance. The investigation is based on examining a low-cost conditioner
derived from waterworks plant residuals and conjugated with magnetite nanoparticles to
be a source for the Fenton catalyst as an innovative conditioner. The attained composite
is characterized by various techniques: XRD, SEM, EDX, FTIR and TEM analysis. The
conditioner is then tested for alum sludge dewatering. The effect of working variables, such
as initial composite loading, H2O2 dose, pH and operating temperature, was inspected. The
optimal variables were assessed using the response surface methodology (RSM) technique
using a maximum response of CST reduction efficiency.

2. Materials and Methods
2.1. Materials

Liquid aluminum-based byproduct waste named alum sludge with a moisture content
of 99.59% was collected from the settling tank of the waterworks plant, located at the south
part of Shebin Elkowm City in the Menoufia Governorate in the north of Egypt, where
aluminum sulfate is used as a primary coagulant for treating River Nile water. The main
characteristics of the obtained sludge are suspended solids of 11,850 mg/L, 286 NTU of
supernatant turbidity, CST of 42 s and pH 8.5.
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Also, for magnetite nanoparticles, the necessary precursors are ferrous sulfate
(FeSO4·7H2O) and Ferric Sulfate Fe2(SO4)3, which were supplied by Qualikems Fine Chem
Pvt. Ltd. (Delhi, India). Hydrogen peroxide (40%, w/w) was used to initiate the oxidation
reaction. Sulfuric acid and sodium hydroxide were used for sludge pH adjustment when
required. LT-25 was supplied by CIBA Specialty Chemicals and was used as the source of
anionic polyelectrolyte. Additionally, Magnafloc FO-4140 supplied by SNF SAC ZACde
Milieux, Andrézieux 42163, France was used as the cationic polyelectrolyte. All chemicals
were of analytical gra de and used as received without further purification.

2.2. Synthesis of TAS-cake@Fe-(5-1) Conditioner

Initially, Fe3O4 nanoparticles were synthesized through the co-precipitation route. The
process was carried out by mixing the precursors of Fe2(SO4)3 and Fe(SO4) under their
stoichiometric ratios in distilled water. Then, NaOH in an aqueous solution was added
in a drop-wise manner until pH reached 11.0. Thereafter, the precipitate was subjected to
successive washing until the pH declined to neutral prior to drying to attain a fine powder
of magnetite nanoparticles. The detailed procedure is illustrated in detail elsewhere [21].

In parallel, alum sludge powder was prepared according to the previous
procedure [33,34]. Initially, the extra water content in the sludge was descanted from
the sludge through gravity settling prior to air-drying, thereby resulting in a dried sludge
cake containing 10% moisture content. Then, the dried sludge cakes were subjected to
cleaning using distilled water to eliminate impurities. Finally, in order to reach a powder
form, the sludge was subjected to oven drying and grinding through ball milling for one
hour. Then, according to the preliminary work, the resultant powder was calcined in the
oven for 2 h at 400 ◦C and labeled as TAS-cake.

The composite was attained by mixing the as-synthesized alum sludge and mag-
netite powder named TAS-cake @Fe3O4 in weight proportions of 5/1 ratio, labeled as
TAS-cake@Fe-(5-1), and then subjected to characterization prior to use in alum sludge
dewatering and a conditioning test.

2.3. Morphological and Structural Characterization

Characterization of the prepared TAS-cake augmented with the Fe3O4 as a composite
conditioner (TAS-cake@Fe-(5-1)) was attained via diffracted X-ray diffraction (XRD) for the
composite. The obtained intensity of the diffracted X-ray was recorded using XRPhillips
X’pert (MPD3040, Cambridge, UK) diffractometer using Cu Ka radiation source (λ = 1.5406)
run at 40 kV and 40 mA in step-scan mode of 0.02◦.

Fourier-transform infrared FTIR (Jasco, FT/IR-4100, type A, MICHIGAN Ann Arbor,
MI 48109 USA) was further applied to determine the type of functional group responsi-
ble for the conditioning (TAS-cake@Fe-(5-1)) by using a He-Ne laser source (λ = 632.8 nm) in
KBr pellet form (0.001 g sample with 0.3 g KBr). Spectra were recorded in the
4000–350 cm−1 region.

Scanning electron microscopy (SEM) (SEM, Quanta FEG 250) and high-resolution
transmission electron microscopy (TEM) (type Tecnai G20, FEI) were applied to investigate
the morphology of the samples. Additionally, the digital TEM image was analyzed using the
IMAGEJ 1.48 V program to establish the particle size distribution of the TAS-cake@Fe-(5-1)
hybrid composite substance. The typically used magnifications were ×8000 and ×60,000.
The main elements on the conditioner composite were assessed via the energy-dispersive
spectrum (EDX).

2.4. Co-Conditioning Procedure

A jar-stirring apparatus was used to perform the conditioning tests at room tempera-
ture where blended sludge samples (100 mL) were added into a 250 mL beaker. Afterward,
the pH value of the sludge was adjusted, if needed, using AD1030, Adwa instrument,
Hungary. Then, the composite was added, and the oxidation reaction was initiated in the
system through the addition of H2O2. Thereby, the reagents and sludge were subjected
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to a jar test for the specific conditioning time. Figure 1 illustrates a schematic graphical
representation of the experimental setup.
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Figure 1. Schematic graphical representation of the experimental setup.

The capillary suction test (CST) apparatus and SRF facility assessed the sludge dewat-
erability before and after co-conditioning. Triton CST apparatus (Trition-WPRL, Type 304M
CST) was used for the CST measurement, and each sample was measured in triplicate. The
CST reduction efficiency (%) was calculated using Equation (1).

CST(%) =
CSTo − CST

CSTo
× 100 (1)

where CSTo and CST are the capillary suction time of the alum sludge before and after
adding conditioners, respectively.

3. Results and Discussion
3.1. TAS-cake@Fe-(5-1) Composite Conditioner Characterization
3.1.1. X-ray Diffraction Pattern

Figure 2 exhibits the X-ray diffraction pattern of thermally activated dewatered sludge
cake (TAS-cake) augmented with the Fe3O4 as a composite conditioner (TAS-cake@Fe-(5-1)).
Notably, the crystalline nature of the composite powder comprises a sharp diffraction peak
pattern. The pure cubic spine crystal structure (JCPDS No. 89-4319) of magnetite peaks
is demonstrated in the sample. The XRD spectra of the peaks at 2θ values of 30.0◦, 35.3◦,
43.0◦, 56.9◦ and 62.8◦ corresponding to the hkl of 220, 35.3◦,311, 43.0◦ 400, 56.9◦, 511 and
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62.8◦, 440 appear in the sample. Also, it can be seen that SiO2 and CaO in the (TAS-
cake@Fe-(5-1)) have an amorphous structure [35,36]. Furthermore, the active substances of
aluminum and graphite appear in the sample in the forms of sodium aluminum silicate
(Na1.15Al1.15Si0.85O4) and calcium aluminum silicate (CaAl2Si2O8). This XRD spectrum
verified the coexistence of Fe3O4 and TAS-cake in the hybrid composite conditioner. SiO2
shows the presence of peaks of 100, 101 and 110, 36. Moreover, calcium aluminum is
reflected in the XRD spectrum by the peaks of 022, 112, 202 and 114. However, 002, 011
and 004 reflected the presence of sodium aluminum silicate. It is noteworthy to mention
that the composite nanospheres with well-dispersed Fe3O4 nanoparticles were synthesized
successfully without damaging the magnetite crystal structure using this methodology.
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Figure 2. Spectrum of X-ray diffraction (XRD) for the hybrid conditioner.

The crystal size of the prepared composite was also attained from this XRD pattern.
The half width at half maximum was used to calculate the particle size using the Debye–
Scherrer Equation (2) [1]:

D = kλ/β cosθ (2)

where D is the average diameter of nanoparticles, λ is the wavelength of X-ray radiation
(1.5418 Å), θ is the diffraction angle, k = 0.9 (shape parameter) and β is the full width
at half maximum of X-ray diffraction peaks. The crystal size was found to be close to
103.92 nm using the (311) index. Furthermore, the degree of crystallinity in the composite
was calculated from the XRD pattern. The degree of crystallinity was calculated using
the standard formula. In such a case, the crystallinity was about 54.63%, which means
the prepared composite material still possessed the important properties of the crystalline
material [3,16].

3.1.2. Fourier-Transform Infrared Spectroscopy

The FTIR transmittance spectrum analysis of the TAS-cake@Fe-(5-1) hybrid composite
conditioner is shown in Figure 3. As illustrated in the curve in Figure 3, the bands around
420 cm−1 and 556 cm−1 are attributed to the stretching vibration of the Fe–O bonds in
the sub-lattice of Fe3O4 [37,38]. The bands at 1124 cm−1 and 1629 cm−1 are a sign of the
presence of C–O and C=C [39,40]. Also, the band at 440.38 cm−1 is allocated for the O–H
stretching vibration of structural water. The Al–Mg–OH group is signified by the band
at 789.7 cm−1 and is linked to the stretching vibrations. The bands of absorption that
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refer to silica appear at 467.65 cm −1 of O–Si–O [23]. A summary of the bands and their
corresponding peaks of TAS-cake@Fe-(5-1) composite conditioner is tabulated in Table 1.
The FTIR data, Table 1 and Figure 3, of the TAS-cake@Fe-(5-1) hybrid composite conditioner
estimate the presence of magnetite and Al-, Si- and C- that comprise the alum sludge cake.
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Figure 3. FIR spectrum of TAS-cake@Fe-(5-1) composite conditioner.

Table 1. Peaks and corresponding adsorption bands of FTIR peaks for TAS-cake@Fe-(5-1)
composite conditioner.

Peak Wavenumber (cm−1)

Fe–O bond 420 and 556
O–Si–O bending vibration 467.65

Al–Mg–OH bending vibration 1201.5
C=O bending 1420.32

C=C 1629
O–H stretching vibration 3440.38

3.1.3. Scanning Electron Microscope Image

The SEM image was investigated to estimate and gain insight into the surface of the
TAS-cake@Fe-(5-1) hybrid composite conditioner. The SEM micrograph of the modified
aluminum-based sludge cake augmented with the nanoparticles of magnetite displayed
in Figure 4 exhibited a semi-hexagonal sheet-like TAS-cake@Fe-(5-1) hybrid material with
white spots, which reflects the presence of metals in the alum sludge cake. Such sheets
are also conjugated with a spherical particle, covering the particle nanocomposite surface,
which reflects the presence of magnetite. Moreover, Figure 4a displays that the sludge
shape was irregular and heterogeneous with a porous texture.
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analysis report.

The main elements in the photocatalyst samples were assessed via an energy-dispersive
spectrum (EDX). EDX analysis illustrated in Figure 4b that Al, O, Si, C, Ca and Fe are the
major elements of TAS-cake sludge. The TAS-cake Fe hybrid material revealed a high con-
tent of Si and Al, which could be associated with the presence of clays and aluminosilicate
substances [41,42].

3.1.4. Transmission Electron Microscope Image

Figure 5 depicts TEM images of the TAS-cake@Fe-(5-1) hybrid composite conditioner.
The stratified nature of the attained aluminum-based sludge is verified by the TEM im-
age. Figure 5 representative product’s TEM pictures clearly demonstrate that the mixed
hexagonal-like particles of alum sludge were augmented with spherical magnetite nanopar-
ticles. Furthermore, very clearly visible irregular sheets signify the border of the alum
sludge. Rough crystalline surfaces were attained.



Nanomaterials 2023, 13, 2903 8 of 19

Nanomaterials 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 

Notably, the inset in Figure 5 displays the range of particle size that displays an av-

erage particle size ranging from 2 to 16 nm, which is considered a quite small particle size, 

demonstrating the existence of magnetite nanoparticles in the sample. 

 

Figure 5. TEM micrograph of the prepared TAS-cake@Fe-(5-1) hybrid composite conditioner (inset: 

particle size distribution). 

3.2. Aluminum-Based Sludge Dewatering Performances 

3.2.1. Conditioning Time Based on Hybrid Conditioner 

TAS-cake@Fe-(5-1) hybrid conditioner influence and conditioning time are jointly il-

lustrated in Figure 6. The influence of the TAS-cake@Fe-(5-1) hybrid conditioner nano-

composite as a source of the Fenton conditioning procedure is shown according to the 

significance of the CST reduction. The test was carried out by changing the conditioning 

temperature, while all other operational parameters were kept constant, i.e., pH 3.0, TAS-

cake@Fe-(5-1): 1 g/Land H2O2 dose of 800 mg/L. Commonly, minimum CST refers to a 

better filtration performance. The significance of the conditioning test time on alum-based 

sludge conditioning for better dewatering performances was assessed at different floccu-

lation times ranging from 1 to 8 min. Various sets of experiments at various TAS-cake@Fe-

(5-1) composite conditioners were checked, and the optimal conditioning time was moni-

tored. 

The results displayed in Figure 6 show that the TAS-cake@Fe-(5-1) composite aug-

mented with hydrogen peroxide as the source of the Fenton conditioner could result in an 

enhancement in the CST reduction. The data showed that the influence of TAS-cake@Fe-

(5-1)/H2O2 had an effective trend on the sludge conditioning and improved with the time 

Figure 5. TEM micrograph of the prepared TAS-cake@Fe-(5-1) hybrid composite conditioner
(inset: particle size distribution).

Notably, the inset in Figure 5 displays the range of particle size that displays an
average particle size ranging from 2 to 16 nm, which is considered a quite small particle
size, demonstrating the existence of magnetite nanoparticles in the sample.

3.2. Aluminum-Based Sludge Dewatering Performances
3.2.1. Conditioning Time Based on Hybrid Conditioner

TAS-cake@Fe-(5-1) hybrid conditioner influence and conditioning time are jointly illus-
trated in Figure 6. The influence of the TAS-cake@Fe-(5-1) hybrid conditioner nanocompos-
ite as a source of the Fenton conditioning procedure is shown according to the significance
of the CST reduction. The test was carried out by changing the conditioning temperature,
while all other operational parameters were kept constant, i.e., pH 3.0, TAS-cake@Fe-(5-1):
1 g/Land H2O2 dose of 800 mg/L. Commonly, minimum CST refers to a better filtra-
tion performance. The significance of the conditioning test time on alum-based sludge
conditioning for better dewatering performances was assessed at different flocculation
times ranging from 1 to 8 min. Various sets of experiments at various TAS-cake@Fe-(5-1)
composite conditioners were checked, and the optimal conditioning time was monitored.
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The results displayed in Figure 6 show that the TAS-cake@Fe-(5-1) composite aug-
mented with hydrogen peroxide as the source of the Fenton conditioner could result in an
enhancement in the CST reduction. The data showed that the influence of TAS-cake@Fe-
(5-1)/H2O2 had an effective trend on the sludge conditioning and improved with the
time increased. The highest CST reduction performance corresponded to a time of 7 min.
However, extra conditioning time, more than 7 min, is unfavorable since the CST deduction
did not improve. This investigation is in agreement with the previous research reported by
Mo et al. [43].

The data obviously displayed that the maximal CST reduction (%) corresponded to
a specific time of conditioning (7 min). However, with time continuation, the result is a
reduction in the dewatering tendency. This might be attributed to the size of the floc formed
after adding flocculent material, the main element responsible for enhancing dewaterabil-
ity [44]. Also, it is necessary to mention that the sludge dewaterability enhancement by
the Fenton oxidation is dependent on the release of both interstitial and chemically bound
water. Interstitial water is trapped between the organics and chemically bound water or
adsorbed by the oxidation and destruction of organics. It is notable that this work is in
accordance with research conducted by [45] since similar results were noted with reaction
time variations from 2 to 60 min. However, there was no detailed illustration of the reaction
time influence on conditioning efficacy. Clearly, further work is essential to explore such an
influence. Thus, TAS-cake@Fe-(5-1) is projected to be a capable alternative for substituting
the traditional chemical Fenton conditioner for alum sludge. Notably, the use of waste as a
recyclable substance replacing the traditional elements as a source for the Fenton reaction
is a promising candidate for such a dewatering system.

3.2.2. Effect of TAS-cake@Fe-(5-1) Dose

To assess the effectiveness of the TAS-cake@Fe-(5-1) on the oxidation/conditioning
system as a vital role in the alum sludge conditioning, the TAS-cake@Fe-(5-1) reagent dose
was altered in the Fenton system, whereas all other operating parameters were kept at
the following constant conditions: conditioning time, 7 min; pH 3.0; and H2O2 dose of
800 mg/L. The results of the experiment exhibited in Figure 7 revealed that the sludge
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filterability regime is associated with the TAS-cake@Fe-(5-1) dose composite that is signified
as a rate-limiting stage in the conditioning since its amount present in the reaction medium
affects the conditioning performance.
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Figure 7. CST reduction efficiency at various TAS-cake@Fe-(5-1) doses (operational conditions:
conditioning time: 7 min; pH: 3.0; H2O2 dose: 800 mg/L; and standard deviation of three replicates).

The TAS-cake@Fe-(5-1) hybrid composite was raised from a dose of 0.25 mg/L to a
dose of 1.0 g/L, and the CST decline was examined. The data plotted in Figure 7 highlighted
the noteworthy role of aluminum-based sludge powder and magnetite in proceeding with
the hydroxyl radicals’ generation and thereby improving the alum sludge filterability [46].
Consequently, the CST reduction increased from 23 to 53% by increasing the composite
dose of the TAS-cake@Fe-(5-1) from 0.25 to 1.0 mg/L, whereas a larger amount of reagent
resulted in a CST reduction, reaching only 41%.

This may be attributed to the metals in the TAS-cake@Fe-(5-1) hybrid composite, which
hydrolyzed in the reaction, and their presence in optimal occurrence resulted in maximal
hydroxyl radical production. This governed the oxidation reaction [47]. Also, the amount
of the TAS-cake@Fe-(5-1) changed in each experiment, which means its presence affected
hydroxyl radical production. Hence, the non-optimal value functions as an inhibitor of the
radicals rather than a generator, thereby reducing the overall conditioning rate [48]. The
OH radicals formed in the reaction media, which is associated with the presence of the
catalyst as a reagent that is initiated with hydrogen peroxide and is related to the amount
of catalyst added. The amount of OH radicals formed is not sufficient to attack alum sludge
particles to initiate the new intermediates for enhancing the filtration properties [14].

3.2.3. Effect of Hydrogen Peroxide Dose

The hydrogen peroxide reagent change augmented with the TAS-cake@Fe-(5-1) on
the CST reduction rate is displayed in Figure 8, and other operating conditions were kept
constant in the following ways: conditioning time, 7 min; pH 3.0; and TAS-cake@Fe-(5-1)
1 g/L. According to the data displayed, the increase in the hydrogen peroxide from 200 to
800 mg/L resulted in a reduction in CST, reaching 53%. Hydrogen peroxide was used as an
initiator for the TAS-cake@Fe-(5-1) catalyst. However, a further upsurge in the hydrogen
peroxide reagent dose reached more than 800 mg/L, and the result is a reduction in the
effectiveness of CST removal. Such an impact is due to the hydrogen peroxide reagent
triggering the hydroxyl radical’s production. Hydroxyl radicals are the main horsepower
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of conditioning through oxidation/dewatering systems. Their presence in the reaction in
the optimal value leads to the maximal flocculation reaction due to the maximal hydroxyl
radical generation.
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Figure 8. CST reduction efficiency at various hydrogen peroxide doses (operational
conditions—conditioning time: 7 min; pH 3.0; TAS-cake@Fe-(5-1): 1 g/L; and standard deviation of
three replicates).

The increase in the hydrogen peroxide dose improved the effectiveness of dewaterabil-
ity until a certain limit of addition from the reagent. Although the enhancement in sludge
dewaterability occurred at a broad range of hydrogen peroxide, reversible results of CST
are attained with an extra increase in the reagent. Thus, the hydrogen peroxide reagent
plays a significant role in the Fenton reaction since excess addition leads to a negative
impact on the alum sludge dewatering performance. This may be linked to the amount of
OH radicals, the main horsepower in the oxidation system. Hydrogen peroxide elevation
leads to a specific limit of concentration; the result is a scavenging effect for the radicals
produced rather than a generator. Some authors [14,21,45] in the literature reported such
phenomena concerning OH radical production on the effect of the Fenton reaction, which
is associated with the amount of hydrogen peroxide.

3.2.4. Effect of pH Value

The influence of aluminum-based sludge dewaterability is exhibited in Figure 9, and
the test was conducted by keeping the operating conditions constant at an H2O2 dose of
800 mg/L and TAS-cake@Fe-(5-1) 1 g/L. As given in the figure, the alum waste dewaterabil-
ity performance was enhanced with the elevation of the pH value from 2.0 to 3.0 to record a
53% CST reduction. However, when increasing the pH condition to more than 3.0, the result
is a reduction in the CST enhancement performance. This is due to the sludge particles’
surface presences, and characterization further defined the impact on the extracellular
substance (TAS-cake@Fe-(5-1)) in the aluminum-based sludge. But, with acidic or alkaline
circumstances for the alum sludge, the colloidal particles of the alum sludge might be
hydrolyzed, and flocs might be formed. But, with the pH control and adjustment, alum
sludge could adsorb both ions of H+ and/or OH−, thus influencing their self-chargeability.
Moreover, it might be linked to the metal ion release from the sludge, i.e., aluminum and
iron ions which could promote the flocculation, thus enhancing the water release from the
aluminum-based sludge. This illustration was previously recognized by Kwon et al. [45] on
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wastewater sludge treatment and conditioning to enhance its dewaterability. Nevertheless,
it is noted that higher pH results in a reduction in the quantity of OH radicals, which is
believed to be the driving force towards improvements in sludge dewaterability. The effect
of pH on the capillary suction time (CST) efficacy at a pH of 3.0 in this investigation is the
best, corresponding to the highest net CST reduction efficacy being attained. Such results
are in agreement with the previous findings of Lu et al. [48] and Tony [49] who claimed
a similar efficiency of activated sludge dewaterability when exploring Fenton oxidation
conditioning in an acidic pH range. Under the extreme acidic and alkaline medium, the
structure of the extracellular sludge is reduced to small flocs [50,51].
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3.2.5. Effect of Temperature

Although the most common method for the Fenton reaction is conducted at ordinary
room temperature, the temperature elevation could affect the conditioning system. In
this regard, conditioning of the sludge is checked at various temperatures ranging from
25◦ to 55 ◦C. The test was conducted at operational conditions for a time of 7 min; pH
3.0; H2O2 dose of 800 mg/L; and TAS-cake@Fe-(5-1) 1 g/L. The results of alum sludge
dewaterability are exhibited in Figure 10. The conditioning process was conducted using
TAS-cake@Fe-(5-1): 1 g/Land H2O2 dose of 800 mg/L at pH 3.0. The results displayed
in Figure 10 demonstrate that with the temperature elevation from room temperature
to 55 ◦C, the sludge conditioning and dewatering performances were enhanced from a
53% CST reduction to 72%. Thus, the thermal effect has a positive influence on sludge
conditioning. Temperature possesses a significant influence on the water release, thereby
increasing the sludge dewatering rate. However, it is worth mentioning that, although
the rate of hydrogen peroxide consumption is high at higher temperatures, the thermal
effect with the Fenton reaction leads to a higher effect than solo Fenton oxidation [47]. It is
noteworthy that the temperature elevation could enhance the rate of water release from the
sludge molecules due to its thermal effect on the sludge particles. This leads to the dual
conditioning of thermal and chemical dewatering [32]. This investigation is in accordance
with the previous findings of Mustranta and Viikari [50], who described a suggestive
enhancement in activated sludge conditioning performance with the temperature elevation.
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3.2.6. Comparison of Fenton with Commercial Conditioners

It is essential to compare the recently introduced sustainable facility for conditioning
with the traditionally occurring commercial polymers. Figure 11 depicts typical results for
the optimal TAS-cake@Fe-(5-1)-based Fenton system in comparison with polyelectrolyte
conditioning. Initially, anionic and cationic polyelectrolytes were checked for their optimal
time and doses (data are not shown). The optimal working time was recorded at 3 min of
conditioning time, and the optimal polyelectrolyte was 10 mg/L for both polyelectrolyte
types. The data in Figure 11 expose the consequence of the optimal conditioning circum-
stances for all conditioners. The results revealed that the highest conditioning performance
was recorded for the anionic polyelectrolyte which revealed a CST reduction resulting in
89%. However, the cationic polyelectrolytes could condition the sludge to reach a 67%
reduction in the CST. The polyelectrolyte presence improved the dry solid content in the
sludge for floc formation. Notably, this was achieved because the efficacy of the condi-
tioning in the case of the cationic polyelectrolyte differs, and a higher achievement was
obtained compared to that of the anionic polymer. This is believed to be owing to the
differences in the nature and the ionic charge of the polymers, which control the coagulation
and flocculation [33].

In comparison to the TAS-cake@Fe-(5-1)-based Fenton system that could not bridge the
high floc size of alum sludge molecules, the produced sludge flocs for polyelectrolyte were
larger than that corresponding to its optimal TAS-cake@Fe-(5-1)-based Fenton conditioning;
thereby, the water release was reduced in the TAS-cake@Fe-(5-1) system compared to
polyelectrolytes. The result is a high CST reduction in polyelectrolytes compared to the
Fenton system.

Although the lowest performance was associated with the TAS-cake@Fe-(5-1)-based
Fenton system, it is noteworthy to mention that the sustainable TAS-cake@Fe-(5-1) catalyst
is a waste-valorized material, and the magnetite is an environmentally non-hazardous
material. Also, the toxicity of synthetic polyelectrolytes is still a concern for future uses and
applications [37].
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3.2.7. Comparative Investigation

Comparing the current work with the dewatering data from the literature is essential
to evaluate the current study performance. The CST filterability guide was assessed
according to the optimum operational values and conditions. The comparative results
displayed in Table 2 show the consequences of various sludge dewatering treatments
using different conditioners. According to the data tabulated in Table 2, various forms of
the Fenton reaction were categorized as significantly reasonable conditioners for various
sludge types. Although various conditioning times are essential, the highest dewatering
performance is not linked to the time period. Also, it was established that pronounced
dewatering was achieved at 98% for the classical Fenton system. However, in the current
study, it reached only 53%. But, it is essential to mention that the current study is based
on introducing a recyclable material as a conditioning alternative rather than using fresh
chemicals since the current catalyst is based on a recoverable waste material as well as
magnetite in environmentally non-hazardous material.

The Fenton oxidation application as a conditioner showed a promising superior
dewatering technique that has numerous advantages. The use of Fenton oxidation in
sludge minimizing is signified as a safe alternative for the application of polyelectrolyte as a
sludge conditioner concerning the achievement of a more sustainable sludge management
strategy. Moreover, when the catalyst source of the Fenton system is derived from a waste
stream, especially sludge as a source of recyclable metals, this is a reliable way to minimize
waste. Although it possesses a reduced tendency for dewatering rather than that of
polymer conditioning or classical Fenton reagent conditioning, the suggestive catalyst from
the waste stream offers the potential advantage of eliminating the perceived long-term risk
of polymer residuals or introducing fresh chemicals to the environment. Thus, although the
performance is less than that illustrated by classical Fenton, it is essential to note that this
source of elements is from other sludge waste and magnetite. Thus, magnetite is signified
as an environmentally non-hazardous material and is used in small proportions. Further,
recovered sludge use is categorized as a win–win technology to attain the opportunity of
reducing waste.

3.2.8. Statistical Optimization

A Box–Behnken factorial design based on RSM (response surface methodology) was
applied to optimize the combined operational parameter effects, namely TAS-cake@Fe-(5-1);
H2O2 concentrations; and pH value. This is because the Fenton system is a multi-variable
system (using SAS software, SAS (1990 Version)). The range variables are located as the
preliminary optimized work and levels according to the design tabulated in Table 3. Further,
15 runs of the combined tests were, thereby, designed, and the design structure is shown
in Table 3.
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Table 2. Fenton conditioning with various systems from previous studies compared with the
current work.

Fenton
Conditioner Sludge Time

Required, min Operational Circumstances * Performance, % Ref.

TAS-cake@Fe-(5-
1)/H2O2

Aluminum-based
sludge 7

TAS-cake@Fe-(5-1)
(101 mg/g-DS); H2O2
(62 mg/g-DS); pH 3.0

53% Current
study

FeSO4/H2O2 Wastewater sludge 63 FeSO4.7H2O (80 mg/g-DS);
H2O2 (20 mg/g-DS); pH 5.0 85% [52]

Fe2+/H2O2 Wastewater sludge 120 Fe2+ (36 mM); H2O2 (360mM) 98% [53]

Fe2+/H2O2
Wastewater

sludge 30 Fe2+ (0.1 g/g-DS), pH 5.8, 79% [20]

Fe2+/H2O2
Wastewater

sludge 60 Fe2+ (750 mg/g-DS); H2O2
(825 mg/g-DS); pH 2.0

76% [54]

Fe2+/H2O2 Municipal sludge 60 Fe2+ (32 mg/g-DS); H2O2
(40 mg/g-DS); pH 3.0

70% [46]

Electro-Fenton Industrial
sludge 60 Fe2+ (15 mg/g-DS); H2O2

(25 mg/g DS)
94% [55]

Fenton/Lime Sewage sludge 90

Fe2+

(50 mg/g-DS); H2O2
(30 mg/g DS); pH 3.0; lime

(50 mg/g DS)

96% [43]

Fenton/Lime Municipal sludge 120
Fe2+ (50 mg/g DS), H2O2

(30 mg/g DS); pH 3.0; lime
(50 mg/g DS)

95% [56]

* DS: dry solids.

Table 3. RSM factorial design in coded and un-coded levels for TAS-cake@Fe-(5-1)/H2O2 system.

Exp.
no.

Variables

TAS-cake@Fe-(5-1) Dos H2O2 Dose pH-Value

Coded Un-Coded Coded Un-Coded Coded Un-Coded

1 −1 0.5 −1 700 0 3.0
2 −1 0.5 1 900 0 3.0
3 1 1.5 −1 700 0 3.0
4 1 1.5 1 900 0 3.0
5 0 1.0 −1 700 −1 2.5
6 0 1.0 −1 700 1 3.5
7 0 1.0 1 900 −1 2.5
8 0 1.0 1 900 1 3.5
9 −1 0.5 0 800 −1 2.5

10 1 1.5 0 800 −1 2.5
11 −1 0.5 0 800 1 3.5
12 1 1.5 0 800 1 3.5
13 0 1.0 0 800 0 3.0
14 0 1.0 0 800 0 3.0
15 0 1.0 0 800 0 3.0

Primarily, the initial stage in the RSM is to expose an appropriate approximation
between the response (CST reduction, %) and the set of independent variables. The polyno-
mial second-order model for the three variables is correlated according to
Equation (2).

CST(%) = 78 + 5.42x1 − 1.09x2 + 5.00x3 − 16.91x2
1 + 0.90 x1x2 − 0.50 x1x3 − 9.95x2

2 − 6.8 × 10−9x2x3 − 11.03x2
3 (3)

where x1, x2 and x3 are the coded independent variables, as tabulated in Table 3.
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From the analysis of variance (ANOVA test, the data obtained from SAS demonstrated
a good agreement between the experimental data and those predicted from the SAS analysis.
The correlation was estimated and assessed from Fisher’s ‘F’ test, the probability value
“p-values” and the regression coefficient “R2”. Generally, the model is reliable when the
p > F is less than >0.05 (SAS, 1990), whereas R2 is more than 0.80 (SAS, 1990). Hence
(SAS, 1990), the suggestive predicted model was checked for adequacy; the p > F value
corresponded to 0.039, and the R2 value was 0.97. Those data verified the reliability of the
model’s significance.

For the object of model illustration, a graphical representation of such a model was
established using the 3D surface and its corresponding 2D contour graphical illustra-
tions (designed in MATLAB software version 7.11.0.584). The visualized representation
in Figure 12 displays the response demonstrated as a CST reduction (%) that is enhanced
(Figure 12a,b) by the increase in both TAS-cake@Fe-(5-1) and hydrogen peroxide. However,
the suggestive CST improvement declined with the further increase in the reagents. Addi-
tionally, the decline in (%) CST occurred with high or low values of pH (Figure 12b,c). The
plot confirms that the % CST reduction improved with the added Fenton reagent doses up
to a specific limit, thus optimizing TAS-cake@Fe-(5-1) and H2O2 concentrations in addition
to the pH value controlling the conditioning process.
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Figure 12. CST reduction (%) over surface and contour plots of (a) coded TAS-cake@Fe-(5-1) and
H2O2; (b) coded TAS-cake@Fe-(5-1) and pH value; and (c) coded H2O2 and pH value.

To locate the optimum variables, Mathematical software (V 5.2. Wolfram Research
Inc., Champaign, IL, USA) was utilized. The maximum values of the variables in their
un-coded form were attained and recorded as follows: TAS-cake@Fe-(5-1) = 1.2 g/L;
H2O2 = 740 mg/L; and pH value = 3.0.

Furthermore, to settle the model verification, an extra experiment with three replicates
was conducted using the abovementioned optimum conditions. The results of such tests
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verified the optimal values that achieved a maximal XST reduction, reaching 54%, which
clearly proved the efficacy of the suggested model.

4. Conclusions

The Fenton reagent conditioner based on TAS-cake@Fe-(5-1) augmented with H2O2
was applied to enhance the water release and sludge conditioning. The conditioner is
based on the sustainability concept and uses a waste-recycled material, making it a green
conditioner augmented with environmentally non-hazardous magnetite. The composite
was investigated using XRD, FTIR and microstructure. The optimal working variables
were used in optimized conditions, especially the higher yield that was based on the model
optimization based on the RSM technique. The system parameters were investigated, and
the optimal operating parameters were set as TAS-cake@Fe-(5-1) 1.2 g/L with H2O2 of
740 mg/L at pH 3.0, corresponding to a maximal CST reduction to 53%. Further data
demonstrated that temperature elevation has a pronounced effect on the conditioning
and dewatering performance, which reached 72% with the temperature elevation from
room temperature to 55 ◦C. When 10 mg/L of both polyelectrolytes, anionic and cationic
polymers, were used as conditioners, the CST reduction reached 89% and 67%, respectively.
Thus, comparing Fenton oxidation with the polyelectrolytes as a commercial conditioner,
the CST is less than attained by the polyelectrolytes. It is notable that the toxicity concern
when polyelectrolytes were applied demonstrated the importance of the current study.
Overall, this investigation focused on the circular economy approach.
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